1
|
Potter LR. Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors. Endocr Rev 2024; 45:755-771. [PMID: 38713083 PMCID: PMC11405504 DOI: 10.1210/endrev/bnae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Faggiani I, D'Amico F, Bernardi F, Bencardino S, Allocca M, Furfaro F, Parigi TL, Zilli A, Fiorino G, Peyrin-Biroulet L, Danese S. Evaluating the pharmacokinetics of upadacitinib for the treatment of moderate-to-severe Crohn's disease. Expert Opin Drug Metab Toxicol 2024; 20:297-305. [PMID: 38712496 DOI: 10.1080/17425255.2024.2349711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Janus kinases (JAK) are enzymes involved in signaling pathways that activate the immune system. Upadacitinib, an oral small molecule, is the first JAK inhibitor approved by FDA and EMA for the treatment of moderately to severely active Crohn's disease (CD), following successful phase II and III trials. Compared to other JAK inhibitors, upadacitinib has a high selectivity toward JAK1. This characteristic could improve its efficacy and safety. AREAS COVERED This review provides an overview of the available knowledge on the pharmacokinetics of upadacitinib as induction and maintenance therapy for CD. EXPERT OPINION The approval of newer targeted small molecules drug, including JAK inhibitors, marked a significant advancement in terms of effectiveness. In fact, the oral administration, the rapid absorption, the excellent bioavailability and the short serum time of maximum concentration are some of the advantages compared to biologics. The selective inhibition of JAK1 by upadacitinib allows for high efficacy while maintaining a reliable safety profile.
Collapse
Affiliation(s)
- Ilaria Faggiani
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Ferdinando D'Amico
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Bernardi
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Sarah Bencardino
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Gionata Fiorino
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
- IBD Unit, Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, Rome, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, University of Lorraine, CHRU-Nancy, Nancy, France
- Department of Gastroenterology, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- Department of Gastroenterology, FHU-CURE, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- Groupe Hospitalier privé Ambroise Paré-Hartmann, Paris IBD Center, Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Ang WF, Liao D, Koh CY, Kini RM. Unveiling the potential role of natriuretic peptide receptor a isoforms in fine-tuning the cGMP production and tissue-specific function. Sci Rep 2023; 13:20439. [PMID: 37993528 PMCID: PMC10665444 DOI: 10.1038/s41598-023-47710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
Atrial natriuretic peptide (ANP) is a peptide hormone that regulates blood pressure and volume. ANP interacts with natriuretic peptide receptor-A (NPR-A) to lower the blood pressure through vasodilation, diuresis and natriuresis. Previously, we designed two human ANP analogues, one with exclusively diuretic function (DGD-ANP) and the other with exclusively vasodilatory function (DRD-ANP). Although both ANP analogues interact with NPR-A, their ability to produce cGMP was different. Three alternatively spliced isoforms of NPR-A were previously identified in rodents. Here, we evaluated the putative human isoforms for their cGMP production independently and in combination with WT NPR-A in various percentages. All three NPR-A isoforms failed to produce cGMP in the presence of ANP, DGD-ANP, or DRD-ANP. Co-expression of isoforms with WT NPR-A were found to significantly impair cGMP production. Considering the differential tissue expression levels of all three spliced isoforms in rodents have previously been demonstrated, the existence of these non-functional receptor isoforms may act as negative regulator for ANP/NPR-A activation and fine-tune cGMP production by WT NPR-A to different degree in different tissues. Thus, NPR-A isoforms potentially contribute to tissue-specific functions of ANP.
Collapse
Affiliation(s)
- Wei Fong Ang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117558, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Dan Liao
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117559, Singapore
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117559, Singapore.
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117558, Singapore.
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
4
|
Bekele AT. Natriuretic Peptide Receptors (NPRs) as a Potential Target for the Treatment of Heart Failure. Curr Heart Fail Rep 2023; 20:429-440. [PMID: 37710133 DOI: 10.1007/s11897-023-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Heart failure is defined as a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or ejection of blood. The natriuretic peptide is known to exert its biological action on the kidney, heart, blood vessels, renin-angiotensin system, autonomous nervous system, and central nervous system. The natriuretic peptide-natriuretic receptor system plays an important role in the regulation of blood pressure and body fluid volume through its pleiotropic effects. RECENT FINDINGS The clinical and animal studies suggest that natriuretic peptide-natriuretic receptors are important targets for the treatment of heart failure and other cardiovascular diseases. Even though attempts targeting natriuretic peptide receptors are underway for heart failure treatment, they seem insufficient despite the receptor systems' potential. This review summarizes natriuretic peptide-natriuretic receptor system's physiological actions and potential target for the treatment of heart failure. Natriuretic peptides play multiple roles in different parts of the body, almost all of the activities related to this receptor system appear to have the potential to be harnessed to treat heart failure or symptoms associated with heart failure.
Collapse
Affiliation(s)
- Adamu T Bekele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.
| |
Collapse
|
5
|
Zhang S, Wang Y, Song D, Guan S, Zhou D, Gong L, Liang L, Guan X, Wang L. Nanopore discrimination and sensitive plasma detection of multiple natriuretic peptides: The representative biomarker of human heart failure. Biosens Bioelectron 2023; 231:115299. [PMID: 37054600 PMCID: PMC10147535 DOI: 10.1016/j.bios.2023.115299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Natriuretic peptides can relieve cardiovascular stress and closely related to heart failure. Besides, these peptides also have preferable interactions of binding to cellular protein receptors, and subsequently mediate various physiology actions. Hence, detection of these circulating biomarkers could be evaluated as a predictor ("Gold standard") for rapid, early diagnosis and risk stratification in heart failure. Herein, we proposed a measurement to discriminate multiple natriuretic peptides via the peptide-protein nanopore interaction. The nanopore single-molecular kinetics revealed that the strength of peptide-protein interactions was in the order of ANP > CNP > BNP, which was demonstrated by the simulated peptide structures using SWISS-MODEL. More importantly, the peptide-protein interaction analyzing also allowed us to measure the peptide linear analogs and structure damage in peptide by single-chemical bond breakup. Finally, we presented an ultra-sensitive detection of plasma natriuretic peptide using asymmetric electrolyte assay, obtaining a detection limit of ∼770 fM for BNP. At approximately, it is 1597 times lower than that of using symmetric assay (∼1.23 nM), 8 times lower than normal human level (∼6 pM), and 13 times lower than the diagnostic values (∼10.09 pM) complied in the guideline of European Society of Cardiology. That said, the designed nanopore sensor is benefit for natriuretic peptides measurement at single molecule level and demonstrates its potential for heart failure diagnosis.
Collapse
Affiliation(s)
- Shaoxia Zhang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Dandan Song
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Sarah Guan
- Hinsdale Central High School, Hinsdale, IL, 60521, USA
| | - Daming Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Linyu Gong
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
6
|
Law CCY, Kayal M, Mehandru S, Colombel JF. A critical review of upadacitinib for the treatment of adults with moderately to severely active ulcerative colitis. Expert Rev Gastroenterol Hepatol 2023; 17:109-117. [PMID: 36681073 DOI: 10.1080/17474124.2023.2172399] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Upadacitinib is a selective janus kinase 1 inhibitor. In March 2022, upadacitinib was approved by the US Food and Drug Administration for the management of moderately to severely active ulcerative colitis (UC) in those who have had an inadequate response or intolerance of tumor necrosis factor inhibitors. It is also approved for the treatment of psoriatic arthritis, atopic dermatitis, rheumatoid arthritis, ankylosing spondylitis, and non-radiographic axial spondyloarthritis. AREAS COVERED The aim of this article is to review the mechanism of action of upadacitinib, clinical data regarding its efficacy in treating UC, and safety information. EXPERT OPINION Upadacitinib is superior to placebo in inducing and maintaining both clinical and endoscopic remission in moderately to severely active UC. Its strengths include once daily oral route of administration, low risk of immunogenicity, rapid onset, and efficacy in patients with previous failure of biologic therapy. The use of upadacitinib has been limited due to safety concerns surrounding JAK inhibitors. Phase 3 clinical trials recorded more cases of herpes zoster infection and venous thromboembolism in patients with UC treated with upadacitinib compared to placebo. Ongoing long-term safety studies will provide much needed clarity. Further research is also required to define the positioning of upadacitinib in treatment algorithms.
