1
|
Church MC, Workman JL. The SWI/SNF chromatin remodeling complex: a critical regulator of metabolism. Biochem Soc Trans 2024; 52:1327-1337. [PMID: 38666605 PMCID: PMC11346436 DOI: 10.1042/bst20231141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
The close relationship between chromatin and metabolism has been well-studied in recent years. Many metabolites have been found to be cofactors used to modify chromatin, and these modifications can in turn affect gene transcription. One chromatin-associated factor responsible for regulating transcription is the SWI/SNF complex, an ATP-dependent chromatin remodeler conserved throughout eukaryotes. SWI/SNF was originally described in yeast as regulating genes involved in carbon source metabolism and mating type switching, and its mammalian counterpart has been extensively studied for its role in diseases such as cancer. The yeast SWI/SNF complex is closely associated with activation of stress response genes, many of which have metabolic functions. It is now recognized that this is a conserved function of the complex, and recent work has shown that mammalian SWI/SNF is also a key regulator of metabolic transcription. Emerging evidence suggests that loss of SWI/SNF introduces vulnerabilities to cells due to this metabolic influence, and that this may present opportunities for treatment of SWI/SNF-deficient cancers.
Collapse
Affiliation(s)
- Michael C. Church
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| | - Jerry L. Workman
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| |
Collapse
|
2
|
Saha D, Animireddy S, Bartholomew B. The SWI/SNF ATP-dependent chromatin remodeling complex in cell lineage priming and early development. Biochem Soc Trans 2024; 52:603-616. [PMID: 38572912 PMCID: PMC11088921 DOI: 10.1042/bst20230416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
ATP dependent chromatin remodelers have pivotal roles in transcription, DNA replication and repair, and maintaining genome integrity. SWI/SNF remodelers were first discovered in yeast genetic screens for factors involved in mating type switching or for using alternative energy sources therefore termed SWI/SNF complex (short for SWItch/Sucrose NonFermentable). The SWI/SNF complexes utilize energy from ATP hydrolysis to disrupt histone-DNA interactions and shift, eject, or reposition nucleosomes making the underlying DNA more accessible to specific transcription factors and other regulatory proteins. In development, SWI/SNF orchestrates the precise activation and repression of genes at different stages, safe guards the formation of specific cell lineages and tissues. Dysregulation of SWI/SNF have been implicated in diseases such as cancer, where they can drive uncontrolled cell proliferation and tumor metastasis. Additionally, SWI/SNF defects are associated with neurodevelopmental disorders, leading to disruption of neural development and function. This review offers insights into recent developments regarding the roles of the SWI/SNF complex in pluripotency and cell lineage primining and the approaches that have helped delineate its importance. Understanding these molecular mechanisms is crucial for unraveling the intricate processes governing embryonic stem cell biology and developmental transitions and may potentially apply to human diseases linked to mutations in the SWI/SNF complex.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| |
Collapse
|
3
|
Church MC, Price A, Li H, Workman JL. The Swi-Snf chromatin remodeling complex mediates gene repression through metabolic control. Nucleic Acids Res 2023; 51:10278-10291. [PMID: 37650639 PMCID: PMC10602859 DOI: 10.1093/nar/gkad711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
In eukaryotes, ATP-dependent chromatin remodelers regulate gene expression in response to nutritional and metabolic stimuli. However, altered transcription of metabolic genes may have significant indirect consequences which are currently poorly understood. In this study, we use genetic and molecular approaches to uncover a role for the remodeler Swi-Snf as a critical regulator of metabolism. We find that snfΔ mutants display a cysteine-deficient phenotype, despite growth in nutrient-rich media. This correlates with widespread perturbations in sulfur metabolic gene transcription, including global redistribution of the sulfur-sensing transcription factor Met4. Our findings show how a chromatin remodeler can have a significant impact on a whole metabolic pathway by directly regulating an important gene subset and demonstrate an emerging role for chromatin remodeling complexes as decisive factors in metabolic control.
Collapse
Affiliation(s)
- Michael C Church
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Andrew Price
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
4
|
Azad P, Caldwell AB, Ramachandran S, Spann NJ, Akbari A, Villafuerte FC, Bermudez D, Zhao H, Poulsen O, Zhou D, Bafna V, Subramaniam S, Haddad GG. ARID1B, a molecular suppressor of erythropoiesis, is essential for the prevention of Monge's disease. Exp Mol Med 2022; 54:777-787. [PMID: 35672450 PMCID: PMC9256584 DOI: 10.1038/s12276-022-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
At high altitude Andean region, hypoxia-induced excessive erythrocytosis (EE) is the defining feature of Monge's disease or chronic mountain sickness (CMS). At the same altitude, resides a population that has developed adaptive mechanism(s) to constrain this hypoxic response (non-CMS). In this study, we utilized an in vitro induced pluripotent stem cell model system to study both populations using genomic and molecular approaches. Our whole genome analysis of the two groups identified differential SNPs between the CMS and non-CMS subjects in the ARID1B region. Under hypoxia, the expression levels of ARID1B significantly increased in the non-CMS cells but decreased in the CMS cells. At the molecular level, ARID1B knockdown (KD) in non-CMS cells increased the levels of the transcriptional regulator GATA1 by 3-fold and RBC levels by 100-fold under hypoxia. ARID1B KD in non-CMS cells led to increased proliferation and EPO sensitivity by lowering p53 levels and decreasing apoptosis through GATA1 mediation. Interestingly, under hypoxia ARID1B showed an epigenetic role, altering the chromatin states of erythroid genes. Indeed, combined Real-time PCR and ATAC-Seq results showed that ARID1B modulates the expression of GATA1 and p53 and chromatin accessibility at GATA1/p53 target genes. We conclude that ARID1B is a novel erythroid regulator under hypoxia that controls various aspects of erythropoiesis in high-altitude dwellers.
Collapse
Affiliation(s)
- Priti Azad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ali Akbari
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Francisco C Villafuerte
- Laboratorio de Fisiología del Transporte de Oxigeno/Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Peru
| | - Daniela Bermudez
- Laboratorio de Fisiología del Transporte de Oxigeno/Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Peru
| | - Helen Zhao
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Orit Poulsen
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.,Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA. .,Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA. .,Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
5
|
Qayyum MZ, Molodtsov V, Renda A, Murakami KS. Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli. J Biol Chem 2021; 297:101404. [PMID: 34774797 PMCID: PMC8666675 DOI: 10.1016/j.jbc.2021.101404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 01/27/2023] Open
Abstract
After transcription termination, cellular RNA polymerases (RNAPs) are occasionally trapped on DNA, impounded in an undefined post-termination complex (PTC), limiting the free RNAP pool and subsequently leading to inefficient transcription. In Escherichia coli, a Swi2/Snf2 family of ATPase called RapA is known to be involved in countering such inefficiency through RNAP recycling; however, the precise mechanism of this recycling is unclear. To better understand its mechanism, here we determined the structures of two sets of E. coli RapA–RNAP complexes, along with the RNAP core enzyme and the elongation complex, using cryo-EM. These structures revealed the large conformational changes of RNAP and RapA upon their association that has been implicated in the hindrance of PTC formation. Our results along with DNA-binding assays reveal that although RapA binds RNAP away from the DNA-binding main channel, its binding can allosterically close the RNAP clamp, thereby preventing its nonspecific DNA binding and PTC formation. Taken together, we propose that RapA acts as a guardian of RNAP by which RapA prevents nonspecific DNA binding of RNAP without affecting the binding of promoter DNA recognition σ factor, thereby enhancing RNAP recycling.
