1
|
Li W, Hu J, Song F, Yu J, Peng X, Zhang S, Wang L, Hu M, Liu JC, Wei Y, Xiao X, Li Y, Li D, Wang H, Zhou BR, Dai L, Mou Z, Zhou M, Zhang H, Zhou Z, Zhang H, Bai Y, Zhou JQ, Li W, Li G, Zhu P. Structural basis for linker histone H5-nucleosome binding and chromatin fiber compaction. Cell Res 2024; 34:707-724. [PMID: 39103524 PMCID: PMC11442585 DOI: 10.1038/s41422-024-01009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
The hierarchical packaging of chromatin fibers plays a critical role in gene regulation. The 30-nm chromatin fibers, a central-level structure bridging nucleosomal arrays to higher-order organizations, function as the first level of transcriptional dormant chromatin. The dynamics of 30-nm chromatin fiber play a crucial role in biological processes related to DNA. Here, we report a 3.6-angstrom resolution cryogenic electron microscopy structure of H5-bound dodecanucleosome, i.e., the chromatin fiber reconstituted in the presence of linker histone H5, which shows a two-start left-handed double helical structure twisted by tetranucleosomal units. An atomic structural model of the H5-bound chromatin fiber, including an intact chromatosome, is built, which provides structural details of the full-length linker histone H5, including its N-terminal domain and an HMG-motif-like C-terminal domain. The chromatosome structure shows that H5 binds the nucleosome off-dyad through a three-contact mode in the chromatin fiber. More importantly, the H5-chromatin structure provides a fine molecular basis for the intra-tetranucleosomal and inter-tetranucleosomal interactions. In addition, we systematically validated the physiological functions and structural characteristics of the tetranucleosomal unit through a series of genetic and genomic studies in Saccharomyces cerevisiae and in vitro biophysical experiments. Furthermore, our structure reveals that multiple structural asymmetries of histone tails confer a polarity to the chromatin fiber. These findings provide structural and mechanistic insights into how a nucleosomal array folds into a higher-order chromatin fiber with a polarity in vitro and in vivo.
Collapse
Affiliation(s)
- Wenyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Song
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shangdong, China
| | - Juan Yu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Peng
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuming Zhang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Lin Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wei
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Xiao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongyu Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linchang Dai
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongjun Mou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haonan Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Ping Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Li NN, Lun DX, Gong N, Meng G, Du XY, Wang H, Bao X, Li XY, Song JW, Hu K, Li L, Li SY, Liu W, Zhu W, Zhang Y, Li J, Yao T, Mou L, Han X, Hao F, Hu Y, Liu L, Zhu H, Wu Y, Liu B. Targeting the chromatin structural changes of antitumor immunity. J Pharm Anal 2024; 14:100905. [PMID: 38665224 PMCID: PMC11043877 DOI: 10.1016/j.jpha.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 04/28/2024] Open
Abstract
Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.
Collapse
Affiliation(s)
- Nian-nian Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deng-xing Lun
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Ningning Gong
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Gang Meng
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, Shaanxi, 725000, China
| | - Xin-ying Du
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - He Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiangxiang Bao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xin-yang Li
- Guizhou Education University, Guiyang, 550018, China
| | - Ji-wu Song
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Kewei Hu
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Lala Li
- Guizhou Normal University, Guiyang, 550025, China
| | - Si-ying Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wenbo Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wanping Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yunlong Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jikai Li
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tianjin, 300299, China
| | - Ting Yao
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| | - Leming Mou
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiaoqing Han
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Furong Hao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yongcheng Hu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Lin Liu
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongguang Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yuyun Wu
- Xinqiao Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Bin Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| |
Collapse
|
3
|
Sawade K, Marx A, Peter C, Kukharenko O. Combining molecular dynamics simulations and scoring method to computationally model ubiquitylated linker histones in chromatosomes. PLoS Comput Biol 2023; 19:e1010531. [PMID: 37527265 PMCID: PMC10442151 DOI: 10.1371/journal.pcbi.1010531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/21/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023] Open
Abstract
The chromatin in eukaryotic cells plays a fundamental role in all processes during a cell's life cycle. This nucleoprotein is normally tightly packed but needs to be unpacked for expression and division. The linker histones are critical for such packaging processes and while most experimental and simulation works recognize their crucial importance, the focus is nearly always set on the nucleosome as the basic chromatin building block. Linker histones can undergo several modifications, but only few studies on their ubiquitylation have been conducted. Mono-ubiquitylated linker histones (HUb), while poorly understood, are expected to influence DNA compaction. The size of ubiquitin and the globular domain of the linker histone are comparable and one would expect an increased disorder upon ubiquitylation of the linker histone. However, the formation of higher order chromatin is not hindered and ubiquitylation of the linker histone may even promote gene expression. Structural data on chromatosomes is rare and HUb has never been modeled in a chromatosome so far. Descriptions of the chromatin complex with HUb would greatly benefit from computational structural data. In this study we generate molecular dynamics simulation data for six differently linked HUb variants with the help of a sampling scheme tailored to drive the exploration of phase space. We identify conformational sub-states of the six HUb variants using the sketch-map algorithm for dimensionality reduction and iterative HDBSCAN for clustering on the excessively sampled, shallow free energy landscapes. We present a highly efficient geometric scoring method to identify sub-states of HUb that fit into the nucleosome. We predict HUb conformations inside a nucleosome using on-dyad and off-dyad chromatosome structures as reference and show that unbiased simulations of HUb produce significantly more fitting than non-fitting HUb conformations. A tetranucleosome array is used to show that ubiquitylation can even occur in chromatin without too much steric clashes.
Collapse
Affiliation(s)
- Kevin Sawade
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Oleksandra Kukharenko
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- Theory Department, Max-Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
4
|
Shen CH, Allan J. MNase Digestion Protection Patterns of the Linker DNA in Chromatosomes. Cells 2021; 10:cells10092239. [PMID: 34571888 PMCID: PMC8469290 DOI: 10.3390/cells10092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
The compact nucleosomal structure limits DNA accessibility and regulates DNA-dependent cellular activities. Linker histones bind to nucleosomes and compact nucleosomal arrays into a higher-order chromatin structure. Recent developments in high throughput technologies and structural computational studies provide nucleosome positioning at a high resolution and contribute to the information of linker histone location within a chromatosome. However, the precise linker histone location within the chromatin fibre remains unclear. Using monomer extension, we mapped core particle and chromatosomal positions over a core histone-reconstituted, 1.5 kb stretch of DNA from the chicken adult β-globin gene, after titration with linker histones and linker histone globular domains. Our results show that, although linker histone globular domains and linker histones display a wide variation in their binding affinity for different positioned nucleosomes, they do not alter nucleosome positions or generate new nucleosome positions. Furthermore, the extra ~20 bp of DNA protected in a chromatosome is usually symmetrically distributed at each end of the core particle, suggesting linker histones or linker histone globular domains are located close to the nucleosomal dyad axis.