Collapse
Affiliation(s)
- Cindy C Y Law
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maia Kayal
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frédéric Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Duda T, Sharma RK. Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder. Front Mol Neurosci 2023; 15:1022771. [PMID: 36683846 PMCID: PMC9849996 DOI: 10.3389/fnmol.2022.1022771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/07/2023] Open
Abstract
One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so via its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca2+-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca2+ sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.
Collapse
|
8
|
Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics. Front Mol Neurosci 2023; 15:1076799. [PMID: 36683859 PMCID: PMC9846370 DOI: 10.3389/fnmol.2022.1076799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
The natriuretic peptides (NPs) hormone family, which consists mainly of atrial, brain, and C-type NPs (ANP, BNP, and CNP), play diverse roles in mammalian species, ranging from renal, cardiac, endocrine, neural, and vascular hemodynamics to metabolic regulations, immune responsiveness, and energy distributions. Over the last four decades, new data has transpired regarding the biochemical and molecular compositions, signaling mechanisms, and physiological and pathophysiological functions of NPs and their receptors. NPs are incremented mainly in eliciting natriuretic, diuretic, endocrine, vasodilatory, and neurological activities, along with antiproliferative, antimitogenic, antiinflammatory, and antifibrotic responses. The main locus responsible in the biological and physiological regulatory actions of NPs (ANP and BNP) is the plasma membrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), a member of the growing multi-limbed GC family of receptors. Advances in this field have provided tremendous insights into the critical role of Npr1 (encoding GC-A/NPRA) in the reduction of fluid volume and blood pressure homeostasis, protection against renal and cardiac remodeling, and moderation and mediation of neurological disorders. The generation and use of genetically engineered animals, including gene-targeted (gene-knockout and gene-duplication) and transgenic mutant mouse models has revealed and clarified the varied roles and pleiotropic functions of GC-A/NPRA in vivo in intact animals. This review provides a chronological development of the biochemical, molecular, physiological, and pathophysiological functions of GC-A/NPRA, including signaling pathways, genomics, and gene regulation in both normal and disease states.
Collapse
|
9
|
Bose A, Visweswariah SS. The pseudokinase domain in receptor guanylyl cyclases. Methods Enzymol 2022; 667:535-574. [PMID: 35525553 DOI: 10.1016/bs.mie.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclic GMP is produced by enzymes called guanylyl cyclases, of which the membrane-associated forms contain an intracellular pseudokinase domain that allosterically regulates the C-terminal guanylyl cyclase domain. Ligand binding to the extracellular domain of these single transmembrane-spanning domain receptors elicits an increase in cGMP levels in the cell. The pseudokinase domain (or kinase-homology domain) in these receptors appears to be critical for ligand-mediated activation. While the pseudokinase domain does not possess kinase activity, biochemical evidence indicates that the domain can bind ATP and thereby allosterically regulate the catalytic activity of these receptors. The pseudokinase domain also appears to be the site of interaction of regulatory proteins, as seen in the retinal guanylyl cyclases that are involved in visual signal transduction. In the absence of structural information on the pseudokinase-guanylyl cyclase domain organization of any member of this family of receptors, biochemical evidence has provided clues to the physical interaction of the pseudokinase and guanylyl cyclase domain. An α-helical linker region between the pseudokinase domain and the guanylyl cyclase domain regulates the basal activity of these receptors in the absence of a stimulatory ligand and is important for stabilizing the structure of the pseudokinase domain that can bind ATP. Here, we present an overview of salient features of ATP-mediated regulation of receptor guanylyl cyclases and describe biochemical approaches that allow a clearer understanding of the intricate interplay between the pseudokinase domain and catalytic domain in these proteins.
Collapse
Affiliation(s)
- Avipsa Bose
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
10
|
Takei Y. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 2022; 315:113797. [PMID: 33957096 DOI: 10.1016/j.ygcen.2021.113797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Guanylyl cyclase (GC) is an enzyme that produces 3',5'-cyclic guanosine monophosphate (cGMP), one of the two canonical cyclic nucleotides used as a second messenger for intracellular signal transduction. The GCs are classified into two groups, particulate/membrane GCs (pGC) and soluble/cytosolic GCs (sGC). In relation to the endocrine system, pGCs include hormone receptors for natriuretic peptides (GC-A and GC-B) and guanylin peptides (GC-C), while sGC is a receptor for nitric oxide and carbon monoxide. Comparing the functions of pGCs in eukaryotes, it is apparent that pGCs perceive various environmental factors such as light, temperature, and various external chemical signals in addition to endocrine hormones, and transmit the information into the cell using the intracellular signaling cascade initiated by cGMP, e.g., cGMP-dependent protein kinases, cGMP-sensitive cyclic nucleotide-gated ion channels and cGMP-regulated phosphodiesterases. Among vertebrate pGCs, GC-E and GC-F are localized on retinal epithelia and are involved in modifying signal transduction from the photoreceptor, rhodopsin. GC-D and GC-G are localized in olfactory epithelia and serve as sensors at the extracellular domain for external chemical signals such as odorants and pheromones. GC-G also responds to guanylin peptides in the urine, which alters sensitivity to other chemicals. In addition, guanylin peptides that are secreted into the intestinal lumen, a pseudo-external environment, act on the GC-C on the apical membrane for regulation of epithelial transport. In this context, GC-C and GC-G appear to be in transition from exocrine pheromone receptor to endocrine hormone receptor. The pGCs also exist in various deuterostome and protostome invertebrates, and act as receptors for environmental, exocrine and endocrine factors including hormones. Tracing the evolutionary history of pGCs, it appears that pGCs first appeared as a sensor for physicochemical signals in the environment, and then evolved to function as hormone receptors. In this review, the author proposes an evolutionary history of pGCs that highlights the emerging role of the GC/cGMP system for signal transduction in hormone action.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
11
|
Hennig A, Mohr L, Fehr M, Legler M. The B-type natriuretic peptide of the Congo and Timneh grey parrot. Vet Res Commun 2021; 45:329-333. [PMID: 34278549 PMCID: PMC8626375 DOI: 10.1007/s11259-021-09813-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 11/03/2022]
Abstract
In captivity, cardiovascular diseases are common in grey parrots. The diagnosis of these diseases in living birds is difficult, and new diagnostic possibilities would be desirable. The heart is an important endocrine organ in which cardiomyocytes synthetise B-type natriuretic peptide (BNP) and release it into the bloodstream. This hormone has a significant role in cardiovascular and body fluid regulation. The blood concentration of BNP is used in human medicine and small animal medicine as a diagnostic tool in the identification of heart diseases and as a prognostic marker for the risk of mortality. The nucleotide and amino acid sequence of BNP was described in Congo (n = 4) and Timneh (n = 3) grey parrots by PCR after RNA isolation from the atria and ventricles. The results showed a high similarity between the nucleotide sequences of the grey parrots’ BNP and the already known sequence of this hormone in chickens. The amino acid sequence of the mature peptide region is consistent in these three species. BNP plasma concentration could be a possible blood parameter for identifying clinically manifest cardiovascular diseases in grey parrots as it is in other species.
Collapse
Affiliation(s)
- Anja Hennig
- Clinic for Small Mammals, Reptiles and Birds, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| | - L Mohr
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - M Fehr
- Clinic for Small Mammals, Reptiles and Birds, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - M Legler
- Clinic for Small Mammals, Reptiles and Birds, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| |
Collapse
|
12
|
Abstract
Investigations into the mixed muscle-secretory phenotype of cardiomyocytes from the atrial appendages of the heart led to the discovery that these cells produce, in a regulated manner, two polypeptide hormones - the natriuretic peptides - referred to as atrial natriuretic factor or atrial natriuretic peptide (ANP) and brain or B-type natriuretic peptide (BNP), thereby demonstrating an endocrine function for the heart. Studies on the gene encoding ANP (NPPA) initiated the field of modern research into gene regulation in the cardiovascular system. Additionally, ANP and BNP were found to be the natural ligands for cell membrane-bound guanylyl cyclase receptors that mediate the effects of natriuretic peptides through the generation of intracellular cGMP, which interacts with specific enzymes and ion channels. Natriuretic peptides have many physiological actions and participate in numerous pathophysiological processes. Important clinical entities associated with natriuretic peptide research include heart failure, obesity and systemic hypertension. Plasma levels of natriuretic peptides have proven to be powerful diagnostic and prognostic biomarkers of heart disease. Development of pharmacological agents that are based on natriuretic peptides is an area of active research, with vast potential benefits for the treatment of cardiovascular disease.
