1
|
O'Connell ML, Cavallo WC, Firnberg M. The expression of CPEB proteins is sequentially regulated during zebrafish oogenesis and embryogenesis. Mol Reprod Dev 2014; 81:376-87. [DOI: 10.1002/mrd.22306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/25/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Marcia L. O'Connell
- The Department of Biology; The College of New Jersey; Ewing New Jersey 08628
| | - William C. Cavallo
- The Department of Biology; The College of New Jersey; Ewing New Jersey 08628
| | - Maytal Firnberg
- The Department of Biology; The College of New Jersey; Ewing New Jersey 08628
| |
Collapse
|
2
|
Development of aggressive phenotypes in zebrafish: interactions of age, experience and social status. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Carvan MJ, Incardona JP, Rise ML. Meeting the Challenges of Aquatic Vertebrate Ecotoxicology. Bioscience 2008. [DOI: 10.1641/b581105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
4
|
Cheng CHC, Detrich HW. Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc Lond B Biol Sci 2008; 362:2215-32. [PMID: 17553777 PMCID: PMC2443173 DOI: 10.1098/rstb.2006.1946] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The notothenioid fishes of the Southern Ocean surrounding Antarctica are remarkable examples of organismal adaptation to extreme cold. Their evolution since the mid-Miocene in geographical isolation and a chronically cold marine environment has resulted in extreme stenothermality of the extant species. Given the unique thermal history of the notothenioids, one may ask what traits have been gained, and conversely, what characters have been lost through change in the information content of their genomes. Two dramatic changes that epitomize such evolutionary transformations are the gain of novel antifreeze proteins, which are obligatory for survival in icy seawater, by most notothenioids and the paradoxical loss of respiratory haemoproteins and red blood cells, normally deemed indispensable for vertebrate life, by the species of a highly derived notothenioid family, the icefishes. Here, we review recent advances in our understanding of these traits and their evolution and suggest future avenues of investigation. The formerly coherent paradigm of notothenioid freeze avoidance, developed from three decades of study of antifreeze glycoprotein (AFGP) based cold adaptation, now faces challenges stemming from the recent discovery of antifreeze-deficient, yet freeze-resistant, early notothenioid life stages and from definitive evidence that the liver is not the physiological source of AFGPs in notothenioid blood. The resolution of these intriguing observations is likely to reveal new physiological traits that are unique to the notothenioids. Similarly, the model of AFGP gene evolution from a notothenioid pancreatic trypsinogen-like gene precursor is being expanded and refined based on genome-level analyses of the linked AFGP loci and their ancestral precursors. Finally, the application of comparative genomics to study evolutionary change in the AFGP genotypes of cool-temperate notothenioids from sub-Antarctic habitats, where these genes are not necessary, will contribute to the mechanistic understanding of the dynamics of AFGP gene gain and loss. In humans and most vertebrates, mutations in the alpha- or beta-globin genes or defects in globin chain synthesis are causes of severe genetic disease. Thus, the 16 species of haemoglobinless, erythrocyte-null icefishes are surprising anomalies -- in fact, they could only have evolved and thrived due to relaxed selection pressure for oxygen-binding proteins in the cold, oxygen-rich waters of the Southern Ocean. Fifteen of the sixteen icefish species have lost most of the adult alphabeta-globin locus and retain only a small 3' fragment of the alpha-globin gene. The only exception to this pattern occurs in Neopagetopsis ionah, which possesses a disrupted alphabeta-globin gene complex that probably represents a non-functional intermediate on the evolutionary pathway to near total globin gene extinction. By contrast, six of the icefish species fail to express myoglobin. The absence of myoglobin expression has occurred by several independent mutations and distinct mechanisms. Haemoprotein loss is correlated with dramatic increases in cellular mitochondrial density, heart size, blood volume and capillary bed volume. Evolution of these compensatory traits was probably facilitated by the homeostatic activity of nitric oxide, a key modulator of angiogenesis and mitochondrial biogenesis. These natural knockouts of the red blood cell lineage are an excellent genomic resource for erythroid gene discovery by comparative genomics, as illustrated for the newly described gene, bloodthirsty.