Collapse
Affiliation(s)
- M Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vadim Molodtsov
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Renda
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
6
|
Spt20, a structural subunit of the SAGA complex, regulates biofilm formation, asexual development, and virulence of Aspergillus fumigatus. Appl Environ Microbiol 2021; 88:e0153521. [PMID: 34669434 DOI: 10.1128/aem.01535-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exopolysaccharide galactosaminogalactan (GAG) plays an important role in mediating adhesion, biofilm formation, and virulence in the pathogenic fungus Aspergillus fumigatus. Previous work showed that in A. fumigatus, the Lim-domain binding protein PtaB can form a complex with the sequence-specific transcription factor SomA for regulating GAG biosynthesis, biofilm formation, and asexual development. However, transcriptional co-activators required for biofilm formation in A. fumigatus remain uncharacterized. In this study, Spt20, an orthologue of the subunit of Saccharomyces cerevisiae transcriptional co-activator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a regulator of biofilm formation and asexual development in A. fumigatus. The loss of spt20 caused severe defects in GAG biosynthesis, biofilm formation, conidiation, and virulence of A. fumigatus. RNA-sequence data demonstrated that Spt20 positively regulates the expression of GAG biosynthesis genes uge3 and agd3, developmental regulator medA, and genes involved in the conidiation pathway. Moreover, more than 10 subunits of the SAGA complex (known from yeast) could be immunoprecipitated with Spt20, suggesting that Spt20 acts as a structural subunit of the SAGA complex. Furthermore, distinct modules of SAGA regulate GAG biosynthesis, biofilm formation, and asexual development in A. fumigatus to varying degrees. In summary, the novel biofilm regulator Spt20 is reported, which plays a crucial role in the regulation of fungal asexual development, GAG biosynthesis, and virulence of A. fumigatus. These findings expand knowledge on the regulatory circuits of the SAGA complex relevant for biofilm formation and asexual development of A. fumigatus. IMPORTANCE Eukaryotic transcription is regulated by a large number of proteins, ranging from sequence-specific DNA binding factors to transcriptional co-activators (chromatin regulators and the general transcription machinery) and their regulators. Previous research indicated that the sequence-specific complex SomA/PtaB regulates biofilm formation and asexual development of Aspergillus fumigatus. However, transcriptional co-activators working with sequence-specific transcription factors to regulate A. fumigatus biofilm formation remain uncharacterized. In this study, Spt20, an orthologue of the subunit of Saccharomyces cerevisiae Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a novel regulator of biofilm formation and asexual development of A. fumigatus. Loss of spt20 caused severe defects in galactosaminogalactan (GAG) production, conidiation, and virulence. Moreover, nearly all modules of the SAGA complex were required for biofilm formation and asexual development of A. fumigatus. These results establish the SAGA complex as a transcriptional co-activator required for biofilm formation and asexual development of A. fumigatus.
Collapse
|
7
|
|
8
|
Karki M, Jangid RK, Anish R, Seervai RNH, Bertocchio JP, Hotta T, Msaouel P, Jung SY, Grimm SL, Coarfa C, Weissman BE, Ohi R, Verhey KJ, Hodges HC, Burggren W, Dere R, Park IY, Prasad BVV, Rathmell WK, Walker CL, Tripathi DN. A cytoskeletal function for PBRM1 reading methylated microtubules. SCIENCE ADVANCES 2021; 7:eabf2866. [PMID: 33811077 PMCID: PMC11059954 DOI: 10.1126/sciadv.abf2866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Epigenetic effectors "read" marks "written" on chromatin to regulate function and fidelity of the genome. Here, we show that this coordinated read-write activity of the epigenetic machinery extends to the cytoskeleton, with PBRM1 in the PBAF chromatin remodeling complex reading microtubule methyl marks written by the SETD2 histone methyltransferase. PBRM1 binds SETD2 methyl marks via BAH domains, recruiting PBAF components to the mitotic spindle. This read-write activity was required for normal mitosis: Loss of SETD2 methylation or pathogenic BAH domain mutations disrupt PBRM1 microtubule binding and PBAF recruitment and cause genomic instability. These data reveal PBRM1 functions beyond chromatin remodeling with domains that allow it to integrate chromatin and cytoskeletal activity via its acetyl-binding BD and methyl-binding BAH domains, respectively. Conserved coordinated activity of the epigenetic machinery on the cytoskeleton opens a previously unknown window into how chromatin remodeler defects can drive disease via both epigenetic and cytoskeletal dysfunction.
Collapse
Affiliation(s)
- Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rahul K Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramakrishnan Anish
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Riyad N H Seervai
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Philippe Bertocchio
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genitourinary Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pavlos Msaouel
- Department of Genitourinary Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra L Grimm
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - H Courtney Hodges
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - In Young Park
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Cheryl L Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Durga N Tripathi
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat Genet 2021; 53:269-278. [PMID: 33558760 PMCID: PMC7614082 DOI: 10.1038/s41588-021-00777-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
Cancer-associated, loss-of-function mutations in genes encoding subunits of the BRG1/BRM-associated factor (BAF) chromatin-remodeling complexes1-8 often cause drastic chromatin accessibility changes, especially in important regulatory regions9-19. However, it remains unknown how these changes are established over time (for example, immediate consequences or long-term adaptations), and whether they are causative for intracomplex synthetic lethalities, abrogating the formation or activity of BAF complexes9,20-24. In the present study, we use the dTAG system to induce acute degradation of BAF subunits and show that chromatin alterations are established faster than the duration of one cell cycle. Using a pharmacological inhibitor and a chemical degrader of the BAF complex ATPase subunits25,26, we show that maintaining genome accessibility requires constant ATP-dependent remodeling. Completely abolishing BAF complex function by acute degradation of a synthetic lethal subunit in a paralog-deficient background results in an almost complete loss of chromatin accessibility at BAF-controlled sites, especially also at superenhancers, providing a mechanism for intracomplex synthetic lethalities.