Collapse
|
13
|
Bose A, Banerjee S, Visweswariah SS. Mutational landscape of receptor guanylyl cyclase C: Functional analysis and disease-related mutations. IUBMB Life 2020; 72:1145-1159. [PMID: 32293781 DOI: 10.1002/iub.2283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
Guanylyl cyclase C (GC-C) is the receptor for the heat-stable enterotoxin, which causes diarrhea, and the endogenous ligands, guanylin and uroguanylin. GC-C is predominantly expressed in the intestinal epithelium and regulates fluid and ion secretion in the gut. The receptor has a complex domain organization, and in the absence of structural information, mutational analysis provides clues to mechanisms of regulation of this protein. Here, we review the mutational landscape of this receptor that reveals regulatory features critical for its activity. We also summarize the available information on mutations in GC-C that have been reported in humans and contribute to severe gastrointestinal abnormalities. Since GC-C is also expressed in extra-intestinal tissues, it is likely that mutations thus far reported in humans may also affect other organ systems, warranting a close observation of these patients in future.
Collapse
Affiliation(s)
- Avipsa Bose
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sanghita Banerjee
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
14
|
Meng J, Chen W, Wang J. Interventions in the B-type natriuretic peptide signalling pathway as a means of controlling chronic itch. Br J Pharmacol 2020; 177:1025-1040. [PMID: 31877230 DOI: 10.1111/bph.14952] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic itch poses major health care and economic burdens worldwide. In 2013, B-type natriuretic peptide (BNP) was identified as an itch-selective neuropeptide and shown to be both necessary and sufficient to produce itch behaviour in mice. Since then, mechanistic studies of itch have increased, not only at central levels of the spinal relay of itch signalling but also in the periphery and skin. In this review, we have critically analysed recent findings from complementary pharmacological and physiological approaches, combined with genetic strategies to examine the role of BNP in itch transduction and modulation of other pruritic proteins. Additionally, potential targets and possible strategies against BNP signalling are discussed for developing novel therapeutics in itch. Overall, we aim to provide insights into drug development by altering BNP signalling to modulate disease symptoms in chronic itch, including conditions for which no approved treatment exists.
Collapse
Affiliation(s)
- Jianghui Meng
- School of Life Sciences, Henan University, Henan, China.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Jiafu Wang
- School of Life Sciences, Henan University, Henan, China.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
15
|
Edmund AB, Walseth TF, Levinson NM, Potter LR. The pseudokinase domains of guanylyl cyclase-A and -B allosterically increase the affinity of their catalytic domains for substrate. Sci Signal 2019; 12:12/566/eaau5378. [PMID: 30696704 DOI: 10.1126/scisignal.aau5378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natriuretic peptides regulate multiple physiologic systems by activating transmembrane receptors containing intracellular guanylyl cyclase domains, such as GC-A and GC-B, also known as Npr1 and Npr2, respectively. Both enzymes contain an intracellular, phosphorylated pseudokinase domain (PKD) critical for activation of the C-terminal cGMP-synthesizing guanylyl cyclase domain. Because ATP allosterically activates GC-A and GC-B, we investigated how ATP binding to the PKD influenced guanylyl cyclase activity. Molecular modeling indicated that all the residues of the ATP-binding site of the prototypical kinase PKA, except the catalytic aspartate, are conserved in the PKDs of GC-A and GC-B. Kinase-inactivating alanine substitutions for the invariant lysine in subdomain II or the aspartate in the DYG-loop of GC-A and GC-B failed to decrease enzyme phosphate content, consistent with the PKDs lacking kinase activity. In contrast, both mutations reduced enzyme activation by blocking the ability of ATP to decrease the Michaelis constant without affecting peptide-dependent activation. The analogous lysine-to-alanine substitution in a glutamate-substituted phosphomimetic mutant form of GC-B also reduced enzyme activity, consistent with ATP stimulating guanylyl cyclase activity through an allosteric, phosphorylation-independent mechanism. Mutations designed to rigidify the conserved regulatory or catalytic spines within the PKDs increased guanylyl cyclase activity, increased sensitivity to natriuretic peptide, or reduced the Michaelis constant in the absence of ATP, consistent with ATP binding stabilizing the PKD in a conformation analogous to that of catalytically active kinases. We conclude that allosteric mechanisms evolutionarily conserved in the PKDs promote the catalytic activation of transmembrane guanylyl cyclases.
Collapse
Affiliation(s)
- Aaron B Edmund
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Nicholas M Levinson
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA. .,Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
The regulatory role of the kinase-homology domain in receptor guanylyl cyclases: nothing 'pseudo' about it! Biochem Soc Trans 2018; 46:1729-1742. [PMID: 30420416 DOI: 10.1042/bst20180472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023]
Abstract
The availability of genome sequence information and a large number of protein structures has allowed the cataloging of genes into various families, based on their function and predicted biochemical activity. Intriguingly, a number of proteins harbor changes in the amino acid sequence at residues, that from structural elucidation, are critical for catalytic activity. Such proteins have been categorized as 'pseudoenzymes'. Here, we review the role of the pseudokinase (or kinase-homology) domain in receptor guanylyl cyclases. These are multidomain single-pass, transmembrane proteins harboring an extracellular ligand-binding domain, and an intracellular domain composed of a kinase-homology domain that regulates the activity of the associated guanylyl cyclase domain. Mutations that lie in the kinase-homology domain of these receptors are associated with human disease, and either abolish or enhance cGMP production by these receptors to alter downstream signaling events. This raises the interesting possibility that one could identify molecules that bind to the pseudokinase domain and regulate the activities of these receptors, in order to alleviate symptoms in patients harboring these mutations.
Collapse
|
17
|
Abstract
Natriuretic peptides are structurally related, functionally diverse hormones. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are delivered predominantly by the heart. Two C-type natriuretic peptides (CNPs) are paracrine messengers, notably in bone, brain, and vessels. Natriuretic peptides act by binding to the extracellular domains of three receptors, NPR-A, NPR-B, and NPR-C of which the first two are guanylate cyclases. NPR-C is coupled to inhibitory proteins. Atrial wall stress is the major regulator of ANP secretion; however, atrial pressure changes plasma ANP only modestly and transiently, and the relation between plasma ANP and atrial wall tension (or extracellular volume or sodium intake) is weak. Absence and overexpression of ANP-related genes are associated with modest blood pressure changes. ANP augments vascular permeability and reduces vascular contractility, renin and aldosterone secretion, sympathetic nerve activity, and renal tubular sodium transport. Within the physiological range of plasma ANP, the responses to step-up changes are unimpressive; in man, the systemic physiological effects include diminution of renin secretion, aldosterone secretion, and cardiac preload. For BNP, the available evidence does not show that cardiac release to the blood is related to sodium homeostasis or body fluid control. CNPs are not circulating hormones, but primarily paracrine messengers important to ossification, nervous system development, and endothelial function. Normally, natriuretic peptides are not powerful natriuretic/diuretic hormones; common conclusions are not consistently supported by hard data. ANP may provide fine-tuning of reno-cardiovascular relationships, but seems, together with BNP, primarily involved in the regulation of cardiac performance and remodeling. © 2017 American Physiological Society. Compr Physiol 8:1211-1249, 2018.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Santhekadur PK, Kumar DP, Seneshaw M, Mirshahi F, Sanyal AJ. The multifaceted role of natriuretic peptides in metabolic syndrome. Biomed Pharmacother 2017; 92:826-835. [PMID: 28599248 PMCID: PMC5737745 DOI: 10.1016/j.biopha.2017.05.136] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/19/2022] Open
Abstract
Due to globalization and sophisticated western and sedentary lifestyle, metabolic syndrome has emerged as a serious public health challenge. Obesity is significantly increasing worldwide because of increased high calorie food intake and decreased physical activity leading to hypertension, dyslipidemia, atherosclerosis, and insulin resistance. Thus, metabolic syndrome constitutes cardiovascular disease, type 2 diabetes, obesity, and nonalcoholic fatty liver disease (NAFLD) and recently some cancers are also considered to be associated with this syndrome. There is increasing evidence of the involvement of natriuretic peptides (NP) in the pathophysiology of metabolic diseases. The natriuretic peptides are cardiac hormones, which are produced in the cardiac atrium, ventricles of the heart and the endothelium. These peptides are involved in the homeostatic control of body water, sodium intake, potassium transport, lipolysis in adipocytes and regulates blood pressure. The three known natriuretic peptide hormones present in the natriuretic system are atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and c-type natriuretic peptide (CNP). These three peptides primarily function as endogenous ligands and mainly act via their membrane receptors such as natriuretic peptide receptor A (NPR-A), natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C) and regulate various physiological and metabolic functions. This review will shed light on the structure and function of natriuretic peptides and their receptors and their role in the metabolic syndrome.