Collapse
Affiliation(s)
- Chang-Hui Shen
- Biology Department, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA
- Biochemistry and Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10016, USA
- Institute for Macromolecular Assemblies, City University of New York, New York, NY 10031, USA
- Correspondence: ; Tel.: +1-718-982-3998; Fax: +1-718-982-3852
| | - James Allan
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK;
| |
Collapse
|
5
|
Rudnizky S, Khamis H, Ginosar Y, Goren E, Melamed P, Kaplan A. Extended and dynamic linker histone-DNA Interactions control chromatosome compaction. Mol Cell 2021; 81:3410-3421.e4. [PMID: 34192510 DOI: 10.1016/j.molcel.2021.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Chromatosomes play a fundamental role in chromatin regulation, but a detailed understanding of their structure is lacking, partially due to their complex dynamics. Using single-molecule DNA unzipping with optical tweezers, we reveal that linker histone interactions with DNA are remarkably extended, with the C-terminal domain binding both DNA linkers as far as approximately ±140 bp from the dyad. In addition to a symmetrical compaction of the nucleosome core governed by globular domain contacts at the dyad, the C-terminal domain compacts the nucleosome's entry and exit. These interactions are dynamic, exhibit rapid binding and dissociation, are sensitive to phosphorylation of a specific residue, and are crucial to determining the symmetry of the chromatosome's core. Extensive unzipping of the linker DNA, which mimics its invasion by motor proteins, shifts H1 into an asymmetric, off-dyad configuration and triggers nucleosome decompaction, highlighting the plasticity of the chromatosome structure and its potential regulatory role.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hadeel Khamis
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Faculty of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yuval Ginosar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Efrat Goren
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
6
|
Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry. Proc Natl Acad Sci U S A 2020; 117:7216-7224. [PMID: 32165536 DOI: 10.1073/pnas.1910044117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein flexibility and disorder is emerging as a crucial modulator of chromatin structure. Histone tail disorder enables transient binding of different molecules to the nucleosomes, thereby promoting heterogeneous and dynamic internucleosome interactions and making possible recruitment of a wide-range of regulatory and remodeling proteins. On the basis of extensive multiscale modeling we reveal the importance of linker histone H1 protein disorder for chromatin hierarchical looping. Our multiscale approach bridges microsecond-long bias-exchange metadynamics molecular dynamics simulations of atomistic 211-bp nucleosomes with coarse-grained Monte Carlo simulations of 100-nucleosome systems. We show that the long C-terminal domain (CTD) of H1-a ubiquitous nucleosome-binding protein-remains disordered when bound to the nucleosome. Notably, such CTD disorder leads to an asymmetric and dynamical nucleosome conformation that promotes chromatin structural flexibility and establishes long-range hierarchical loops. Furthermore, the degree of condensation and flexibility of H1 can be fine-tuned, explaining chromosomal differences of interphase versus metaphase states that correspond to partial and hyperphosphorylated H1, respectively. This important role of H1 protein disorder in large-scale chromatin organization has a wide range of biological implications.
Collapse
|
7
|
Chikhirzhina EV, Starkova TY, Polyanichko AM. The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Perišić O, Portillo-Ledesma S, Schlick T. Sensitive effect of linker histone binding mode and subtype on chromatin condensation. Nucleic Acids Res 2019; 47:4948-4957. [PMID: 30968131 PMCID: PMC6547455 DOI: 10.1093/nar/gkz234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
The complex role of linker histone (LH) on chromatin compaction regulation has been highlighted by recent discoveries of the effect of LH binding variability and isoforms on genome structure and function. Here we examine the effect of two LH variants and variable binding modes on the structure of chromatin fibers. Our mesoscale modeling considers oligonucleosomes with H1C and H1E, bound in three different on and off-dyad modes, and spanning different LH densities (0.5–1.6 per nucleosome), over a wide range of physiologically relevant nucleosome repeat lengths (NRLs). Our studies reveal an LH-variant and binding-mode dependent heterogeneous ensemble of fiber structures with variable packing ratios, sedimentation coefficients, and persistence lengths. For maximal compaction, besides dominantly interacting with parental DNA, LHs must have strong interactions with nonparental DNA and promote tail/nonparental core interactions. An off-dyad binding of H1E enables both; others compromise compaction for bendability. We also find that an increase of LH density beyond 1 is best accommodated in chromatosomes with one on-dyad and one off-dyad LH. We suggest that variable LH binding modes and concentrations are advantageous, allowing tunable levels of chromatin condensation and DNA accessibility/interactions. Thus, LHs add another level of epigenetic regulation of chromatin.
Collapse
Affiliation(s)
- Ognjen Perišić
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA.,Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA.,New York University ECNU - Center for Computational Chemistry at NYU Shanghai, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
9
|
Bennett RL, Bele A, Small EC, Will CM, Nabet B, Oyer JA, Huang X, Ghosh RP, Grzybowski AT, Yu T, Zhang Q, Riva A, Lele TP, Schatz GC, Kelleher NL, Ruthenburg AJ, Liphardt J, Licht JD. A Mutation in Histone H2B Represents a New Class of Oncogenic Driver. Cancer Discov 2019; 9:1438-1451. [PMID: 31337617 DOI: 10.1158/2159-8290.cd-19-0393] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 12/30/2022]
Abstract
By examination of the cancer genomics database, we identified a new set of mutations in core histones that frequently recur in cancer patient samples and are predicted to disrupt nucleosome stability. In support of this idea, we characterized a glutamate to lysine mutation of histone H2B at amino acid 76 (H2B-E76K), found particularly in bladder and head and neck cancers, that disrupts the interaction between H2B and H4. Although H2B-E76K forms dimers with H2A, it does not form stable histone octamers with H3 and H4 in vitro, and when reconstituted with DNA forms unstable nucleosomes with increased sensitivity to nuclease. Expression of the equivalent H2B mutant in yeast restricted growth at high temperature and led to defective nucleosome-mediated gene repression. Significantly, H2B-E76K expression in the normal mammary epithelial cell line MCF10A increased cellular proliferation, cooperated with mutant PIK3CA to promote colony formation, and caused a significant drift in gene expression and fundamental changes in chromatin accessibility, particularly at gene regulatory elements. Taken together, these data demonstrate that mutations in the globular domains of core histones may give rise to an oncogenic program due to nucleosome dysfunction and deregulation of gene expression. SIGNIFICANCE: Mutations in the core histones frequently occur in cancer and represent a new mechanism of epigenetic dysfunction that involves destabilization of the nucleosome, deregulation of chromatin accessibility, and alteration of gene expression to drive cellular transformation.See related commentary by Sarthy and Henikoff, p. 1346.This article is highlighted in the In This Issue feature, p. 1325.
Collapse
Affiliation(s)
- Richard L Bennett
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Aditya Bele
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Eliza C Small
- Division of Hematology/Oncology, Northwestern University, Evanston, Illinois
| | - Christine M Will
- Division of Hematology/Oncology, Northwestern University, Evanston, Illinois
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Jon A Oyer
- Division of Hematology/Oncology, Northwestern University, Evanston, Illinois
| | - Xiaoxiao Huang
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida.,Department of Chemistry, Northwestern University, Evanston, Illinois
| | - Rajarshi P Ghosh
- Department of Bioengineering, Stanford University, Stanford, California
| | - Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | - Tao Yu
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee
| | - Qiao Zhang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | - Jan Liphardt
- Department of Bioengineering, Stanford University, Stanford, California
| | - Jonathan D Licht
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida.
| |
Collapse
|
10
|
Chromatin structures condensed by linker histones. Essays Biochem 2019; 63:75-87. [DOI: 10.1042/ebc20180056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
Abstract
In eukaryotic cells, genomic DNA exists in the form of chromatin through association with histone proteins, which consist of four core histone (H2A, H2B, H3, and H4) families and one linker histone (H1) family. The core histones bind to DNA to form the nucleosome, the recurring structural unit of chromatin. The linker histone binds to the nucleosome to form the next structural unit of chromatin, the chromatosome, which occurs dominantly in metazoans. Linker histones also play an essential role in condensing chromatin to form higher order structures. Unlike the core histones in the formation of the nucleosome, the role of linker histone in the formation of the chromatosome and high-order chromatin structure is not well understood. Nevertheless, exciting progress in the structural studies of chromatosomes and nucleosome arrays condensed by linker histones has been made in the last several years. In this mini-review, we discuss these recent experimental results and provide some perspectives for future studies.