Collapse
|
10
|
Abstract
As primary carriers of epigenetic information and gatekeepers of genomic DNA, nucleosomes are essential for proper growth and development of all eukaryotic cells. Although they are intrinsically dynamic, nucleosomes are actively reorganized by ATP-dependent chromatin remodelers. Chromatin remodelers contain helicase-like ATPase motor domains that can translocate along DNA, and a long-standing question in the field is how this activity is used to reposition or slide nucleosomes. In addition to ratcheting along DNA like their helicase ancestors, remodeler ATPases appear to dictate specific alternating geometries of the DNA duplex, providing an unexpected means for moving DNA past the histone core. Emerging evidence supports twist-based mechanisms for ATP-driven repositioning of nucleosomes along DNA. In this review, we discuss core experimental findings and ideas that have shaped the view of how nucleosome sliding may be achieved.
Collapse
Affiliation(s)
- Ilana M Nodelman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
11
|
The mechanisms of action of chromatin remodelers and implications in development and disease. Biochem Pharmacol 2020; 180:114200. [DOI: 10.1016/j.bcp.2020.114200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
|
12
|
Nucleosome remodelling: structural insights into ATP-dependent remodelling enzymes. Essays Biochem 2019; 63:45-58. [PMID: 30967479 DOI: 10.1042/ebc20180059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/22/2022]
Abstract
ATP-dependent chromatin remodelling enzymes play a fundamental role in determining how nucleosomes are organised, and render DNA sequences accessible to interacting proteins, thereby enabling precise regulation of eukaryotic genes. Remodelers conserved from yeast to humans are classified into four families based on the domains and motifs present in their ATPase subunits. Insights into overall assembly and the mode of interaction to the nucleosome by these different families of remodelers remained limited due to the complexity of obtaining structural information on these challenging samples. Electron microscopy and single-particle methods have made advancement and uncovered vital structural information on the number of remodelling complexes. In this article, we highlight some of the recent structural work that advanced our understanding on the mechanisms and biological functions of these ATP-dependent remodelling machines.
Collapse
|
13
|
Abstract
The nucleosome serves as a general gene repressor, preventing all initiation of transcription except that which is brought about by specific positive regulatory mechanisms. The positive mechanisms begin with chromatin-remodeling by complexes that slide, disrupt, or otherwise alter the structure and organization of nucleosomes. RSC in yeast and its counterpart PBAF in human cells are the major remodeling complexes for transcription. RSC creates a nucleosome-free region in front of a gene, flanked by strongly positioned +1 and -1 nucleosomes, with the transcription start site typically 10-15 bp inside the border of the +1 nucleosome. RSC also binds stably to nucleosomes harboring regulatory elements and to +1 nucleosomes, perturbing their structures in a manner that partially exposes their DNA sequences. The cryo-electron microscope structure of a RSC-nucleosome complex reveals such a structural perturbation, with the DNA largely unwrapped from the nucleosome and likely interacting with a positively charged surface of RSC. Such unwrapping both exposes the DNA and enables its translocation across the histone octamer of the nucleosome by an ATP-dependent activity of RSC. Genetic studies have revealed additional roles of RSC in DNA repair, chromosome segregation, and other chromosomal DNA transactions. These functions of RSC likely involve the same fundamental activities, DNA unwrapping and DNA translocation.
Collapse
|
14
|
Kelso TWR, Porter DK, Amaral ML, Shokhirev MN, Benner C, Hargreaves DC. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. eLife 2017; 6:30506. [PMID: 28967863 PMCID: PMC5643100 DOI: 10.7554/elife.30506] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is frequently mutated in cancer. Deficiency in its homolog ARID1B is synthetically lethal with ARID1A mutation. However, the functional relationship between these homologs has not been explored. Here, we use ATAC-seq, genome-wide histone modification mapping, and expression analysis to examine colorectal cancer cells lacking one or both ARID proteins. We find that ARID1A has a dominant role in maintaining chromatin accessibility at enhancers, while the contribution of ARID1B is evident only in the context of ARID1A mutation. Changes in accessibility are predictive of changes in expression and correlate with loss of H3K4me and H3K27ac marks, nucleosome spacing, and transcription factor binding, particularly at growth pathway genes including MET. We find that ARID1B knockdown in ARID1A mutant ovarian cancer cells causes similar loss of enhancer architecture, suggesting that this is a conserved function underlying the synthetic lethality between ARID1A and ARID1B.
Collapse
Affiliation(s)
- Timothy W R Kelso
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, California, United States
| | - Devin K Porter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, California, United States
| | - Maria Luisa Amaral
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, California, United States
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, California, United States
| | - Christopher Benner
- Department of Medicine, University of California San Diego, California, United States
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, California, United States
| |
Collapse
|
15
|
Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu Y, Li X, Xiong F, Li X, Li G, Xiong W, Zeng Z. Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol Cancer 2017; 16:42. [PMID: 28212646 PMCID: PMC5316185 DOI: 10.1186/s12943-017-0612-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
Chromatin remodeling controls gene expression and signaling pathway activation, and aberrant chromatin structure and gene dysregulation are primary characteristics of human cancer progression. Recent reports have shown that long non-coding RNAs (lncRNAs) are tightly associated with chromatin remodeling. In this review, we focused on important chromatin remodelers called the switching defective/sucrose nonfermenting (SWI/SNF) complexes, which use the energy of ATP hydrolysis to control gene transcription by altering chromatin structure. We summarize a link between lncRNAs and the SWI/SNF complexes and their role in chromatin remodeling and gene expression regulation in cancer, thereby providing systematic information and a better understanding of carcinogenesis.
Collapse
Affiliation(s)
- Yanyan Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yu Lian
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ping Zhang
- School of Information Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Bowman GD, McKnight JN. Sequence-specific targeting of chromatin remodelers organizes precisely positioned nucleosomes throughout the genome. Bioessays 2016; 39:1-8. [PMID: 27862071 DOI: 10.1002/bies.201600183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eukaryotic genomes are functionally organized into chromatin, a compact packaging of nucleoproteins with the basic repeating unit known as the nucleosome. A major focus for the chromatin field has been understanding what rules govern nucleosome positioning throughout the genome, and here we review recent findings using a novel, sequence-targeted remodeling enzyme. Nucleosomes are often packed into evenly spaced arrays that are reproducibly positioned, but how such organization is established and maintained through dramatic events such as DNA replication is poorly understood. We hypothesize that a major fraction of positioned nucleosomes arises from sequence-specific targeting of chromatin remodelers to generate "founding" nucleosomes, providing reproducible, predictable, and condition-specific nucleation sites against which neighboring nucleosomes are packed into evenly spaced arrays.