Collapse
Affiliation(s)
- Prasanna K Santhekadur
- McGuire Research Institute, McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Divya P Kumar
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mulugeta Seneshaw
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Arun J Sanyal
- McGuire Research Institute, McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
19
|
From the research laboratory to the database: the Caenorhabditis elegans kinome in UniProtKB. Biochem J 2017; 474:493-515. [PMID: 28159896 PMCID: PMC5290486 DOI: 10.1042/bcj20160991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
Protein kinases form one of the largest protein families and are found in all species, from viruses to humans. They catalyze the reversible phosphorylation of proteins, often modifying their activity and localization. They are implicated in virtually all cellular processes and are one of the most intensively studied protein families. In recent years, they have become key therapeutic targets in drug development as natural mutations affecting kinase genes are the cause of many diseases. The vast amount of data contained in the primary literature and across a variety of biological data collections highlights the need for a repository where this information is stored in a concise and easily accessible manner. The UniProt Knowledgebase meets this need by providing the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information. Here, we describe the expert curation process for kinases, focusing on the Caenorhabditis elegans kinome. The C. elegans kinome is composed of 438 kinases and almost half of them have been functionally characterized, highlighting that C. elegans is a valuable and versatile model organism to understand the role of kinases in biological processes.
Collapse
|
20
|
Ravichandran S, Duda T, Pertzev A, Sharma RK. Membrane Guanylate Cyclase catalytic Subdomain: Structure and Linkage with Calcium Sensors and Bicarbonate. Front Mol Neurosci 2017; 10:173. [PMID: 28638321 PMCID: PMC5461267 DOI: 10.3389/fnmol.2017.00173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022] Open
Abstract
Membrane guanylate cyclase (MGC) is a ubiquitous multi-switching cyclic GMP generating signaling machine linked with countless physiological processes. In mammals it is encoded by seven distinct homologous genes. It is a single transmembrane spanning multi-modular protein; composed of integrated blocks and existing in homo-dimeric form. Its core catalytic domain (CCD) module is a common transduction center where all incoming signals are translated into the production of cyclic GMP, a cellular signal second messenger. Crystal structure of the MGC's CCD does not exist and its precise identity is ill-defined. Here, we define it at a sub-molecular level for the phototransduction-linked MGC, the rod outer segment guanylate cyclase type 1, ROS-GC1. (1) The CCD is a conserved 145-residue structural unit, represented by the segment V820-P964. (2) It exists as a homo-dimer and contains seven conserved catalytic elements (CEs) wedged into seven conserved motifs. (3) It also contains a conserved 21-residue neurocalcin δ-modulated structural domain, V836-L857. (4) Site-directed mutagenesis documents that each of the seven CEs governs the cyclase's catalytic activity. (5) In contrast to the soluble and the bacterium MGC which use Mn2+-GTP substrate for catalysis, MGC CCD uses the natural Mg2+-GTP substrate. (6) Strikingly, the MGC CCD requires anchoring by the Transmembrane Domain (TMD) to exhibit its major (∼92%) catalytic activity; in isolated form the activity is only marginal. This feature is not linked with any unique sequence of the TMD; there is minimal conservation in TMD. Finally, (7) the seven CEs control each of four phototransduction pathways- -two Ca2+-sensor GCAPs-, one Ca2+-sensor, S100B-, and one bicarbonate-modulated. The findings disclose that the CCD of ROS-GC1 has built-in regulatory elements that control its signal translational activity. Due to conservation of these regulatory elements, it is proposed that these elements also control the physiological activity of other members of MGC family.
Collapse
Affiliation(s)
- Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., FredrickMD, United States
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins ParkPA, United States
| | - Alexandre Pertzev
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins ParkPA, United States
| | - Rameshwar K. Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins ParkPA, United States
| |
Collapse
|
21
|
CCM2 and PAK4 act downstream of atrial natriuretic peptide signaling to promote cell spreading. Biochem J 2017; 474:1897-1918. [PMID: 28432261 DOI: 10.1042/bcj20160841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022]
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone released by the atrium in response to stretching forces. Via its receptor, guanylyl cyclase-A (GC-A), ANP maintains cardiovascular homeostasis by exerting diuretic, natriuretic, and hypotensive effects mediated, in part, by endothelial cells. Both in vivo and in vitro, ANP enhances endothelial barrier function by reducing RhoA activity and reorganizing the actin cytoskeleton. We established mouse endothelial cells that stably express GC-A and used them to analyze the molecular mechanisms responsible for actin reorganization. Stimulation by ANP resulted in phosphorylation of myosin light chain (MLC) and promotion of cell spreading. p21-activated kinase 4 (PAK4) and cerebral cavernous malformations 2 (CCM2), a scaffold protein involved in a cerebrovascular disease, were required for the phosphorylation of MLC and promotion of cell spreading by ANP. Finally, in addition to the GC domain, the kinase homology domain of GC-A was also required for ANP/GC-A signaling. Our results indicate that CCM2 and PAK4 are important downstream mediators of ANP/GC-A signaling involved in cell spreading, an important initial step in the enhancement of endothelial barrier function.
Collapse
|
22
|
Li ZW, Wu B, Ye P, Tan ZY, Ji YH. Brain natriuretic peptide suppresses pain induced by BmK I, a sodium channel-specific modulator, in rats. J Headache Pain 2016; 17:90. [PMID: 27687165 PMCID: PMC5042912 DOI: 10.1186/s10194-016-0685-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/24/2016] [Indexed: 12/30/2022] Open
Abstract
Background A previous study found that brain natriuretic peptide (BNP) inhibited inflammatory pain via activating its receptor natriuretic peptide receptor A (NPRA) in nociceptive sensory neurons. A recent study found that functional NPRA is expressed in almost all the trigeminal ganglion (TG) neurons at membrane level suggesting a potentially important role for BNP in migraine pathophysiology. Methods An inflammatory pain model was produced by subcutaneous injection of BmK I, a sodium channel-specific modulator from venom of Chinese scorpion Buthus martensi Karsch. Quantitative PCR, Western Blot, and immunohistochemistry were used to detect mRNA and protein expression of BNP and NPRA in dorsal root ganglion (DRG) and dorsal horn of spinal cord. Whole-cell patch clamping experiments were conducted to record large-conductance Ca2+-activated K+ (BKCa) currents of membrane excitability of DRG neurons. Spontaneous and evoked pain behaviors were examined. Results The mRNA and protein expression of BNP and NPRA was up-regulated in DRG and dorsal horn of spinal cord after BmK I injection. The BNP and NPRA was preferentially expressed in small-sized DRG neurons among which BNP was expressed in both CGRP-positive and IB4-positive neurons while NPRA was preferentially expressed in CGRP-positive neurons. BNP increased the open probability of BKCa channels and suppressed the membrane excitability of small-sized DRG neurons. Intrathecal injection of BNP significantly inhibited BmK-induced pain behaviors including both spontaneous and evoked pain behaviors. Conclusions These results suggested that BNP might play an important role as an endogenous pain reliever in BmK I-induced inflammatory pain condition. It is also suggested that BNP might play a similar role in other pathophysiological pain conditions including migraine.