Collapse
|
11
|
Hu J, Gu L, Ye Y, Zheng M, Xu Z, Lin J, Du Y, Tian M, Luo L, Wang B, Zhang X, Weng Z, Jiang C. Dynamic placement of the linker histone H1 associated with nucleosome arrangement and gene transcription in early Drosophila embryonic development. Cell Death Dis 2018; 9:765. [PMID: 29988149 PMCID: PMC6037678 DOI: 10.1038/s41419-018-0819-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
Abstract
The linker histone H1 is critical to maintenance of higher-order chromatin structures and to gene expression regulation. However, H1 dynamics and its functions in embryonic development remain unresolved. Here, we profiled gene expression, nucleosome positions, and H1 locations in early Drosophila embryos. The results show that H1 binding is positively correlated with the stability of beads-on-a-string nucleosome organization likely through stabilizing nucleosome positioning and maintaining nucleosome spacing. Strikingly, nucleosomes with H1 placement deviating to the left or the right relative to the dyad shift to the left or the right, respectively, during early Drosophila embryonic development. H1 occupancy on genic nucleosomes is inversely correlated with nucleosome distance to the transcription start sites. This inverse correlation reduces as gene transcription levels decrease. Additionally, H1 occupancy is lower at the 5′ border of genic nucleosomes than that at the 3′ border. This asymmetrical pattern of H1 occupancy on genic nucleosomes diminishes as gene transcription levels decrease. These findings shed new lights into how H1 placement dynamics correlates with nucleosome positioning and gene transcription during early Drosophila embryonic development.
Collapse
Affiliation(s)
- Jian Hu
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Liang Gu
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Youqiong Ye
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Meizhu Zheng
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Zhu Xu
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Jing Lin
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Yanhua Du
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Mengxue Tian
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Lifang Luo
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Beibei Wang
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.,Department of laboratory medicine, the first people's Hospital of Ninghai County, Ningbo city, 315600, China
| | - Xiaobai Zhang
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Cizhong Jiang
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
12
|
Öztürk MA, Cojocaru V, Wade RC. Toward an Ensemble View of Chromatosome Structure: A Paradigm Shift from One to Many. Structure 2018; 26:1050-1057. [PMID: 29937356 DOI: 10.1016/j.str.2018.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/31/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022]
Abstract
There is renewed interest in linker histone (LH)-nucleosome binding and how LHs influence eukaryotic DNA compaction. For a long time, the goal was to uncover "the structure of the chromatosome," but recent studies of LH-nucleosome complexes have revealed an ensemble of structures. Notably, the reconstituted LH-nucleosome complexes used in experiments rarely correspond to the sequence combinations present in organisms. For a full understanding of the determinants of the distribution of the chromatosome structural ensemble, studies must include a complete description of the sequences and experimental conditions used, and be designed to enable systematic evaluation of sequence and environmental effects.
Collapse
Affiliation(s)
- Mehmet Ali Öztürk
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, 69120 Heidelberg, Germany
| | - Vlad Cojocaru
- Computational Structural Biology Laboratory, Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Center for Multiscale Theory and Computation, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Nucleosome-level 3D organization of the genome. Biochem Soc Trans 2018; 46:491-501. [PMID: 29626147 DOI: 10.1042/bst20170388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 01/19/2023]
Abstract
Nucleosomes are the unitary structures of chromosome folding, and their arrangements are intimately coupled to the regulation of genome activities. Conventionally, structural analyses using electron microscopy and X-ray crystallography have been used to study such spatial nucleosome arrangements. In contrast, recent improvements in the resolution of sequencing-based methods allowed investigation of nucleosome arrangements separately at each genomic locus, enabling exploration of gene-dependent regulation mechanisms. Here, we review recent studies on nucleosome folding in chromosomes from these two methodological perspectives: conventional structural analyses and DNA sequencing, and discuss their implications for future research.
Collapse
|
14
|
Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 2017; 19:192-206. [PMID: 29018282 DOI: 10.1038/nrm.2017.94] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.
Collapse
|
15
|
Bednar J, Garcia-Saez I, Boopathi R, Cutter AR, Papai G, Reymer A, Syed SH, Lone IN, Tonchev O, Crucifix C, Menoni H, Papin C, Skoufias DA, Kurumizaka H, Lavery R, Hamiche A, Hayes JJ, Schultz P, Angelov D, Petosa C, Dimitrov S. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1. Mol Cell 2017; 66:384-397.e8. [PMID: 28475873 DOI: 10.1016/j.molcel.2017.04.012] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/08/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
Linker histones associate with nucleosomes to promote the formation of higher-order chromatin structure, but the underlying molecular details are unclear. We investigated the structure of a 197 bp nucleosome bearing symmetric 25 bp linker DNA arms in complex with vertebrate linker histone H1. We determined electron cryo-microscopy (cryo-EM) and crystal structures of unbound and H1-bound nucleosomes and validated these structures by site-directed protein cross-linking and hydroxyl radical footprinting experiments. Histone H1 shifts the conformational landscape of the nucleosome by drawing the two linkers together and reducing their flexibility. The H1 C-terminal domain (CTD) localizes primarily to a single linker, while the H1 globular domain contacts the nucleosome dyad and both linkers, associating more closely with the CTD-distal linker. These findings reveal that H1 imparts a strong degree of asymmetry to the nucleosome, which is likely to influence the assembly and architecture of higher-order structures.
Collapse
Affiliation(s)
- Jan Bednar
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Isabel Garcia-Saez
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Ramachandran Boopathi
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Amber R Cutter
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | - Gabor Papai
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Anna Reymer
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - Sajad H Syed
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Imtiaz Nisar Lone
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Ognyan Tonchev
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Hervé Menoni
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Christophe Papin
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Dimitrios A Skoufias
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Richard Lavery
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France.