Collapse
Affiliation(s)
- Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
17
|
Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015; 115:2274-95. [PMID: 25424540 PMCID: PMC4375056 DOI: 10.1021/cr500350x] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory D. Bowman
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael G. Poirier
- Department of Physics, and Department of
Chemistry and Biochemistry, The Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
18
|
Wang B, Kettenbach AN, Gerber SA, Loros JJ, Dunlap JC. Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle. PLoS Genet 2014; 10:e1004599. [PMID: 25254987 PMCID: PMC4177678 DOI: 10.1371/journal.pgen.1004599] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 07/13/2014] [Indexed: 12/23/2022] Open
Abstract
In the negative feedback loop comprising the Neurospora circadian oscillator, the White Collar Complex (WCC) formed from White Collar-1 (WC-1) and White Collar-2 (WC-2) drives transcription of the circadian pacemaker gene frequency (frq). Although FRQ-dependent repression of WCC has been extensively studied, the mechanism by which the WCC initiates a circadian cycle remains elusive. Structure/function analysis of WC-1 eliminated domains previously thought to transactivate frq expression but instead identified amino acids 100–200 as essential for frq circadian expression. A proteomics-based search for coactivators with WCC uncovered the SWI/SNF (SWItch/Sucrose NonFermentable) complex: SWI/SNF interacts with WCC in vivo and in vitro, binds to the Clock box in the frq promoter, and is required both for circadian remodeling of nucleosomes at frq and for rhythmic frq expression; interestingly, SWI/SNF is not required for light-induced frq expression. These data suggest a model in which WC-1 recruits SWI/SNF to remodel and loop chromatin at frq, thereby activating frq expression to initiate the circadian cycle. Circadian clocks govern behavior in a wide variety of organisms. These clocks are assembled in such a way that proteins encoded by a few dedicated “clock genes” form a complex that acts to reduce their own expression. That is, the genes and proteins participate in a negative feedback loop, and so long as the feedback has delays built in, this system will oscillate. The feedback loops that underlie circadian rhythms in fungi and animals are quite similar in many ways, and while much is known about the proteins themselves, both those that activate the dedicated clock genes and the clock proteins that repress their own expression, relatively little is known about how the initial expression of the clock genes is activated. In Neurospora, a fungal model for these clocks, the proteins that activate expression of the clock gene “frequency” bind to DNA far away from where the coding part of the gene begins, and a mystery has been how this action-at-a-distance works. The answer revealed here is that the activating proteins recruit other proteins to unwrap the DNA and bring the distal site close to the place where the coding part of the gene begins.
Collapse
Affiliation(s)
- Bin Wang
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Arminja N. Kettenbach
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Department of Biochemistry, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
19
|
Yang YA, Kim J, Yu J. Influence of oncogenic transcription factors on chromatin conformation and implications in prostate cancer. APPLICATION OF CLINICAL GENETICS 2014; 7:81-91. [PMID: 24876790 PMCID: PMC4036145 DOI: 10.2147/tacg.s35598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, facilitated by rapid technological advances, we are becoming more adept at probing the molecular processes, which take place in the nucleus, that are crucial for the hierarchical regulation and organization of chromatin architecture. With an unprecedented level of resolution, a detailed atlas of chromosomal structures (histone displacement, variants, modifications, chromosome territories, and DNA looping) and mechanisms underlying their establishment, provides invaluable insight into physiological as well as pathological phenomena. In this review, we will focus on prostate cancer, a prevalent malignancy in men worldwide, and for which a curative treatment strategy is yet to be attained. We aim to catalog the most frequently observed oncogenic alterations associated with chromatin conformation, while emphasizing the TMPRSS2-ERG fusion, which is found in more than one-half of prostate cancer patients and its functions in compromising the chromatin landscape in prostate cancer.
Collapse
Affiliation(s)
- Yeqing Angela Yang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA ; Robert H Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Liu B, Yip RK, Zhou Z. Chromatin remodeling, DNA damage repair and aging. Curr Genomics 2013; 13:533-47. [PMID: 23633913 PMCID: PMC3468886 DOI: 10.2174/138920212803251373] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/19/2012] [Accepted: 07/25/2012] [Indexed: 01/26/2023] Open
Abstract
Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging.
Collapse
Affiliation(s)
- Baohua Liu
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China ; Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
21
|
Jamal A, Man HSJ, Marsden PA. Gene regulation in the vascular endothelium: why epigenetics is important for the kidney. Semin Nephrol 2012; 32:176-84. [PMID: 22617766 DOI: 10.1016/j.semnephrol.2012.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We now appreciate that the vascular endothelium plays a crucial role in regulating normal blood vessel physiology in the kidney. The gene products responsible are commonly expressed exclusively, or preferentially, in this cell type. However, despite the importance of regulated gene expression in the vascular endothelium, relatively little is known about the mechanisms that restrict endothelial-specific gene expression to this cell type. Even less is known about how gene expression might be restricted to endothelial cells of discrete regions of the kidney, such as the glomerulus or vasa recta. Although significant progress has been made toward understanding the regulation of endothelial genes through cis/trans paradigms, it has become apparent that additional mechanisms also must be operative. Classic models of transcription in vascular endothelial cells, specifically the cis/trans paradigm, have limitations. For instance, how does the environment have chronic effects on gene expression in endothelial cells after weeks or years? When an endothelial cell divides, how is this information transmitted to daughter cells? Chromatin-based mechanisms, including cell-specific DNA methylation patterns and post-translational histone modifications, recently were shown to play important roles in gene expression. This review investigates the involvement of epigenetic regulatory mechanisms in vascular endothelial cell-specific gene expression using endothelial nitric oxide synthase as a prototypical model.
Collapse
Affiliation(s)
- Alisha Jamal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
22
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
23
|
Abstract
Steroid hormone receptors initiate a genetic program tightly regulated by the chromatin environment of the responsive regions. Using the glucocorticoid receptor (GR) as a model factor for transcriptional initiation, we classified chromatin structure through formaldehyde-assisted isolation of regulatory elements (FAIRE). We looked at dynamic changes in FAIRE signals during GR activation specifically at regions of receptor interaction. We found a distribution of GR-responsive regions with diverse responses to activation and chromatin modulation. The majority of GR binding regions demonstrate increases in FAIRE signal in response to ligand. However, the majority GR-responsive regions shared a similar FAIRE signal in the basal chromatin state, suggesting a common chromatin structure for GR recruitment. Supporting this notion, global FAIRE sequencing (seq) data indicated an enrichment of signal surrounding the GR binding site prior to activation. Brg-1 knockdown showed response element-specific effects of ATPase-dependent chromatin remodeling. FAIRE induction was universally decreased by Brg-1 depletion, but to varying degrees in a target specific manner. Taken together, these data suggest classes of nuclear receptor response regions that react to activation through different chromatin regulatory events and identify a chromatin structure that classifies the majority of response elements tested.