Collapse
Affiliation(s)
- Zheng-Wei Li
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China
| | - Bin Wu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China
| | - Pin Ye
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yong-Hua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China.
| |
Collapse
|
23
|
Sharma RK, Duda T, Makino CL. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology. Front Mol Neurosci 2016; 9:83. [PMID: 27695398 PMCID: PMC5023690 DOI: 10.3389/fnmol.2016.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Physiology and Biophysics, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
24
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Maruyama IN. Receptor Guanylyl Cyclases in Sensory Processing. Front Endocrinol (Lausanne) 2016; 7:173. [PMID: 28123378 PMCID: PMC5225109 DOI: 10.3389/fendo.2016.00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
Invertebrate models have generated many new insights into transmembrane signaling by cell-surface receptors. This review focuses on receptor guanylyl cyclases (rGCs) and describes recent advances in understanding their roles in sensory processing in the nematode, Caenorhabditis elegans. A complete analysis of the C. elegans genome elucidated 27 rGCs, an unusually large number compared with mammalian genomes, which encode 7 rGCs. Most C. elegans rGCs are expressed in sensory neurons and play roles in sensory processing, including gustation, thermosensation, olfaction, and phototransduction, among others. Recent studies have found that by producing a second messenger, guanosine 3',5'-cyclic monophosphate, some rGCs act as direct sensor molecules for ions and temperatures, while others relay signals from G protein-coupled receptors. Interestingly, genetic and biochemical analyses of rGCs provide the first example of an obligate heterodimeric rGC. Based on recent structural studies of rGCs in mammals and other organisms, molecular mechanisms underlying activation of rGCs are also discussed in this review.
Collapse
Affiliation(s)
- Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Ichiro N. Maruyama,
| |
Collapse
|
26
|
Singh JSS, Lang CC. Angiotensin receptor-neprilysin inhibitors: clinical potential in heart failure and beyond. Vasc Health Risk Manag 2015; 11:283-95. [PMID: 26082640 PMCID: PMC4459540 DOI: 10.2147/vhrm.s55630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heart failure remains a major concern across the globe as life expectancies and delivery of health care continue to improve. There has been a dearth of new developments in heart failure therapies in the last decade until last year, with the release of the results from the PARADIGM-HF Trial heralding the arrival of a promising new class of drug, ie, the angiotensin receptor-neprilysin inhibitor. In this review, we discuss the evolution of our incremental understanding of the neurohormonal mechanisms involved in the pathophysiology of heart failure, which has led to our success in modulating its various pathways. We start by examining the renin-angiotensin-aldosterone system, followed by the challenges of modulating the natriuretic peptide system. We then delve deeper into the pharmacology and mechanisms by which angiotensin receptor-neprilysin inhibitors achieve their significant cardiovascular benefits. Finally, we also consider the potential application of this new class of drug in other areas, such as heart failure with preserved ejection fraction, hypertension, patients with renal impairment, and following myocardial infarction.
Collapse
Affiliation(s)
- Jagdeep S S Singh
- Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Chim C Lang
- Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
27
|
Sharma RK, Duda T. Membrane guanylate cyclase, a multimodal transduction machine: history, present, and future directions. Front Mol Neurosci 2014; 7:56. [PMID: 25071437 PMCID: PMC4079103 DOI: 10.3389/fnmol.2014.00056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/30/2014] [Indexed: 12/22/2022] Open
Abstract
A sequel to these authors' earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC) from its origin to the year 2010, this article contains 13 sections. The first is historical and covers MGC from the year 1963–1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its biochemical identity. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its expansion. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of phototransduction. Sections ROS-GC, a Ca2+-Modulated Two Component Transduction System to Migration Patterns and Translations of the GCAP Signals Into Production of Cyclic GMP are Different cover its biochemistry and physiology. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca2+ signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Section ROS-GC1 Gene Linked Retinal Dystrophies demonstrates how this knowledge begins to be translated into the diagnosis and providing the molecular definition of retinal dystrophies. Section Controlled By Low and High Levels of [Ca2+]i, ROS-GC1 is a Bimodal Transduction Switch discusses a striking property of ROS-GC where it becomes a “[Ca2+]i bimodal switch” and transcends its signaling role in other neural processes. In this course, discovery of the first CD-GCAP (Ca2+-dependent guanylate cyclase activator), the S100B protein, is made. It extends the role of the ROS-GC transduction system beyond the phototransduction to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in section Ca2+-Modulated Neurocalcin δ ROS-GC1 Transduction System Exists in the Inner Plexiform Layer (IPL) of the Retinal Neurons, discovery of another CD-GCAP, NCδ, is made and its linkage with signaling of the inner plexiform layer neurons is established. Section ROS-GC Linkage With Other Than Vision-Linked Neurons discusses linkage of the ROS-GC transduction system with other sensory transduction processes: Pineal gland, Olfaction and Gustation. In the next, section Evolution of a General Ca2+-Interlocked ROS-GC Signal Transduction Concept in Sensory and Sensory-Linked Neurons, a theoretical concept is proposed where “Ca2+-interlocked ROS-GC signal transduction” machinery becomes a common signaling component of the sensory and sensory-linked neurons. Closure to the review is brought by the conclusion and future directions.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| |
Collapse
|
28
|
Zhang J, Zhao Z, Wang J. Natriuretic peptide receptor A as a novel target for cancer. World J Surg Oncol 2014; 12:174. [PMID: 24894887 PMCID: PMC4049422 DOI: 10.1186/1477-7819-12-174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/09/2014] [Indexed: 11/22/2022] Open
Abstract
The receptor for the cardiac hormone atrial natriuretic peptide (ANP), natriuretic peptide receptor A (NPR-A), has been reported to be expressed in lung cancer, prostate cancer and ovarian cancer. NPR-A expression and signaling is important for tumor growth; its deficiency protects C57BL/6 mice from lung, skin and ovarian cancers. This suggests that NPR-A is a new marker and a new target for cancer therapy. Recently, NPR-A has been demonstrated to be expressed in pre-implantation embryos and in embryonic stem cells, which has a novel role in the maintenance of self-renewal and pluripotency of embryonic stem cells. A nanoparticle-formulated interfering RNA for NPR-A attenuated B16 melanoma tumors in mice. Ectopic expression of a plasmid encoding NP73-102, the NH2-terminal peptide of the ANP prohormone which downregulates NPR-A expression, also suppressed lung metastasis of A549 cells in nude mice and tumorigenesis of Line 1 cells in immunocompetent BALB/c mice. These results suggest that NPR-A is involved in tumorigenesis and a new target for cancer therapy. This review focuses on structure, abnormal functions and carcinogenic mechanisms of NPR-A to investigate its role in tumorigenesis.