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA.
| | - Patrick Schultz
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France.
| | - Dimitar Angelov
- Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France.
| | - Stefan Dimitrov
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
16
|
Perišić O, Schlick T. Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment. J Phys Chem B 2017; 121:7823-7832. [PMID: 28732449 DOI: 10.1021/acs.jpcb.7b04917] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The linker histone (LH), an auxiliary protein that can bind to chromatin and interact with the linker DNA to form stem motifs, is a key element of chromatin compaction. By affecting the chromatin condensation level, it also plays an active role in gene expression. However, the presence and variable concentration of LH in chromatin fibers with different DNA linker lengths indicate that its folding and condensation are highly adaptable and dependent on the immediate nucleosome environment. Recent experimental studies revealed that the behavior of LH in mononucleosomes markedly differs from that in small nucleosome arrays, but the associated mechanism is unknown. Here we report a structural analysis of the behavior of LH in mononucleosomes and oligonucleosomes (2-6 nucleosomes) using mesoscale chromatin simulations. We show that the adapted stem configuration heavily depends on the strength of electrostatic interactions between LH and its parental DNA linkers, and that those interactions tend to be asymmetric in small oligonucleosome systems. Namely, LH in oligonucleosomes dominantly interacts with one DNA linker only, as opposed to mononucleosomes where LH has similar interactions with both linkers and forms a highly stable nucleosome stem. Although we show that the LH condensation depends sensitively on the electrostatic interactions with entering and exiting DNA linkers, other interactions, especially by nonparental cores and nonparental linkers, modulate the structural condensation by softening LH and thus making oligonucleosomes more flexible, in comparison to to mono- and dinucleosomes. We also find that the overall LH/chromatin interactions sensitively depend on the linker length because the linker length determines the maximal nucleosome stem length. For mononucleosomes with DNA linkers shorter than LH, LH condenses fully, while for DNA linkers comparable or longer than LH, the LH extension in mononucleosomes strongly follows the length of DNA linkers, unhampered by neighboring linker histones. Thus, LH is more condensed for mononucleosomes with short linkers, compared to oligonucleosomes, and its orientation is variable and highly environment-dependent. More generally, the work underscores the agility of LH whose folding dynamics critically controls genomic packaging and gene expression.
Collapse
Affiliation(s)
- Ognjen Perišić
- Big Blue Genomics , Vojvode Brane 32, 11000 Belgrade, Serbia
| | - Tamar Schlick
- Department of Chemistry, New York University , 1001 Silver, 100 Washington Square East, New York, New York 10003, United States.,Courant Institute of Mathematical Sciences, New York University , 251 Mercer Street, New York, New York 10012, United States
| |
Collapse
|
17
|
Ye X, Feng C, Gao T, Mu G, Zhu W, Yang Y. Linker Histone in Diseases. Int J Biol Sci 2017; 13:1008-1018. [PMID: 28924382 PMCID: PMC5599906 DOI: 10.7150/ijbs.19891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/30/2017] [Indexed: 01/21/2023] Open
Abstract
The linker histone is a protein that binds with the nucleosome, which is generally considered to achieve chromatin condensation in the nucleus. Accumulating evidences suggest that the linker histone is essential in the pathogenesis of several diseases. In this review, we briefly introduce the current knowledge of the linker histone, including its structure, characteristics and functions. Also, we move forward to present the advances of the linker histone's association with certain diseases, such as cancer, Alzheimer's disease, infection, male infertility and aberrant immunity situations, focusing on the alteration of the linker histone under certain pathological conditions and its role in developing each disease.
Collapse
Affiliation(s)
- Xin Ye
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - ChuanLin Feng
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Tian Gao
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Guanqun Mu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Weiguo Zhu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Yang Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
18
|
Cutter AR, Hayes JJ. Linker histones: novel insights into structure-specific recognition of the nucleosome. Biochem Cell Biol 2016; 95:171-178. [PMID: 28177778 DOI: 10.1139/bcb-2016-0097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linker histones (H1s) are a primary component of metazoan chromatin, fulfilling numerous functions, both in vitro and in vivo, including stabilizing the wrapping of DNA around the nucleosome, promoting folding and assembly of higher order chromatin structures, influencing nucleosome spacing on DNA, and regulating specific gene expression. However, many molecular details of how H1 binds to nucleosomes and recognizes unique structural features on the nucleosome surface remain undefined. Numerous, confounding studies are complicated not only by experimental limitations, but the use of different linker histone isoforms and nucleosome constructions. This review summarizes the decades of research that has resulted in several models of H1 association with nucleosomes, with a focus on recent advances that suggest multiple modes of H1 interaction in chromatin, while highlighting the remaining questions.
Collapse
Affiliation(s)
- Amber R Cutter
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeffrey J Hayes
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
19
|
A quantitative investigation of linker histone interactions with nucleosomes and chromatin. Sci Rep 2016; 6:19122. [PMID: 26750377 PMCID: PMC4707517 DOI: 10.1038/srep19122] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Linker histones such as H1 are abundant basic proteins that bind tightly to nucleosomes, thereby acting as key organizers of chromatin structure. The molecular details of linker histone interactions with the nucleosome, and in particular the contributions of linker DNA and of the basic C-terminal tail of H1, are controversial. Here we combine rigorous solution-state binding assays with native gel electrophoresis and Atomic Force Microscopy, to quantify the interaction of H1 with chromatin. We find that H1 binds nucleosomes and nucleosomal arrays with very tight affinity by recognizing a specific DNA geometry minimally consisting of a solitary nucleosome with a single ~18 base pair DNA linker arm. The association of H1 alters the conformation of trinucleosomes so that only one H1 can bind to the two available linker DNA regions. Neither incorporation of the histone variant H2A.Z, nor the presence of neighboring nucleosomes affects H1 affinity. Our data provide a comprehensive thermodynamic framework for this ubiquitous chromatin architectural protein.
Collapse
|
20
|
Bednar J, Hamiche A, Dimitrov S. H1-nucleosome interactions and their functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:436-43. [PMID: 26477489 DOI: 10.1016/j.bbagrm.2015.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 01/13/2023]
Abstract
Linker histones are three domain proteins and consist of a structured (globular) domain, flanked by two likely non-structured NH2- and COOH-termini. The binding of the linker histones to the nucleosome was characterized by different methods in solution. Apparently, the globular domain interacts with the linker DNA and the nucleosome dyad, while the binding of the large and rich in lysines COOH-terminus results in "closing" the linker DNA of the nucleosome and the formation of the "stem" structure. What is the mode of binding of the linker histones within the chromatin fiber remains still elusive. Nonetheless, it is clear that linker histones are essential for both the assembly and maintenance of the condensed chromatin fiber. Interestingly, linker histones are post-translationally modified and how this affects both their binding to chromatin and functions is now beginning to emerge. In addition, linker histones are highly mobile in vivo, but not in vitro. No explanation of this finding is reported for the moment. The higher mobility of the linker histones should, however, have strong impact on their function. Linker histones plays an important role in gene expression regulation and other chromatin related process and their function is predominantly regulated by their posttranslational modifications. However, the detailed mechanism how the linker histones do function remains still not well understood despite numerous efforts. Here we will summarize and analyze the data on the linker histone binding to the nucleosome and the chromatin fiber and will discuss its functional consequences.
Collapse
Affiliation(s)
- Jan Bednar
- Université de Grenoble Alpes/CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, 140 rue de la Physique, B.P. 87, St. Martin d'Heres, F-38402, France.
| | - Ali Hamiche
- Equipe labellisée Ligue contre le Cancer, Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UDS, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Stefan Dimitrov
- INSERM/UJF, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, France
| |
Collapse
|
21
|
Crane-Robinson C. Linker histones: History and current perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:431-5. [PMID: 26459501 DOI: 10.1016/j.bbagrm.2015.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022]
Abstract
Although the overall structure of the fifth histone (linker histone, H1) is understood, its location on the nucleosome is only partially defined. Whilst it is clear that H1 helps condense the chromatin fibre, precisely how this is achieved remains to be determined. H1 is not a general gene repressor in that although it must be displaced from transcription start sites for activity to occur, there is only partial loss along the body of genes. How the deposition and removal of H1 occurs in particular need of further study. Linker histones are highly abundant nuclear proteins about which we know too little.