Collapse
|
24
|
Wu JI. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer. Acta Biochim Biophys Sin (Shanghai) 2012; 44:54-69. [PMID: 22194014 DOI: 10.1093/abbs/gmr099] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian SWI/SNF like Brg1/Brm associated factors (BAF) chromatin-remodeling complexes are able to use energy derived from adenosine triphosphate (ATP) hydrolysis to change chromatin structures and regulate nuclear processes such as transcription. BAF complexes contain multiple subunits and the diverse subunit compositions provide functional specificities to BAF complexes. In this review, we summarize the functions of BAF subunits during mammalian development and in progression of various cancers. The mechanisms underlying the functional diversity and specificities of BAF complexes will be discussed.
Collapse
Affiliation(s)
- Jiang I Wu
- Department of Physiology and Developmental Biology, University of Texas Southwestern Medical Center at Dallas, 75390-9133, USA.
| |
Collapse
|
25
|
Piatti P, Zeilner A, Lusser A. ATP-dependent chromatin remodeling factors and their roles in affecting nucleosome fiber composition. Int J Mol Sci 2011; 12:6544-65. [PMID: 22072904 PMCID: PMC3210995 DOI: 10.3390/ijms12106544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/20/2011] [Accepted: 09/28/2011] [Indexed: 01/03/2023] Open
Abstract
ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.
Collapse
Affiliation(s)
- Paolo Piatti
- Division of Molecular Biology, Innsbruck Medical University, Biocenter, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria; E-Mails: (P.P.); (A.Z.)
| | | | | |
Collapse
|
26
|
Topoisomerase II binds nucleosome-free DNA and acts redundantly with topoisomerase I to enhance recruitment of RNA Pol II in budding yeast. Proc Natl Acad Sci U S A 2011; 108:12693-8. [PMID: 21771901 DOI: 10.1073/pnas.1106834108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA topoisomerases are believed to promote transcription by removing excessive DNA supercoils produced during elongation. However, it is unclear how topoisomerases in eukaryotes are recruited and function in the transcription pathway in the context of nucleosomes. To address this problem we present high-resolution genome-wide maps of one of the major eukaryotic topoisomerases, Topoisomerase II (Top2) and nucleosomes in the budding yeast, Saccharomyces cerevisiae. Our data indicate that at promoters Top2 binds primarily to DNA that is nucleosome-free. However, although nucleosome loss enables Top2 occupancy, the opposite is not the case and the loss of Top2 has little effect on nucleosome density. We also find that Top2 is involved in transcription. Not only is Top2 enriched at highly transcribed genes, but Top2 is required redundantly with Top1 for optimal recruitment of RNA polymerase II at their promoters. These findings and the examination of candidate-activated genes suggest that nucleosome loss induced by nucleosome remodeling factors during gene activation enables Top2 binding, which in turn acts redundantly with Top1 to enhance recruitment of RNA polymerase II.
Collapse
|
27
|
The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4. EMBO J 2011; 30:1919-27. [PMID: 21505420 PMCID: PMC3098484 DOI: 10.1038/emboj.2011.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/09/2011] [Indexed: 11/30/2022] Open
Abstract
The SWI/SNF complex has an important role in regulating chromatin structure during transcriptional activation and DNA repair. Here, the SWI/SNF complex is also involved in the organisation of centromeric chromatin and prevention of the ectopic deposition of centromeric histone variants. In order to gain insight into the function of the Saccharomyces cerevisiae SWI/SNF complex, we have identified DNA sequences to which it is bound genomewide. One surprising observation is that the complex is enriched at the centromeres of each chromosome. Deletion of the gene encoding the Snf2 subunit of the complex was found to cause partial redistribution of the centromeric histone variant Cse4 to sites on chromosome arms. Cultures of snf2Δ yeast were found to progress through mitosis slowly. This was dependent on the mitotic checkpoint protein Mad2. In the absence of Mad2, defects in chromosome segregation were observed. In the absence of Snf2, chromatin organisation at centromeres is less distinct. In particular, hypersensitive sites flanking the Cse4 containing nucleosomes are less pronounced. Furthermore, SWI/SNF complex was found to be especially effective in the dissociation of Cse4 containing chromatin in vitro. This suggests a role for Snf2 in the maintenance of point centromeres involving the removal of Cse4 from ectopic sites.
Collapse
|
28
|
Kim J, Roeder RG. Nucleosomal H2B ubiquitylation with purified factors. Methods 2011; 54:331-8. [PMID: 21443952 DOI: 10.1016/j.ymeth.2011.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 11/25/2022] Open
Abstract
Diverse histone modifications play important roles in transcriptional regulation throughout eukaryotes, and recent studies have implicated histone H2B ubiquitylation in active transcription. The necessity of at least three enzymes (E1-E3), as well as ongoing transcription events, for efficient H2B ubiquitylation complicates mechanistic studies of H2B ubiquitylation relative to other histone modifications. Here we describe experimental protocols for preparation of human H2B ubiquitylation factors, ubiquitylation substrates and transcription factors, as well as the use of these factors to establish H2B ubiquitylation mechanisms during transcription. The methods include reliable protein interaction and E3 ubiquitylation assays that can be widely applied to confirm cognate E2-E3 pairs in other protein ubiquitylation systems, optimized in vitro ubiquitylation assays for various histone substrates, and a transcription-coupled H2B ubiquitylation assay in a highly purified transcription system. These comprehensive analyses have revealed (i) that RAD6 serves as the cognate E2 for the BRE1 complex in human cells, as previously established in yeast, (ii) that RAD6, through direct interaction with the BRE1 complex, ubiquitylates chromatinized H2B at lysine 120 and (iii) that PAF1 complex-mediated transcription is required for efficient H2B ubiquitylation. This experimental system permits detailed mechanistic analyses of H2B ubiquitylation during transcription by providing information concerning both precise enzyme functions and physical interactions between the transcription and histone modification machineries.
Collapse
Affiliation(s)
- Jaehoon Kim
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
29
|
Abstract
Epigenetic mechanisms alter the structure of local chromosome domains to dynamically regulate gene expression by signalling and propagating transcriptional states. Nuclear receptors, a stimulus-inducible class of transcription factors, interact with chromatin to regulate transcription. To promote transcription, nuclear receptors interact with genomic regulatory elements that are epigenetically marked by modified histone tails, DNA methylation status, histone variants, chromatin accessibility and long-range interactions. Advances in throughput have allowed the profiling of regulatory factor activity on a genome-wide scale, with recent evidence from genomic analyses highlighting novel aspects of DNA-binding factor actions on chromatin. In the present review, the current knowledge of the mechanisms regulating nuclear receptor occupancy at cis-regulatory elements is discussed, with particular emphasis on the glucocorticoid, oestrogen and androgen receptors. Epigenetic regulation of genomic elements direct cell-specific regulatory factor binding and contribute to human variation in factor occupancy. Through regulating nuclear receptor activity, the epigenome is a critical checkpoint in nuclear receptor induced gene expression in health and disease.