Collapse
Affiliation(s)
| | | | - Jiansheng Wang
- Department of Thoracic Surgery 2, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
29
|
Guo S, Barringer F, Zois NE, Goetze JP, Ashina M. Natriuretic peptides and cerebral hemodynamics. ACTA ACUST UNITED AC 2014; 192-193:15-23. [DOI: 10.1016/j.regpep.2014.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 12/26/2022]
|
30
|
Shen Y, Liu X, Dong M, Lin J, Zhao Q, Lee H, Jin W. Recent advances in brown adipose tissue biology. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0386-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Duda T, Pertzev A, Sharma RK. Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca(2+). Front Mol Neurosci 2014; 7:17. [PMID: 24672425 PMCID: PMC3955944 DOI: 10.3389/fnmol.2014.00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022] Open
Abstract
Atrial natriuretic factor receptor guanylate cyclase (ANF-RGC), was the first discovered member of the mammalian membrane guanylate cyclase family. The hallmark feature of the family is that a single protein contains both the site for recognition of the regulatory signal and the ability to transduce it into the production of the second messenger, cyclic GMP. For over two decades, the family has been classified into two subfamilies, the hormone receptor subfamily with ANF-RGC being its paramount member, and the Ca2+ modulated subfamily, which includes the rod outer segment guanylate cyclases, ROS-GC1 and 2, and the olfactory neuroepithelial guanylate cyclase. ANF-RGC is the receptor and the signal transducer of the most hypotensive hormones, ANF– and B-type natriuretic peptide (BNP). After binding these hormones at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates the production of cyclic GMP. Cyclic GMP then serves the second messenger role in biological responses of ANF and BNP such as natriuresis, diuresis, vasorelaxation, and anti-proliferation. Very recently another modus operandus for ANF-RGC was revealed. Its crux is that ANF-RGC activity is also regulated by Ca2+. The Ca2+ sensor neurocalcin d mediates this signaling mechanism. Strikingly, the Ca2+ and ANF signaling mechanisms employ separate structural motifs of ANF-RGC in modulating its core catalytic domain in accelerating the production of cyclic GMP. In this review the biochemistry and physiology of these mechanisms with emphasis on cardiovascular regulation will be discussed.
Collapse
Affiliation(s)
- Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Alexandre Pertzev
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| |
Collapse
|
32
|
Chak K, Kolodkin AL. Function of the Drosophila receptor guanylyl cyclase Gyc76C in PlexA-mediated motor axon guidance. Development 2014; 141:136-47. [PMID: 24284209 PMCID: PMC3865755 DOI: 10.1242/dev.095968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
The second messengers cAMP and cGMP modulate attraction and repulsion mediated by neuronal guidance cues. We find that the Drosophila receptor guanylyl cyclase Gyc76C genetically interacts with Semaphorin 1a (Sema-1a) and physically associates with the Sema-1a receptor plexin A (PlexA). PlexA regulates Gyc76C catalytic activity in vitro, and each distinct Gyc76C protein domain is crucial for regulating Gyc76C activity in vitro and motor axon guidance in vivo. The cytosolic protein dGIPC interacts with Gyc76C and facilitates Sema-1a-PlexA/Gyc76C-mediated motor axon guidance. These findings provide an in vivo link between semaphorin-mediated repulsive axon guidance and alteration of intracellular neuronal cGMP levels.
Collapse
Affiliation(s)
- Kayam Chak
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Sharma RK, Duda T, Sitaramayya A. Plasma membrane guanylate cyclase is a multimodule transduction system. Amino Acids 2013; 7:117-27. [PMID: 24186045 DOI: 10.1007/bf00814155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/1993] [Accepted: 08/12/1993] [Indexed: 11/24/2022]
Abstract
This minireview highlights the studies which suggest that guanylate cyclase is a single-component transducing system, containing distinct signaling modules in a single membrane-spanning protein. A guanylate cyclase signaling model is proposed which envisions the following sequential events: (1) a signal is initiated by the binding of the hormone to the ligand binding module; (2) the signal is potentiated by ATP at ARM; and (3) the amplified signal is finally transduced at the catalytic site. All of these signaling steps together constitute a switch, which when turned on, generates the second messenger cyclic GMP.
Collapse
Affiliation(s)
- R K Sharma
- The Unit of Regulatory and Molecular Biology, Pennsylvania College of Optometry, 1200 West Godfrey Avenue, 19141, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
34
|
Vink S, Jin A, Poth K, Head G, Alewood P. Natriuretic peptide drug leads from snake venom. Toxicon 2012; 59:434-45. [DOI: 10.1016/j.toxicon.2010.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
35
|
Bae EH, Kim IJ, Ma SK, Lee JU, Kim SW. Altered Regulation of Renal Nitric Oxide and Atrial Natriuretic Peptide Systems in Lipopolysaccharide-induced Kidney Injury. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:273-7. [PMID: 22128259 DOI: 10.4196/kjpp.2011.15.5.273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 11/15/2022]
Abstract
Nitric oxide (NO) and atrial natriuretic peptide (ANP) may induce vascular relaxation by increasing the production of cyclic guanosine monophosphate (cGMP), an important mediator of vascular tone during sepsis. This study aimed to determine whether regulation of NO and the ANP system is altered in lipopolysaccharide (LPS)-induced kidney injury. LPS (10 mg.kg(-1)) was injected in the tail veins of male Sprague-Dawley rats; 12 hours later, the kidneys were removed. Protein expression of NO synthase (NOS) and neutral endopeptidase (NEP) was determined by semiquantitative immunoblotting. As an index of synthesis of NO, its stable metabolites (nitrite/nitrate, NOx) were measured using colorimetric assays. mRNA expression of the ANP system was determined by real-time polymerase chain reaction. To determine the activity of guanylyl cyclase (GC), the amount of cGMP generated in response to sodium nitroprusside (SNP) and ANP was calculated. Creatinine clearance decreased and fractional excretion of sodium increased in LPS-treated rats compared with the controls. Inducible NOS protein expression increased in LPS-treated rats, while that of endothelial NOS, neuronal NOS, and NEP remained unchanged. Additionally, urinary and plasma NOx levels increased in LPS-treated rats. SNP-stimulated GC activity remained unchanged in the glomerulus and papilla in the LPS-treated rats. mRNA expression of natriuretic peptide receptor (NPR)-C decreased in LPS-treated rats, while that of ANP and NPR-A did not change. ANP-stimulated GC activity reduced in the glomerulus and papilla. In conclusion, enhancement of the NO/cGMP pathway and decrease in ANP clearance were found play a role in the pathogenesis of LPS-induced kidney injury.
Collapse
Affiliation(s)
- Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Korea
| | | | | | | | | |
Collapse
|
36
|
Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol 2011; 52:330-40. [PMID: 21843527 DOI: 10.1016/j.yjmcc.2011.07.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/03/2011] [Accepted: 07/29/2011] [Indexed: 12/31/2022]
Abstract
Cyclic guanosine 3'5'monophosphate (cGMP) is the common downstream second messenger of natriuretic peptides and nitric oxide. In cardiac myocytes, the physiological effects of cGMP are exerted through the activation of protein kinase G (PKG) signaling, and the activation and/or inhibition of phosphodiesterases (PDEs), providing an integration point between cAMP and cGMP signals. Specificity of cGMP signals is achieved through compartmentalization of cGMP synthesis by guanylate cyclases, and cGMP hydrolysis by PDEs. Increasing evidence suggests that cGMP-dependent signaling pathways play an important role in inhibiting cardiac remodeling, through the inhibition Ca(2+) handling upstream of pathological Ca(2+)-dependent signaling pathways. Thus, enhancing cardiac myocyte cGMP signaling represents a promising therapeutic target for treatment of cardiovascular disease. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
|
37
|
Pandey KN. Guanylyl cyclase / atrial natriuretic peptide receptor-A: role in the pathophysiology of cardiovascular regulation. Can J Physiol Pharmacol 2011; 89:557-73. [PMID: 21815745 DOI: 10.1139/y11-054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is an endogenous and potent hypotensive hormone that elicits natriuretic, diuretic, vasorelaxant, and anti-proliferative effects, which are important in the control of blood pressure and cardiovascular events. One principal locus involved in the regulatory action of ANP and brain natriuretic peptide (BNP) is guanylyl cyclase / natriuretic peptide receptor-A (GC-A/NPRA). Studies on ANP, BNP, and their receptor, GC-A/NPRA, have greatly increased our knowledge of the control of hypertension and cardiovascular disorders. Cellular, biochemical, and molecular studies have helped to delineate the receptor function and signaling mechanisms of NPRA. Gene-targeted and transgenic mouse models have advanced our understanding of the importance of ANP, BNP, and GC-A/NPRA in disease states at the molecular level. Importantly, ANP and BNP are used as critical markers of cardiac events; however, their therapeutic potentials for the diagnosis and treatment of hypertension, heart failure, and stroke have just begun to be realized. We are now just at the initial stage of molecular therapeutics and pharmacogenomic advancement of the natriuretic peptides. More investigations should be undertaken and ongoing ones be extended in this important field.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, SL-39 Tulane University Health Sciences Center, School of Medicine, 1430 Tulane Avenue, LA 70112, New Orleans, USA.