Collapse
Affiliation(s)
- C Crane-Robinson
- Biophysics Laboratories, School of Biology, University of Portsmouth, PO1 2DT, UK
| |
Collapse
|
22
|
Charton R, Guintini L, Peyresaubes F, Conconi A. Repair of UV induced DNA lesions in ribosomal gene chromatin and the role of "Odd" RNA polymerases (I and III). DNA Repair (Amst) 2015; 36:49-58. [PMID: 26411875 DOI: 10.1016/j.dnarep.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In fast growing eukaryotic cells, a subset of rRNA genes are transcribed at very high rates by RNA polymerase I (RNAPI). Nuclease digestion-assays and psoralen crosslinking have shown that they are open; that is, largely devoid of nucleosomes. In the yeast Saccharomyces cerevisae, nucleotide excision repair (NER) and photolyase remove UV photoproducts faster from open rRNA genes than from closed and nucleosome-loaded inactive rRNA genes. After UV irradiation, rRNA transcription declines because RNAPI halt at UV photoproducts and are then displaced from the transcribed strand. When the DNA lesion is quickly recognized by NER, it is the sub-pathway transcription-coupled TC-NER that removes the UV photoproduct. If dislodged RNAPI are replaced by nucleosomes before NER recognizes the lesion, then it is the sub-pathway global genome GG-NER that removes the UV photoproducts from the transcribed strand. Also, GG-NER maneuvers in the non-transcribed strand of open genes and in both strands of closed rRNA genes. After repair, transcription resumes and elongating RNAPI reopen the rRNA gene. In higher eukaryotes, NER in rRNA genes is inefficient and there is no evidence for TC-NER. Moreover, TC-NER does not occur in RNA polymerase III transcribed genes of both, yeast and human fibroblast.
Collapse
Affiliation(s)
- Romain Charton
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Laetitia Guintini
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Peyresaubes
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Antonio Conconi
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
23
|
Abstract
Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures.
Collapse
|
24
|
Cutter AR, Hayes JJ. A brief review of nucleosome structure. FEBS Lett 2015; 589:2914-22. [PMID: 25980611 DOI: 10.1016/j.febslet.2015.05.016] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 12/23/2022]
Abstract
The nucleosomal subunit organization of chromatin provides a multitude of functions. Nucleosomes elicit an initial ∼7-fold linear compaction of genomic DNA. They provide a critical mechanism for stable repression of genes and other DNA-dependent activities by restricting binding of trans-acting factors to cognate DNA sequences. Conversely they are engineered to be nearly meta-stable and disassembled (and reassembled) in a facile manner to allow rapid access to the underlying DNA during processes such as transcription, replication and DNA repair. Nucleosomes protect the genome from DNA damaging agents and provide a lattice onto which a myriad of epigenetic signals are deposited. Moreover, vast strings of nucleosomes provide a framework for assembly of the chromatin fiber and higher-order chromatin structures. Thus, in order to provide a foundation for understanding these functions, we present a review of the basic elements of nucleosome structure and stability, including the association of linker histones.
Collapse
Affiliation(s)
- Amber R Cutter
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Jeffrey J Hayes
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, United States.
| |
Collapse
|
25
|
Li G, Zhu P. Structure and organization of chromatin fiber in the nucleus. FEBS Lett 2015; 589:2893-904. [PMID: 25913782 DOI: 10.1016/j.febslet.2015.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022]
Abstract
Eukaryotic genomes are organized hierarchically into chromatin structures by histones. Despite extensive research for over 30 years, not only the fundamental structure of the 30-nm chromatin fiber is being debated, but the actual existence of such fiber remains hotly contested. In this review, we focus on the most recent progress in elucidating the structure of the 30-nm fiber upon in vitro reconstitution, and its possible organization inside the nucleus. In addition, we discuss the roles of linker histone H1 as well as the importance of specific nucleosome-nucleosome interactions in the formation of the 30-nm fiber. Finally, we discuss the involvement of structural variations and epigenetic mechanisms available for the regulation of this chromatin form.
Collapse
Affiliation(s)
- Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
26
|
Structural insights into the histone H1-nucleosome complex. Proc Natl Acad Sci U S A 2013; 110:19390-5. [PMID: 24218562 DOI: 10.1073/pnas.1314905110] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Linker H1 histones facilitate formation of higher-order chromatin structures and play important roles in various cell functions. Despite several decades of effort, the structural basis of how H1 interacts with the nucleosome remains elusive. Here, we investigated Drosophila H1 in complex with the nucleosome, using solution nuclear magnetic resonance spectroscopy and other biophysical methods. We found that the globular domain of H1 bridges the nucleosome core and one 10-base pair linker DNA asymmetrically, with its α3 helix facing the nucleosomal DNA near the dyad axis. Two short regions in the C-terminal tail of H1 and the C-terminal tail of one of the two H2A histones are also involved in the formation of the H1-nucleosome complex. Our results lead to a residue-specific structural model for the globular domain of the Drosophila H1 in complex with the nucleosome, which is different from all previous experiment-based models and has implications for chromatin dynamics in vivo.
Collapse
|
27
|
Franklin S, Chen H, Mitchell-Jordan S, Ren S, Wang Y, Vondriska TM. Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth. Mol Cell Proteomics 2012; 11:M111.014258. [PMID: 22270000 DOI: 10.1074/mcp.m111.014258] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A fundamental question in biology is how genome-wide changes in gene expression are enacted in response to a finite stimulus. Recent studies have mapped changes in nucleosome localization, determined the binding preferences for individual transcription factors, and shown that the genome adopts a nonrandom structure in vivo. What remains unclear is how global changes in the proteins bound to DNA alter chromatin structure and gene expression. We have addressed this question in the mouse heart, a system in which global gene expression and massive phenotypic changes occur without cardiac cell division, making the mechanisms of chromatin remodeling centrally important. To determine factors controlling genomic plasticity, we used mass spectrometry to measure chromatin-associated proteins. We have characterized the abundance of 305 chromatin-associated proteins in normal cells and measured changes in 108 proteins that accompany the progression of heart disease. These studies were conducted on a high mass accuracy instrument and confirmed in multiple biological replicates, facilitating statistical analysis and allowing us to interrogate the data bioinformatically for modules of proteins involved in similar processes. Our studies reveal general principles for global shifts in chromatin accessibility: altered linker to core histone ratio; differing abundance of chromatin structural proteins; and reprogrammed histone post-translational modifications. Using small interfering RNA-mediated loss-of-function in isolated cells, we demonstrate that the non-histone chromatin structural protein HMGB2 (but not HMGB1) suppresses pathologic cell growth in vivo and controls a gene expression program responsible for hypertrophic cell growth. Our findings reveal the basis for alterations in chromatin structure necessary for genome-wide changes in gene expression. These studies have fundamental implications for understanding how global chromatin remodeling occurs with specificity and accuracy, demonstrating that isoform-specific alterations in chromatin structural proteins can impart these features.