Collapse
Affiliation(s)
- S C Biddie
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
| |
Collapse
|
30
|
Thompson RF, Fazzari MJ, Greally JM. Experimental approaches to the study of epigenomic dysregulation in ageing. Exp Gerontol 2010; 45:255-68. [PMID: 20060885 DOI: 10.1016/j.exger.2009.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 12/19/2009] [Accepted: 12/28/2009] [Indexed: 12/25/2022]
Abstract
In this review, we describe how normal ageing may involve the acquisition of epigenetic errors over time, akin to the accumulation of genetic mutations with ageing. We describe how such experiments are currently performed, their limitations technically and analytically and their application to ageing research.
Collapse
Affiliation(s)
- Reid F Thompson
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
31
|
SWI/SNF and Asf1p cooperate to displace histones during induction of the saccharomyces cerevisiae HO promoter. Mol Cell Biol 2009; 29:4057-66. [PMID: 19470759 DOI: 10.1128/mcb.00400-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Regulation of the Saccharomyces cerevisiae HO promoter has been shown to require the recruitment of chromatin-modifying and -remodeling enzymes. Despite this, relatively little is known about what changes to chromatin structure occur during the course of regulation at HO. Here, we used indirect end labeling in synchronized cultures to show that the chromatin structure is disrupted in a region that spans bp -600 to -1800 relative to the transcriptional start site. Across this region, there is a loss of canonical nucleosomes and a reduction in histone DNA cross-linking, as monitored by chromatin immunoprecipitation. The ATPase Snf2 is required for these alterations, but the histone acetyltransferase Gcn5 is not. This suggests that the SWI/SNF complex is directly involved in nucleosome removal at HO. We also present evidence indicating that the histone chaperone Asf1 assists in this. These observations suggest that SWI/SNF-related complexes in concert with histone chaperones act to remove histone octamers from DNA during the course of gene regulation.
Collapse
|
32
|
Kiryanov GI, Isayeva LV, Kintsurashvili LN, Zakharova MG. Nucleosome positioning in the NPTII neomycin phosphotransferase gene on a yeast plasmid in the repressed and active states. Mol Biol 2008. [DOI: 10.1134/s0026893308060137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Abstract
The SWI/SNF complex disrupts and mobilizes chromatin in an ATP-dependent manner. SWI/SNF interactions with nucleosomes were mapped by DNA footprinting and site-directed DNA and protein cross-linking when SWI/SNF was recruited by a transcription activator. SWI/SNF was found by DNA footprinting to contact tightly around one gyre of DNA spanning approximately 50 bp from the nucleosomal entry site to near the dyad axis. The DNA footprint is consistent with nucleosomes binding to an asymmetric trough of SWI/SNF that was revealed by the improved imaging of free SWI/SNF. The DNA site-directed cross-linking revealed that the catalytic subunit Swi2/Snf2 is associated with nucleosomes two helical turns from the dyad axis and that the Snf6 subunit is proximal to the transcription factor recruiting SWI/SNF. The highly conserved Snf5 subunit associates with the histone octamer and not with nucleosomal DNA. The model of the binding trough of SWI/SNF illustrates how nucleosomal DNA can be mobilized while SWI/SNF remains bound.
Collapse
|
34
|
Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K. Dynamic regulation of nucleosome positioning in the human genome. Cell 2008; 132:887-98. [PMID: 18329373 PMCID: PMC10894452 DOI: 10.1016/j.cell.2008.02.022] [Citation(s) in RCA: 1017] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/06/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
The positioning of nucleosomes with respect to DNA plays an important role in regulating transcription. However, nucleosome mapping has been performed for only limited genomic regions in humans. We have generated genome-wide maps of nucleosome positions in both resting and activated human CD4+ T cells by direct sequencing of nucleosome ends using the Solexa high-throughput sequencing technique. We find that nucleosome phasing relative to the transcription start sites is directly correlated to RNA polymerase II (Pol II) binding. Furthermore, the first nucleosome downstream of a start site exhibits differential positioning in active and silent genes. TCR signaling induces extensive nucleosome reorganization in promoters and enhancers to allow transcriptional activation or repression. Our results suggest that H2A.Z-containing and modified nucleosomes are preferentially lost from the -1 nucleosome position. Our data provide a comprehensive view of the nucleosome landscape and its dynamic regulation in the human genome.
Collapse
Affiliation(s)
- Dustin E. Schones
- Laboratory of Molecular Immunology, The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - Kairong Cui
- Laboratory of Molecular Immunology, The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - Suresh Cuddapah
- Laboratory of Molecular Immunology, The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Tae-Young Roh
- Laboratory of Molecular Immunology, The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Artem Barski
- Laboratory of Molecular Immunology, The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Zhibin Wang
- Laboratory of Molecular Immunology, The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Gang Wei
- Laboratory of Molecular Immunology, The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Molecular Immunology, The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Cairns BR. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 2008; 14:989-96. [PMID: 17984961 DOI: 10.1038/nsmb1333] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatin remodelers are ATP-hydrolyzing machines specialized to restructure, mobilize or eject nucleosomes, allowing regulated exposure of DNA in chromatin. Recently, remodelers have been analyzed using single-molecule techniques in real time, revealing them to be complex DNA-pumping machines. The results both support and challenge aspects of current models of remodeling, supporting the idea that the remodeler translocates or pumps DNA loops into and around the nucleosome, while also challenging earlier concepts about loop formation, the character of the loop and how it propagates. Several complex behaviors were observed, such as reverse translocation and long translocation bursts of the remodeler, without appreciable DNA twist. This review presents and discusses revised models for nucleosome sliding and ejection that integrate this new information with the earlier biochemical studies.
Collapse
Affiliation(s)
- Bradley R Cairns
- Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
36
|
Hatta M, Cirillo LA. Chromatin Opening and Stable Perturbation of Core Histone:DNA Contacts by FoxO1. J Biol Chem 2007; 282:35583-93. [DOI: 10.1074/jbc.m704735200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Green KA, Carroll JS. Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 2007; 7:713-22. [PMID: 17721435 DOI: 10.1038/nrc2211] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oestrogen receptor-alpha (ERalpha)-regulated transcription in breast cancer cells involves protein co-factors that contribute to the regulation of chromatin structure. These include co-factors with the potential to regulate histone modifications such as acetylation or methylation, and therefore the transcriptional state of target genes. Although much of the information regarding the interaction of specific co-factors with ER has been generated by studying specific promoter regions, we now have an improved understanding of the nature of these interactions and are better placed to relate these with ER activity and potentially with the activity of breast cancer drugs, including tamoxifen.