| |
Collapse
|
38
|
Robinson JW, Potter LR. ATP potentiates competitive inhibition of guanylyl cyclase A and B by the staurosporine analog, Gö6976: reciprocal regulation of ATP and GTP binding. J Biol Chem 2011; 286:33841-4. [PMID: 21828054 DOI: 10.1074/jbc.m111.273565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Natriuretic peptides and ATP activate and Gö6976 inhibits guanylyl cyclase (GC)-A and GC-B. Here, the mechanism of inhibition was determined. Gö6976 progressively increased the Michaelis-Menten constant and decreased the Hill coefficient without reducing the maximal velocity of GC-A and GC-B. In the presence of 1 mm ATP, the K(i) was 1 μm for both enzymes. Inhibition of GC-B was minimal in the absence of ATP, and 1 mm ATP increased the inhibition 4-fold. In a reciprocal manner, 10 μm Gö6976 increased the potency of ATP for GC-B 4-fold. In contrast to a recent study (Duda, T., Yadav, P., and Sharma, R. K. (2010) FEBS J. 277, 2550-2553), neither staurosporine nor Gö6976 activated GC-A or GC-B. This is the first study to show that Gö6976 reduces GTP binding and the first demonstration of a competitive inhibitor of a receptor guanylyl cyclase. We conclude that Gö6976 reduces GTP binding to the catalytic site of GC-A and GC-B and that ATP increases the magnitude of the inhibition.
Collapse
Affiliation(s)
- Jerid W Robinson
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
39
|
Pandey KN. The functional genomics of guanylyl cyclase/natriuretic peptide receptor-A: perspectives and paradigms. FEBS J 2011; 278:1792-807. [PMID: 21375691 DOI: 10.1111/j.1742-4658.2011.08081.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cardiac hormones atrial natriuretic peptide and B-type natriuretic peptide (brain natriuretic peptide) activate guanylyl cyclase (GC)-A/natriuretic peptide receptor-A (NPRA) and produce the second messenger cGMP. GC-A/NPRA is a member of the growing family of GC receptors. The recent biochemical, molecular and genomic studies on GC-A/NPRA have provided important insights into the regulation and functional activity of this receptor protein, with a particular emphasis on cardiac and renal protective roles in hypertension and cardiovascular disease states. The progress in this field of research has significantly strengthened and advanced our knowledge about the critical roles of Npr1 (coding for GC-A/NPRA) in the control of fluid volume, blood pressure, cardiac remodeling, and other physiological functions and pathological states. Overall, this review attempts to provide insights and to delineate the current concepts in the field of functional genomics and signaling of GC-A/NPRA in hypertension and cardiovascular disease states at the molecular level.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Production of cyclic guanosine monophosphate (cGMP) by guanylate cyclase is of critical importance to gastrointestinal physiology. Tight regulation of cGMP concentration is necessary for proper intestinal secretion and intestinal epithelial cell proliferative and apoptotic homeostasis. This review focuses on recent work detailing the role of a subset of transmembrane guanylate cyclases in the pathophysiology of intestinal secretory and motility disorders and intestinal epithelial cell transformation. Also considered is the potential for therapeutic manipulation of intestinal guanylate cyclase/cGMP signaling for the correction of chronic constipation and gastrointestinal cancer. RECENT FINDINGS Recent work in mice and humans suggests a role for transmembrane guanylate cyclases in intestinal fluid secretion as well as hormonal enteric-renal signaling which mediates postprandial natriuresis. Transmembrane guanylate cyclases are also important in gastrointestinal transit rate and motility. Ongoing clinical trials have found that guanylate cyclase activating peptides are safe and effective in the treatment of constipation-predominant irritable bowel syndrome and chronic constipation. In addition, accumulating evidence indicates that membrane-associated guanylate cyclase receptors regulate intestinal epithelial cell homeostatic proliferation and apoptosis as well as gastrointestinal malignancy. The anticancer activity of cGMP signaling in animal studies suggests additional therapeutic applications for guanylate cyclase agonists. SUMMARY Progress toward understanding gastrointestinal transmembrane guanylate cyclase/cGMP physiology has recently accelerated due to definitive in-vitro studies and work using gene-targeted animal models and has facilitated the development of safe and effective drugs designed to regulate cGMP production in the intestine. Current work should be directed toward a detailed understanding of cGMP effector pathways and the manner in which subcellular concentrations of cGMP regulate them to influence intestinal health and disease.
Collapse
|
41
|
|
42
|
|
43
|
Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther 2010; 130:71-82. [PMID: 21185863 DOI: 10.1016/j.pharmthera.2010.12.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023]
Abstract
Cyclic GMP is a ubiquitous second messenger that regulates a wide array of physiologic processes such as blood pressure, long bone growth, intestinal fluid secretion, phototransduction and lipolysis. Soluble and single-membrane-spanning enzymes called guanylyl cyclases (GC) synthesize cGMP. In humans, the latter group consists of GC-A, GC-B, GC-C, GC-E and GC-F, which are also known as NPR-A, NPR-B, StaR, Ret1-GC and Ret2-GC, respectively. Membrane GCs are activated by peptide ligands such as atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), C-type natriuretic peptide (CNP), guanylin, uroguanylin, heat stable enterotoxin and GC-activating proteins. Nesiritide and carperitide are clinically approved peptide-based drugs that activate GC-A. CD-NP is an experimental heart failure drug that primarily activates GC-B but also activates GC-A at high concentrations and is resistant to degradation. Inactivating mutations in GC-B cause acromesomelic dysplasia type Maroteaux dwarfism and chromosomal mutations that increase CNP concentrations are associated with Marfanoid-like skeletal overgrowth. Pump-based CNP infusions increase skeletal growth in a mouse model of the most common type of human dwarfism, which supports CNP/GC-B-based therapies for short stature diseases. Linaclotide is a peptide activator of GC-C that stimulates intestinal motility and is in late-stage clinical trials for the treatment of chronic constipation. This review discusses the discovery of cGMP, guanylyl cyclases, the general characteristics and therapeutic applications of GC-A, GC-B and GC-C, and emphasizes the regulation of transmembrane guanylyl cyclases by phosphorylation and ATP.
Collapse
|
44
|
Parat M, Blanchet J, De Léan A. Role of juxtamembrane and transmembrane domains in the mechanism of natriuretic peptide receptor A activation. Biochemistry 2010; 49:4601-10. [PMID: 20214400 DOI: 10.1021/bi901711w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natriuretic peptide receptor A (NPRA) is a noncovalent homodimeric receptor, composed of an extracellular domain (ECD) with a ligand-binding site, a single transmembrane domain (TM), and an intracellular domain (ICD) exhibiting guanylyl cyclase activity. NPRA activation by atrial natriuretic peptide (ANP) leads to cGMP production, which plays important roles in cardiovascular homeostasis. Initial studies have shown that activation of NPRA involves a conformational change in the juxtamembrane domain (JM). However, crystallographic study of the soluble ECD of NPRA has failed to document JM structure, and the conformational change involved in transmembrane signal transduction is still unknown. To analyze this conformational change, we first sequentially substituted nine amino acids of the JM with a cysteine residue. By studying the mutant's capacity to form ANP-induced or constitutive covalent disulfide dimers, we evaluated the relative proximity of JM residues, before and after NPRA activation. These results obtained with the full-length receptor demonstrate a high proximity of specific JM residues and are in disagreement with crystallography data. We also tested the hypothesis that signal transduction involves a TM rotation mechanism leading to ICD activation. By introducing one to five alanine residues into the TM alpha-helix, we show that a TM rotation of 40 degrees leads to constitutive NPRA activation. We finally studied the role of the TM in NPRA dimerization. By using the ToxR system, we demonstrate that the last JM residues are required to stabilize the TM dimer. Using these experimental data, we generated a new molecular model illustrating the active conformation of NPRA, where the JM and TM are depicted.