Collapse
Affiliation(s)
- Sarah Franklin
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Dynamic Fuzziness During Linker Histone Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:15-26. [DOI: 10.1007/978-1-4614-0659-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Prusov AN, Smirnova TA, Kurochkina LP, Kolomijtseva GY. Influence of distamycin, chromomycin, and UV-irradiation on extraction of histone H1 from rat liver nuclei by polyglutamic acid. BIOCHEMISTRY (MOSCOW) 2011; 75:1331-41. [PMID: 21314600 DOI: 10.1134/s0006297910110040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rat liver nucleus histone H1 was fractionated by polyglutamic acid (PG) in the presence of distamycin A (DM) or chromomycin A(3) (CM). In the absence of the antibiotics, PG extracts from the nuclei about half of the nuclear H1. DM or CM added to the nuclei in saturating concentrations weakens the binding potential of most of H1. Titration of nuclei with DM shows that the number of binding sites for DM in the nuclei is less than in isolated DNA by only 20-25%, and this difference disappears after treatment of nuclei with PG. The lower CD value of DM complexes with nuclei compared to that of DM complexes with free DNA is evidence of a change in the DM-DNA binding mode in nuclear chromatin. About 25% of total histone H1 is sensitive only to DM and ~5% is sensitive only to CM. Half of the DM-sensitive H1 fraction seems to have a different binding mode in condensed compared relaxed chromatin. A small part of H1 (~3%) remains tightly bound to the nuclear chromatin independent of the presence of the antibiotics. Subfraction H1A is more DM-sensitive and H1B is more CM-sensitive. UV irradiation of nuclei results in dose-dependent cross-linking of up to 50% of total H1, which is neither acid-extractable nor recovered during SDS electrophoresis. PG with DM extracts only about 3% of H1 from UV-stabilized chromatin. DM treatment of the nuclei before UV irradiation results in extraction of the whole DM-sensitive H1 fraction (~25%), which in this case is not stabilized in the nucleus. A hypothesis on possible roles of the found H1 fractions in chromatin structural organization is discussed.
Collapse
Affiliation(s)
- A N Prusov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | | | | | | |
Collapse
|
30
|
Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proc Natl Acad Sci U S A 2010; 107:9620-5. [PMID: 20457934 DOI: 10.1073/pnas.1000309107] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the key role of the linker histone H1 in chromatin structure and dynamics, its location and interactions with nucleosomal DNA have not been elucidated. In this work we have used a combination of electron cryomicroscopy, hydroxyl radical footprinting, and nanoscale modeling to analyze the structure of precisely positioned mono-, di-, and trinucleosomes containing physiologically assembled full-length histone H1 or truncated mutants of this protein. Single-base resolution *OH footprinting shows that the globular domain of histone H1 (GH1) interacts with the DNA minor groove located at the center of the nucleosome and contacts a 10-bp region of DNA localized symmetrically with respect to the nucleosomal dyad. In addition, GH1 interacts with and organizes about one helical turn of DNA in each linker region of the nucleosome. We also find that a seven amino acid residue region (121-127) in the COOH terminus of histone H1 was required for the formation of the stem structure of the linker DNA. A molecular model on the basis of these data and coarse-grain DNA mechanics provides novel insights on how the different domains of H1 interact with the nucleosome and predicts a specific H1-mediated stem structure within linker DNA.
Collapse
|
31
|
Ninios YP, Sekeri-Pataryas KE, Sourlingas TG. Histone H1 subtype preferences of DFF40 and possible nuclear localization of DFF40/45 in normal and trichostatin A-treated NB4 leukemic cells. Apoptosis 2010; 15:128-38. [PMID: 19882353 DOI: 10.1007/s10495-009-0418-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A major hallmark of the terminal stages of apoptosis is the internucleosomal DNA fragmentation. The endonuclease responsible for this type of DNA degradation is the DNA fragmentation factor (DFF). DFF is a complex of the endonuclease DFF40 and its chaperone/inhibitor, DFF45. In vitro work has shown that histone H1 and HMGB1/2 recruit/target DFF40 to the internucleosomal linker regions of chromatin and that histone H1 directly interacts with DFF40 conferring DNA binding ability and enhancing its nuclease activity. The histone H1 family is comprised of many subtypes, which recent work has shown may have distinct roles in chromatin function. Thus we studied the binding association of DFF40 with specific H1 subtypes and whether these binding associations are altered after the induction of apoptosis in an in vivo cellular context. The apoptotic agent used in this study is the histone deacetylase inhibitor, trichostatin A (TSA). We separated the insoluble chromatin-enriched fraction from the soluble nuclear fraction of the NB4 leukemic cell line. Using MNase digestion, we provide evidence which strongly suggests that the heterodimer, DFF40-DFF45, is localized to the chromatin fraction under apoptotic as well as non-apoptotic conditions. Moreover, we present results that show that DFF40 interacts with the all H1 subtypes used in this study, but preferentially interacts with specific H1 subtypes after the induction of apoptosis by TSA. These results illustrate for the first time the association of DFF40 with individual H1 subtypes, under a specific apoptotic stimulus in an in vivo cellular context.
Collapse
Affiliation(s)
- Yiannis P Ninios
- Institute of Biology, National Centre for Scientific Research Demokritos, 153 10 Aghia Paraskevi, Attikis, Greece
| | | | | |
Collapse
|
32
|
Naryshkin N, Druzhinin S, Revyakin A, Kim Y, Mekler V, Ebright RH. Static and kinetic site-specific protein-DNA photocrosslinking: analysis of bacterial transcription initiation complexes. Methods Mol Biol 2009; 543:403-437. [PMID: 19378179 PMCID: PMC2733221 DOI: 10.1007/978-1-60327-015-1_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking - involving rapid-quench-flow mixing and pulsed-laser irradiation - permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard H. Ebright
- To whom correspondence should be addressed [mailing address: HHMI, Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway NJ 08854; telephone: (732) 445-5179; telefax: (732) 445-5735; ]
| |
Collapse
|
33
|
Happel N, Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 2008; 431:1-12. [PMID: 19059319 DOI: 10.1016/j.gene.2008.11.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/31/2008] [Accepted: 11/02/2008] [Indexed: 01/21/2023]
Abstract
The lysine-rich H1 histone family in mammals includes eleven different subtypes, and thus it is the most divergent class of histone proteins. The central globular H1 domain asymmetrically interacts with DNA at the exit or entry end of the nucleosomal core DNA, and the C-terminal domain has a major impact on the linker DNA conformation and chromatin condensation. H1 histones are thus involved in the formation of higher order chromatin structures, and they modulate the accessibility of regulatory proteins, chromatin remodeling factors and histone modification enzymes to their target sites. The major posttranslational modification of H1 histones is phosphorylation, which reaches a peak during G2 and mitosis. Phosphorylation is, however, also involved in the control of DNA replication and it contributes to the regulation of gene expression. Disruption of linker histone genes, initially performed in order to delineate subtype-specific functions, revealed that disruption of one or two H1 subtype genes is quantitatively compensated by an increased expression of other subtypes. This suggests a functional redundancy among H1 subtypes. However, the inactivation of three subtypes and the reduction of the H1 moiety in half finally resulted in a phenotypic effect. On the other hand, studies on the role of particular subtypes at specific developmental stages in lower eukaryotes, but also in vertebrates suggest that specific subtypes of H1 participate in particular systems of gene regulation.