Collapse
Affiliation(s)
- Kelly A Green
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | | |
Collapse
|
38
|
Fleming AB, Pennings S. Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene. Nucleic Acids Res 2007; 35:5520-31. [PMID: 17704134 PMCID: PMC2018639 DOI: 10.1093/nar/gkm573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The traditional model for chromatin remodelling during transcription has focused upon the remodelling of nucleosomes at gene promoters. However, in this study, we have determined that Tup1-Ssn6 and Swi-Snf chromatin remodelling activities extend far upstream of the SUC2 gene promoter into the intergenic region of the Saccharomyces cerevisiae chromosome. We mapped the nucleosomal array over a 7.5 kb region that encompassed the SUC2 gene promoter and upstream region but was devoid of other transcriptionally active genes. Nucleosome positioning over this region was determined under conditions of glucose repression and derepression, and in snf2, ssn6 and snf2 ssn6 mutant strains. A map detailing remodelling events extending as much as 5 kb upstream of the SUC2 gene promoter underlines the roles of the Tup1-Ssn6 and Swi-Snf complexes in respectively organizing and disrupting nucleosome arrays. The gene specificity of these events suggests a role in gene regulation. We propose that long-range chromatin remodelling activities of Swi-Snf and Tup1-Ssn6 may ultimately influence whether the chromosomal state of the SUC2 gene is proficient for transcription. These data raise the possibility that remodelling of extensive chromatin domains may be a general property of the Swi-Snf and Tup1-Ssn6 complexes.
Collapse
Affiliation(s)
- Alastair B. Fleming
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK, Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, New Mexico 87131, USA and Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Sari Pennings
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK, Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, New Mexico 87131, USA and Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- *To whom correspondence should be addressed. +44 131 242 6145+44 131 242 6782
| |
Collapse
|
39
|
Abstract
Chromatin structure imposes significant obstacles on all aspects of transcription that are mediated by RNA polymerase II. The dynamics of chromatin structure are tightly regulated through multiple mechanisms including histone modification, chromatin remodeling, histone variant incorporation, and histone eviction. In this Review, we highlight advances in our understanding of chromatin regulation and discuss how such regulation affects the binding of transcription factors as well as the initiation and elongation steps of transcription.
Collapse
Affiliation(s)
- Bing Li
- Stowers Medical Research Institute, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
40
|
Gutiérrez JL, Chandy M, Carrozza MJ, Workman JL. Activation domains drive nucleosome eviction by SWI/SNF. EMBO J 2007; 26:730-40. [PMID: 17235287 PMCID: PMC1794382 DOI: 10.1038/sj.emboj.7601524] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 12/04/2006] [Indexed: 01/09/2023] Open
Abstract
ATP-dependent chromatin remodeling complexes play a critical role in chromatin dynamics. A large number of in vitro studies have pointed towards nucleosome sliding as the principal remodeling outcome of SWI/SNF action, whereas few have described histone octamer transfer as the principal outcome. In contrast, recent in vivo studies have linked the activity of SWI/SNF to histone eviction in trans from gene promoters. In this study, we have found that the chimeric transcription factor Gal4-VP16 can enhance SWI/SNF histone octamer transfer activity, resulting in targeted histone eviction from a nucleosome probe. This effect is dependent on the presence of the activation domain. We observed that under conditions mimicking the in vivo relative abundance of SWI/SNF with respect to the total number of nucleosomes in a cell nucleus, the accessibility of the transcription factor binding site is the first determinant in the sequence of events leading to nucleosome remodeling. We propose a model mechanism for this transcription factor-mediated enhancement of SWI/SNF octamer transfer activity.
Collapse
Affiliation(s)
| | - Mark Chandy
- Stowers Institute for Medical Research, Kansas City, MO, USA
- The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA. Tel.: +1 816 926 4392; Fax: +1 816 926 4692; E-mail:
| |
Collapse
|
41
|
Chandy M, Gutiérrez JL, Prochasson P, Workman JL. SWI/SNF displaces SAGA-acetylated nucleosomes. EUKARYOTIC CELL 2006; 5:1738-47. [PMID: 17030999 PMCID: PMC1595347 DOI: 10.1128/ec.00165-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SWI/SNF is a well-characterized chromatin remodeling complex that remodels chromatin by sliding nucleosomes in cis and/or displacing nucleosomes in trans. The latter mechanism has the potential to remove promoter nucleosomes, allowing access to transcription factors and RNA polymerase. In vivo, histone acetylation often precedes apparent nucleosome loss; therefore, we sought to determine whether nucleosomes containing acetylated histones could be displaced by the SWI/SNF chromatin remodeling complex. We found that SAGA-acetylated histones were lost from an immobilized nucleosome array when treated with the SWI/SNF complex. When the nucleosome array was acetylated by SAGA in the presence of bound transcription activators, it generated a peak of acetylation surrounding the activator binding sites. Subsequent SWI/SNF treatment suppressed this acetylation peak. Immunoblots indicated that SWI/SNF preferentially displaced acetylated histones from the array relative to total histones. Moreover, the Swi2/Snf2 bromodomain, an acetyl-lysine binding domain, played a role in the displacement of acetylated histones. These data indicate that targeted histone acetylation by the SAGA complex predisposes promoter nucleosomes for displacement by the SWI/SNF complex.
Collapse
Affiliation(s)
- Mark Chandy
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
42
|
Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 2006; 7:437-47. [PMID: 16723979 DOI: 10.1038/nrm1945] [Citation(s) in RCA: 406] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.
Collapse
Affiliation(s)
- Anjanabha Saha
- Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
43
|
Costelloe T, Fitzgerald J, Murphy NJ, Flaus A, Lowndes NF. Chromatin modulation and the DNA damage response. Exp Cell Res 2006; 312:2677-86. [PMID: 16893724 DOI: 10.1016/j.yexcr.2006.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 06/19/2006] [Indexed: 11/22/2022]
Abstract
The ability to sense and respond appropriately to genetic lesions is vitally important to maintain the integrity of the genome. Emerging evidence indicates that various modulations to chromatin structure are centrally important to many aspects of the DNA damage response (DDR). Here, we discuss recently described roles for specific post-translational covalent modifications to histone proteins, as well as ATP-dependent chromatin remodelling, in DNA damage signalling and repair of DNA double strand breaks.
Collapse
Affiliation(s)
- Thomas Costelloe
- Genome Stability Laboratory, Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway
| | | | | | | | | |
Collapse
|
44
|
Lorch Y, Maier-Davis B, Kornberg RD. Chromatin remodeling by nucleosome disassembly in vitro. Proc Natl Acad Sci U S A 2006; 103:3090-3. [PMID: 16492771 PMCID: PMC1413907 DOI: 10.1073/pnas.0511050103] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RSC chromatin-remodeling complex completely disassembles a nucleosome in the presence of the histone chaperone Nap1 and ATP. Disassembly occurs in a stepwise manner, with the removal of H2A/H2B dimers, followed by the rest of the histones and the release of naked DNA. RSC and related chromatin-remodeling complexes may be responsible for the removal of promoter nucleosomes during transcriptional activation in vivo.