Collapse
Affiliation(s)
- Marie Parat
- Department of Pharmacology, Université de Montréal, Quebec, Canada H3T 1J4
| | | | | |
Collapse
|
45
|
Schröter J, Zahedi RP, Hartmann M, Gassner B, Gazinski A, Waschke J, Sickmann A, Kuhn M. Homologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation pattern. FEBS J 2010; 277:2440-53. [PMID: 20456499 PMCID: PMC2901513 DOI: 10.1111/j.1742-4658.2010.07658.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Atrial natriuretic peptide (ANP), via its guanylyl cyclase A (GC-A) receptor and intracellular guanosine 3',5'-cyclic monophosphate production, is critically involved in the regulation of blood pressure. In patients with chronic heart failure, the plasma levels of ANP are increased, but the cardiovascular actions are severely blunted, indicating a receptor or postreceptor defect. Studies on metabolically labelled GC-A-overexpressing cells have indicated that GC-A is extensively phosphorylated, and that ANP-induced homologous desensitization of GC-A correlates with receptor dephosphorylation, a mechanism which might contribute to a loss of function in vivo. In this study, tandem MS analysis of the GC-A receptor, expressed in the human embryonic kidney cell line HEK293, revealed unambiguously that the intracellular domain of the receptor is phosphorylated at multiple residues: Ser487, Ser497, Thr500, Ser502, Ser506, Ser510 and Thr513. MS quantification based on multiple reaction monitoring demonstrated that ANP-provoked desensitization was accompanied by a complex pattern of receptor phosphorylation and dephosphorylation. The population of completely phosphorylated GC-A was diminished. However, intriguingly, the phosphorylation of GC-A at Ser487 was selectively enhanced after exposure to ANP. The functional relevance of this observation was analysed by site-directed mutagenesis. The substitution of Ser487 by glutamate (which mimics phosphorylation) blunted the activation of the GC-A receptor by ANP, but prevented further desensitization. Our data corroborate previous studies suggesting that the responsiveness of GC-A to ANP is regulated by phosphorylation. However, in addition to the dephosphorylation of the previously postulated sites (Ser497, Thr500, Ser502, Ser506, Ser510), homologous desensitization seems to involve the phosphorylation of GC-A at Ser487, a newly identified site of phosphorylation. The identification and further characterization of the specific mechanisms involved in the downregulation of GC-A responsiveness to ANP may have important pathophysiological implications.
Collapse
Affiliation(s)
- Juliane Schröter
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sharma RK. Membrane guanylate cyclase is a beautiful signal transduction machine: overview. Mol Cell Biochem 2009; 334:3-36. [PMID: 19957201 DOI: 10.1007/s11010-009-0336-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/09/2009] [Indexed: 01/08/2023]
Abstract
This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3-30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969-984, 2005); and of the Ca(2+)-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429-473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). This article contains three parts. The first part is "Historical"; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3-30, 2002; Duda et al. in Peptides 26:969-984, 2005). The second part focuses on the "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily". It is divided into two sections. Section "Historical" and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). Section "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily" covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
| |
Collapse
|
47
|
Atrial natriuretic factor-receptor guanylate cyclase signal transduction mechanism. Mol Cell Biochem 2009; 334:37-51. [DOI: 10.1007/s11010-009-0335-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/04/2009] [Indexed: 11/27/2022]
|
48
|
Bereta G, Wang B, Kiser PD, Baehr W, Jang GF, Palczewski K. A functional kinase homology domain is essential for the activity of photoreceptor guanylate cyclase 1. J Biol Chem 2009; 285:1899-908. [PMID: 19901021 DOI: 10.1074/jbc.m109.061713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phototransduction is carried out by a signaling pathway that links photoactivation of visual pigments in retinal photoreceptor cells to a change in their membrane potential. Upon photoactivation, the second messenger of phototransduction, cyclic GMP, is rapidly degraded and must be replenished during the recovery phase of phototransduction by photoreceptor guanylate cyclases (GCs) GC1 (or GC-E) and GC2 (or GC-F) to maintain vision. Here, we present data that address the role of the GC kinase homology (KH) domain in cyclic GMP production by GC1, the major cyclase in photoreceptors. First, experiments were done to test which GC1 residues undergo phosphorylation and whether such phosphorylation affects cyclase activity. Using mass spectrometry, we showed that GC1 residues Ser-530, Ser-532, Ser-533, and Ser-538, located within the KH domain, undergo light- and signal transduction-independent phosphorylation in vivo. Mutations in the putative Mg(2+) binding site of the KH domain abolished phosphorylation, indicating that GC1 undergoes autophosphorylation. The dramatically reduced GC activity of these mutants suggests that a functional KH domain is essential for cyclic GMP production. However, evidence is presented that autophosphorylation does not regulate GC1 activity, in contrast to phosphorylation of other members of this cyclase family.
Collapse
Affiliation(s)
- Grzegorz Bereta
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
49
|
Pattanaik P, Fromondi L, Ng KP, He J, van den Akker F. Expression, purification, and characterization of the intra-cellular domain of the ANP receptor. Biochimie 2009; 91:888-93. [PMID: 19393286 DOI: 10.1016/j.biochi.2009.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 04/15/2009] [Indexed: 11/25/2022]
Abstract
The membrane-bound atrial natriuretic peptide receptor (GCA) catalyzes the formation of cGMP from GTP in response to natriuretic peptide hormones. Previous structural studies have focused on the extra-cellular hormone binding domain of this receptor whereas its intra-cellular domain has not yet been amenable to such studies. We report here the baculovirus expression and purification of the GCA intra-cellular domain construct GCA(ID) comprising the complete intra-cellular region which includes the kinase-homology domain, coiled-coil region, and catalytic cyclase domain. The intra-cellular domain was enzymatically characterized in terms of guanylyl cyclase activity and the effects of ATP, manganese, and Triton X-100. Our results indicate that the activity of the intra-cellular domain of the ANP receptor is about 2 fold less active compared to a truncated cyclase domain construct lacking the kinase-like domain that was also expressed and purified. In addition, unlike the full length receptor, the intra-cellular domain could not be activated by Triton X-100/Mn(2+) or its activity stimulated by ATP. These data therefore indicate that the major part of the transition from the basal state to the fully, ANP/ATP-dependent, activated state as well its stimulation/enhancement by Triton X-100/Mn(2+) requires the full length receptor. These receptor insights could aid in the development of novel therapeutics as the GCA receptor is a key drug target for cardiovascular diseases.
Collapse
Affiliation(s)
- Priyaranjan Pattanaik
- Department of Biochemistry/RT500, Case Western Reserve University, 10900 Euclid Av., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
50
|
Kuhn M. Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases. Handb Exp Pharmacol 2009:47-69. [PMID: 19089325 DOI: 10.1007/978-3-540-68964-5_4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Besides soluble guanylyl cyclase (GC), the receptor for NO, there are seven plasma membrane forms of guanylyl cyclase (GC) receptors, enzymes that synthesize the second-messenger cyclic GMP (cGMP). All membrane GCs (GC-A to GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only four of them (GC-A through GC-D). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic and antifibrotic actions in the heart. GC-B, the specific receptor for C-type natriuretic peptide, has a critical role in endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, GC-D and GC-G appear to be pseudogenes in the human. In rodents, GC-D is exclusively expressed in the olfactory neuroepithelium, with chemosensory functions. GC-G is the last member of the membrane GC form to be identified. No other mammalian transmembrane GCs are predicted on the basis of gene sequence repositories. In contrast to the other orphan receptor GCs, GC-G has a broad tissue distribution in rodents, including the lung, intestine, kidney, skeletal muscle, and sperm, raising the possibility that there is another yet to be discovered family of cGMP-generating ligands. This chapter reviews the structure and functions of membrane GCs, with special focus on the insights gained to date from genetically modified mice and the role of alterations of these ligand/receptor systems in human diseases.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institut für Physiologie, Universität Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| |
Collapse
|