Collapse
Affiliation(s)
- Nicole Happel
- Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | |
Collapse
|
34
|
Abstract
DNA is packed as chromatin on several levels in the eukaryotic nucleus. Dissection of chromatin with nucleases produces three stable substructures: the nucleosome core particle, the chromatosome and the 30 nm fibre. Whilst the first two allow transcription, the 30 nm fibre is taken to be the first level of transcriptionally dormant chromatin and it has an important functional role in cell differentiation and epigenetic regulation. Its structure has been a subject of continuing discussion since native fibres cannot readily be crystallized. This problem has recently been addressed by reconstitution of fibres on repeats of DNA sequences having nucleosome-positioning properties and two different structures were reported. The reconstitution results and their interpretations are compared in this review with experimental data from native chromatin and it is shown that the results of Robinson et al. conform well with the known structural features of native fibres and are a good first step towards understanding the structure of the fibre.
Collapse
Affiliation(s)
- Dontcho Z Staynov
- Imperial College London, National Heart and Lung Institute, Royal Brompton Campus, Guy Scadding Building, Dovehouse St, London SW36LY.
| |
Collapse
|
35
|
Staynov D. DNase I footprinting of the nucleosome in whole nuclei. Biochem Biophys Res Commun 2008; 372:226-9. [DOI: 10.1016/j.bbrc.2008.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/04/2008] [Indexed: 11/27/2022]
|
36
|
Happel N, Doenecke D, Sekeri-Pataryas KE, Sourlingas TG. H1 histone subtype constitution and phosphorylation state of the ageing cell system of human peripheral blood lymphocytes. Exp Gerontol 2008; 43:184-99. [DOI: 10.1016/j.exger.2007.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 11/13/2007] [Accepted: 11/27/2007] [Indexed: 11/15/2022]
|
37
|
Villar-Garea A, Imhof A. Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster. PLoS One 2008; 3:e1553. [PMID: 18253500 PMCID: PMC2212714 DOI: 10.1371/journal.pone.0001553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Accepted: 01/10/2008] [Indexed: 11/18/2022] Open
Abstract
The linker histone H1 binds to the DNA in between adjacent nucleosomes and contributes to chromatin organization and transcriptional control. It is known that H1 carries diverse posttranslational modifications (PTMs), including phosphorylation, lysine methylation and ADP-ribosylation. Their biological functions, however, remain largely unclear. This is in part due to the fact that most of the studies have been performed in organisms that have several H1 variants, which complicates the analyses. We have chosen Drosophila melanogaster, a model organism, which has a single H1 variant, to approach the study of the role of H1 PTMs during embryonic development. Mass spectrometry mapping of the entire sequence of the protein showed phosphorylation only in the ten N-terminal amino acids, mostly at S10. For the first time, changes in the PTMs of a linker H1 during the development of a multicellular organism are reported. The abundance of H1 monophosphorylated at S10 decreases as the embryos age, which suggests that this PTM is related to cell cycle progression and/or cell differentiation. Additionally, we have found a polymorphism in the protein sequence that can be mistaken with lysine methylation if the analysis is not rigorous.
Collapse
Affiliation(s)
- Ana Villar-Garea
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Axel Imhof
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
- *E-mail:
| |
Collapse
|
38
|
Yang Z, Zheng C, Hayes JJ. The Core Histone Tail Domains Contribute to Sequence-dependent Nucleosome Positioning. J Biol Chem 2007; 282:7930-8. [PMID: 17234628 DOI: 10.1074/jbc.m610584200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The precise positioning of nucleosomes plays a critical role in the regulation of gene expression by modulating the DNA binding activity of trans-acting factors. However, molecular determinants responsible for positioning are not well understood. We examined whether the removal of the core histone tail domains from nucleosomes reconstituted with specific DNA fragments led to alteration of translational positions. Remarkably, we find that removal of tail domains from a nucleosome assembled on a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene results in repositioning of nucleosomes along the DNA, including two related major translational positions that move about 20 bp further upstream with respect to the 5S gene. In a nucleosome reconstituted with a DNA fragment containing the promoter of a Drosophila alcohol dehydrogenase gene, several translational positions shifted by about 10 bp along the DNA upon tail removal. However, the positions of nucleosomes assembled with a DNA fragment known to have one of the highest binding affinities for core histone proteins in the mouse genome were not altered by removal of core histone tail domains. Our data support the notion that the basic tail domains bind to nucleosomal DNA and influence the selection of the translational position of nucleosomes and that once tails are removed movement between translational positions occurs in a facile manner on some sequences. However, the effect of the N-terminal tails on the positioning and movement of a nucleosome appears to be dependent on the DNA sequence such that the contribution of the tails can be masked by very high affinity DNA sequences. Our results suggest a mechanism whereby sequence-dependent nucleosome positioning can be specifically altered by regulated changes in histone tail-DNA interactions in chromatin.
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
39
|
Goebel W, Obermeyer N, Bleicher N, Kratzmeier M, Eibl HJ, Doenecke D, Albig W. Apoptotic DNA fragmentation is not related to the phosphorylation state of histone H1. Biol Chem 2007; 388:197-206. [PMID: 17261083 DOI: 10.1515/bc.2007.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Changes in chromatin structure, histone phosphorylation and cleavage of DNA into nucleosome-size fragments are characteristic features of apoptosis. Since H1 histones bind to the site of DNA cleavage between nucleosomal cores, the question arises as to whether the state of H1 phosphorylation influences the rate of internucleosomal cleavage. Here, we tested the relation between DNA fragmentation and H1 phosphorylation both in cultured cells and in vitro. In Jurkat cells, hyperosmotic mannitol concentration resulted in apoptosis, including nucleosomal fragmentation, whereas apoptosis induction by increased NaCl concentration was not accompanied by DNA fragmentation. However, both treatments induced dephosphorylation of H1 histones. In contrast, treatment of Raji cells with alkylphosphocholine led to induction of apoptosis with internucleosomal fragmentation, albeit without notable histone H1 dephosphorylation. These results demonstrate that dephosphorylation of H1 histones is neither a prerequisite for nor a consequence of internucleosomal cleavage. Moreover, we observed with an in vitro assay that the known enhancing effect of H1 histones on the activity of the apoptosis-induced endonuclease DFF40 is independent of the subtype or the phosphorylation state of the linker histone.
Collapse
Affiliation(s)
- Wiebke Goebel
- Institute for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Wisniewski JR, Zougman A, Krüger S, Mann M. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol Cell Proteomics 2006; 6:72-87. [PMID: 17043054 DOI: 10.1074/mcp.m600255-mcp200] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Posttranslational modifications of histones are involved in regulation of chromatin structure and gene activity. Whereas the modifications of the core histones H2A, H2B, H3, and H4 have been extensively studied, our knowledge of H1 modifications remained mainly limited to its phosphorylation. Here we analyzed the composition of histone H1 variants and their modifications in two human cell lines and nine mouse tissues. Use of a hybrid linear ion trap-orbitrap mass spectrometer facilitated assignment of modifications by high resolution and low ppm mass accuracy for both the precursor and product mass spectra. Across different tissues we identified a range of phosphorylation, acetylation, and methylation sites. We also mapped sites of ubiquitination and report identification of formylated lysine residues. Interestingly many of the mapped modifications are located within the globular domain of the histones at sites that are thought to be involved in binding to nucleosomal DNA. Investigation of mouse tissue in addition to cell lines uncovered a number of interesting differences. For example, whereas methylation sites are frequent in tissues, this type of modification was much less abundant in cultured cells and escaped detection. Our study significantly extends the known spectrum of linker histone variability.