Collapse
Affiliation(s)
- Yahli Lorch
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126
| | - Barbara Maier-Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126
| | - Roger D. Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Johnson CN, Adkins NL, Georgel P. Chromatin remodeling complexes: ATP-dependent machines in action. Biochem Cell Biol 2005; 83:405-17. [PMID: 16094444 DOI: 10.1139/o05-115] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Since the initial characterization of chromatin remodeling as an ATP-dependent process, many studies have given us insight into how nucleosome-remodeling complexes can affect various nuclear functions. However, the multistep DNA-histone remodeling process has not been completely elucidated. Although new studies are published on a nearly weekly basis, the nature and roles of interactions of the individual SWI/SNF- and ISWI-based remodeling complexes and DNA, core histones, and other chromatin-associated proteins are not fully understood. In addition, the potential changes associated with ATP recruitment and its subsequent hydrolysis have not been fully characterized. This review explores possible mechanisms by which chromatin-remodeling complexes are recruited to specific loci, use ATP hydrolysis to achieve actual remodeling through disruption of DNA-histone interactions, and are released from their chromatin template. We propose possible roles for ATP hydrolysis in a chromatin-release/target-scanning process that offer an alternative to or complement the often overlooked function of delivering the energy required for sliding or dislodging specific subsets of core histones.
Collapse
Affiliation(s)
- Cotteka N Johnson
- Division of Biological Sciences, Marshall University, Huntington, WV 25755, USA
| | | | | |
Collapse
|
46
|
Abstract
DNA double-strand breaks (DSBs) are, arguably, the most deleterious form of DNA damage. An increasing body of evidence points to the inaccurate or inefficient repair of DSBs as a key step in tumorigenesis. Therefore, it is of great importance to understand the processes by which DSBs are detected and repaired. Clearly, these events must take place in the context of chromatin in vivo, and recently, a great deal of progress has been made in understanding the dynamic and active role that histone proteins and chromatin modifying activities play in DNA DSB repair. Here, we briefly review some of the most common techniques in studying DNA DSB responses in vivo, and focus on the contributions of covalent modifications of core histone proteins to these DNA DSB responses.
Collapse
Affiliation(s)
- Elizabeth Bilsland
- Department of Biochemistry, Cambridge University, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | |
Collapse
|
47
|
Korber P, Luckenbach T, Blaschke D, Hörz W. Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter. Mol Cell Biol 2004; 24:10965-74. [PMID: 15572697 PMCID: PMC533982 DOI: 10.1128/mcb.24.24.10965-10974.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The yeast PHO5 promoter is a model system for the role of chromatin in eukaryotic gene regulation. Four positioned nucleosomes in the repressed state give way to an extended DNase I hypersensitive site upon induction. Recently this hypersensitive site was shown to be devoid of histone DNA contacts. This raises the mechanistic question of how histones are removed from the promoter. A displacement in trans or movement in cis, the latter according to the well established nucleosome sliding mechanism, are the major alternatives. In this study, we embedded the PHO5 promoter into the context of a small plasmid which severely restricts the space for nucleosome sliding along the DNA in cis. Such a construct would either preclude the chromatin transition upon induction altogether, were it to occur in cis, or gross changes in chromatin around the plasmid would be the consequence. We observed neither. Instead, promoter opening on the plasmid was indistinguishable from opening at the native chromosomal locus. This makes a sliding mechanism for the chromatin transition at the PHO5 promoter highly unlikely and points to histone eviction in trans.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institut, Universität München, Schillerstrasse 44, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
48
|
Cosgrove MS, Boeke JD, Wolberger C. Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 2004; 11:1037-43. [PMID: 15523479 DOI: 10.1038/nsmb851] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 09/30/2004] [Indexed: 12/22/2022]
Abstract
Post-translational modifications of the histone tails are correlated with distinct chromatin states that regulate access to DNA. Recent proteomic analyses have revealed several new modifications in the globular nucleosome core, many of which lie at the histone-DNA interface. We interpret these modifications in light of previously published data and propose a new and testable model for how cells implement the histone code by modulating nucleosome dynamics.
Collapse
Affiliation(s)
- Michael S Cosgrove
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 733 North Broadway Street, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
49
|
Huynh VAT, Robinson PJJ, Rhodes D. A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 2004; 345:957-68. [PMID: 15644197 DOI: 10.1016/j.jmb.2004.10.075] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 10/20/2004] [Accepted: 10/26/2004] [Indexed: 10/26/2022]
Abstract
An understanding of the role of higher-order chromatin structure in the regulation of cellular processes such as transcription will require knowledge of the structure of the "30 nm" chromatin fibre and its folding and unfolding pathways. We report an in vitro chromatin reconstitution system, which uses arrays of 12 and 19 copies of a 200 bp repeat of the Widom 601 DNA sequence. Since this DNA sequence binds the histone octamer with much higher affinity than mixed sequence DNA, we have used competitor DNA in the reconstitutions to control the loading of both the histone octamer and linker histone onto the 601 DNA arrays. Using this method we have obtained nucleosome arrays that have one histone octamer and one H5 bound per 200 bp repeat, and hence have the stoichiometric composition of native chromatin. To obtain highly compact 30 nm chromatin fibres, we have investigated a number of folding buffer conditions including varying NaCl or MgCl(2) concentrations. Sedimentation velocity analysis shows that the reconstituted nucleosome arrays have the same folding properties as native chromatin and form highly compact structures in high NaCl concentrations or 1mM MgCl(2). Negative stain and electron cryo-microscopy of the folded arrays show a homogeneous population of folded particles with a uniform diameter of 34 nm. The data presented provide good evidence that the reconstitution method we have developed produces, for the first time, a defined population of folded 30 nm fibres suitable for detailed structural investigation.
Collapse
Affiliation(s)
- Van A T Huynh
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
50
|
Li G, Levitus M, Bustamante C, Widom J. Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 2004; 12:46-53. [PMID: 15580276 DOI: 10.1038/nsmb869] [Citation(s) in RCA: 477] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 11/04/2004] [Indexed: 11/09/2022]
Abstract
DNA wrapped in nucleosomes is sterically occluded, creating obstacles for proteins that must bind it. How proteins gain access to DNA buried inside nucleosomes is not known. Here we report measurements of the rates of spontaneous nucleosome conformational changes in which a stretch of DNA transiently unwraps off the histone surface, starting from one end of the nucleosome, and then rewraps. The rates are rapid. Nucleosomal DNA remains fully wrapped for only approximately 250 ms before spontaneously unwrapping; unwrapped DNA rewraps within approximately 10-50 ms. Spontaneous unwrapping of nucleosomal DNA allows any protein rapid access even to buried stretches of the DNA. Our results explain how remodeling factors can be recruited to particular nucleosomes on a biologically relevant timescale, and they imply that the major impediment to entry of RNA polymerase into a nucleosome is rewrapping of nucleosomal DNA, not unwrapping.
Collapse
Affiliation(s)
- Gu Li
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | |
Collapse
|