Collapse
Affiliation(s)
- Jacek R Wisniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
41
|
Sheng S, Czajkowsky DM, Shao Z. Localization of linker histone in chromatosomes by cryo-atomic force microscopy. Biophys J 2006; 91:L35-7. [PMID: 16782797 PMCID: PMC1518653 DOI: 10.1529/biophysj.106.090423] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Linker histones play a fundamental role in determining higher order chromatin structure as a consequence of their association with nucelosomal DNA. Yet the locations and structural consequences of linker histone binding are still enigmatic. Here, using cryo-atomic force microscopy, we show that the linker histone H5 in native chromatin and in chromatosomes reconstituted on the 5S rDNA template is located at the dyad of the nucleosome core particle, within the "stem" structure. Direct measurement also indicates that the length of free linker DNA between chromatosomes in native chromatin is approximately 30 bp, slightly shorter than that estimated from nuclease digestion assays.
Collapse
Affiliation(s)
- Sitong Sheng
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
42
|
Woodcock CL, Skoultchi AI, Fan Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 2006; 14:17-25. [PMID: 16506093 DOI: 10.1007/s10577-005-1024-3] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite a great deal of attention over many years, the structural and functional roles of the linker histone H1 remain enigmatic. The earlier concepts of H1 as a general transcriptional inhibitor have had to be reconsidered in the light of experiments demonstrating a minor effect of H1 deletion in unicellular organisms. More recent work analysing the results of depleting H1 in mammals through genetic knockouts of selected H1 subtypes in the mouse has shown that cells and tissues can tolerate a surprisingly low H1 content. One common feature of H1-depleted nuclei is a reduction in nucleosome repeat length (NRL). Moreover, there is a robust linear relationship between H1 stoichiometry and NRL, suggesting an inherent homeostatic mechanism that maintains intranuclear electrostatic balance. It is also clear that the 1 H1 per nucleosome paradigm for higher eukaryotes is the exception rather than the rule. This, together with the high mobility of H1 within the nucleus, prompts a reappraisal of the role of linker histone as an obligatory chromatin architectural protein.
Collapse
Affiliation(s)
- Christopher L Woodcock
- Biology Department and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, 01003, USA.
| | | | | |
Collapse
|
43
|
Sadakane Y, Hatanaka Y. Photochemical Fishing Approaches for Identifying Target Proteins and Elucidating the Structure of a Ligand-binding Region Using Carbene-generating Photoreactive Probes. ANAL SCI 2006; 22:209-18. [PMID: 16512410 DOI: 10.2116/analsci.22.209] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Photoaffinity labeling enables the direct probing of a target protein through a covalent bond between a ligand and its binding protein, and even a complex formed by weak interactions can be isolated by the method. The photochemical fishing approach accelerates the throughput, isolating crosslinked complexes and analyzing the structure of the ligand binding site within the protein. We used carbene-generating phenyldiazirine for this approach because practical examinations had shown that the phenyldiazirine functioned as the powerful barb on the hook. Improving the synthetic pathways of the photoprobes and using chemoselective-integrated photoreactive units makes possible the easy and rapid preparation of carbene-generating photoreactive probes including the derivatives in peptides, proteins, DNAs, and carbohydrates. This review also shows several recent impacts of photoaffinity labeling, including the in vivo preparation of photoreactive proteins in living cells.
Collapse
Affiliation(s)
- Yutaka Sadakane
- Faculty of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka 882-8508, Japan.
| | | |
Collapse
|
44
|
Affiliation(s)
- Lisa Cirillo
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
45
|
Bianchi ME. Significant (re)location: how to use chromatin and/or abundant proteins as messages of life and death. Trends Cell Biol 2004; 14:287-93. [PMID: 15183185 DOI: 10.1016/j.tcb.2004.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Marco E Bianchi
- San Raffaele University, via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
46
|
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, Biochemistry/Biophysics, Washington State University, Pullman, Washington 99164-4660, USA
| |
Collapse
|
47
|
Vitolo JM, Yang Z, Basavappa R, Hayes JJ. Structural features of transcription factor IIIA bound to a nucleosome in solution. Mol Cell Biol 2004; 24:697-707. [PMID: 14701742 PMCID: PMC343799 DOI: 10.1128/mcb.24.2.697-707.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Assembly of a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene into a nucleosome greatly restricts binding of the 5S gene-specific transcription factor IIIA (TFIIIA) to the 5S internal promoter. However, TFIIIA binds with high affinity to 5S nucleosomes lacking the N-terminal tail domains of the core histones or to nucleosomes in which these domains are hyperacetylated. The degree to which tail acetylation or removal improves TFIIIA binding cannot be simply explained by a commensurate change in the general accessibility of nucleosomal DNA. In order to investigate the molecular basis of how TFIIIA binds to the nucleosome and to ascertain if binding involves all nine zinc fingers and/or displacement of histone-DNA interactions, we examined the TFIIIA-nucleosome complex by hydroxyl radical footprinting and site-directed protein-DNA cross-linking. Our data reveal that the first six fingers of TFIIIA bind and displace approximately 20 bp of histone-DNA interactions at the periphery of the nucleosome, while binding of fingers 7 to 9 appears to overlap with histone-DNA interactions. Molecular modeling based on these results and the crystal structures of a nucleosome core and a TFIIIA-DNA cocomplex yields a precise picture of the ternary complex and a potentially important intermediate in the transition from naïve chromatin structure to productive polymerase III transcription complex.
Collapse
Affiliation(s)
- Joseph M Vitolo
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14625, USA
| | | | | | | |
Collapse
|
48
|
The role of HMGN proteins in chromatin function. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
The linker histones. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Iguchi N, Tanaka H, Yomogida K, Nishimune Y. Isolation and characterization of a novel cDNA encoding a DNA-binding protein (Hils1) specifically expressed in testicular haploid germ cells. ACTA ACUST UNITED AC 2003; 26:354-65. [PMID: 14636221 DOI: 10.1046/j.0105-6263.2003.00449.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA encoding a protein homologous with histone H1 has been cloned from a haploid germ cell specific cDNA library. Deduced amino acid sequence (170 amino acids) showed 40% identity with histone H1 globular domain. Messenger RNA of the gene was observed exclusively in the testis, and was accumulated after post-natal day 23. Western blotting analysis showed that the protein encoded by this gene is about 19 kDa in molecular weight, and it was exclusively recovered from the nuclei of testicular germ cells. Immunohistochemical analysis showed that the protein was localized to the nuclei of round and elongating spermatids, consistent with the results of immunoblot analysis. Thus, the gene product was named Hils1 (histone H1 like protein in spermatids 1). In vitro DNA-binding experiments using DNA-cellulose mini-columns showed that Hils1 was able to bind to both double and single stranded-DNAs in a non-sequence-specific manner. These findings suggest that Hils1 may play an important role in the structural changes of spermatid nuclei, such as nuclear condensation, and gene regulation of haploid germ cell differentiation.
Collapse
Affiliation(s)
- Naoko Iguchi
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | | | | | | |
Collapse
|