Collapse
Affiliation(s)
- C-H Christina Cheng
- Department of Animal Biology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
5
|
Blaser R, Gerlai R. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods 2007; 38:456-69. [PMID: 17186756 DOI: 10.3758/bf03192800] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The zebrafish has been popular in developmental biology and genetics, but its brain function has rarely been studied. High-throughput screening of mutation or drug-induced changes in brain function requires simple and automatable behavioral tests. This article compares three behavioral quantification methods in four simple behavioral paradigms that test a range of characteristics of adult zebrafish, including novelty-induced responses, social behavior, aggression, and predator-model-induced responses. Two quantification methods, manual recording and computerized videotracking of location and activity, yielded very similar results, suggesting that automated videotracking reliably measures activity parameters and will allow high-throughput screening. However, observation-based event recording of posture patterns was found generally not to correlate with videotracking measures, suggesting that further refinement of automated behavior quantification may be considered.
Collapse
Affiliation(s)
- Rachel Blaser
- University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | |
Collapse
|
6
|
Yang L, Zhang Y, Cui FZ. Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish. Biomed Mater 2007; 2:21-5. [DOI: 10.1088/1748-6041/2/1/004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Detrich HW, Yergeau DA. Comparative genomics in erythropoietic gene discovery: synergisms between the Antarctic icefishes and the zebrafish. Methods Cell Biol 2005; 77:475-503. [PMID: 15602928 DOI: 10.1016/s0091-679x(04)77026-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- H William Detrich
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
8
|
Stuckenholz C, Ulanch PE, Bahary N. From guts to brains: using zebrafish genetics to understand the innards of organogenesis. Curr Top Dev Biol 2004; 65:47-82. [PMID: 15642379 DOI: 10.1016/s0070-2153(04)65002-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Carsten Stuckenholz
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
9
|
Zhang Y, Cui FZ, Wang XM, Feng QL, Zhu XD. Mechanical properties of skeletal bone in gene-mutated stöpsel(dtl28d) and wild-type zebrafish (Danio rerio) measured by atomic force microscopy-based nanoindentation. Bone 2002; 30:541-6. [PMID: 11934643 DOI: 10.1016/s8756-3282(02)00676-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An atomic force microscopy (AFM)-based nanoindenter was used to evaluate the mechanical properties of skeletal bones in wild-type and gene-mutated zebrafish (Danio rerio), stöpsel(dtl28d). Both skeletons were isolated from adult zebrafish and tested under a load of 5 mN. It was found that stp/stp bone has a similar nanohardness but significantly greater elastic modulus compared with that of wild-type bone. The residual indenter impressions using AFM and the fracture surfaces of both bones using scanning electron microscopy were examined and showed that the bone of zebrafish becomes more brittle after the stp mutation. This first observation of the alteration of bone mechanical behavior by gene mutation in zebrafish system is of scientific and clinical relevance to many areas of study, such as bone fracture and fragility mechanisms in human heritable disorders and bone-materials fabrication via gene engineering.
Collapse
Affiliation(s)
- Y Zhang
- Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
10
|
Chen MC, Zhou Y, Detrich HW. Zebrafish mitotic kinesin-like protein 1 (Mklp1) functions in embryonic cytokinesis. Physiol Genomics 2002; 8:51-66. [PMID: 11842131 DOI: 10.1152/physiolgenomics.00042.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To understand the functions of microtubule motors in vertebrate development, we are investigating the kinesin-like proteins (KLPs) of the zebrafish, Danio rerio. Here we describe the structure, intracellular distribution, and function of zebrafish mitotic KLP1 (Mklp1). The zebrafish mklp1 gene that encodes this 867-amino acid protein maps to a region of zebrafish linkage group 18 that is syntenic with part of human chromosome 15. In zebrafish AB9 fibroblasts and in COS-7 cells, the zebrafish Mklp1 protein decorates spindle microtubules at metaphase, redistributes to the spindle midzone during anaphase, and becomes concentrated in the midbody during telophase and cytokinesis. The motor is detected consistently in interphase nuclei of COS cells and occasionally in those of AB9 cells. Nuclear targeting of Mklp1 is conferred by two basic motifs located in the COOH terminus of the motor. In cleaving zebrafish embryos, green fluorescent protein (GFP)-tagged Mklp1 is found in the nucleus in interphase and associates with microtubules of the spindle midbody in cytokinesis. One- or two-cell embryos injected with synthetic mRNAs encoding dominant-negative variants of GFP-Mklp1 frequently fail to complete cytokinesis during cleavage, resulting in formation of multinucleated blastomeres. Our results indicate that the zebrafish Mklp1 motor performs a critical function that is required for completion of embryonic cytokinesis.
Collapse
Affiliation(s)
- Ming-Chyuan Chen
- Department of Biology, Northeastern University, Children's Hospital and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
11
|
Abstract
This brief review summarizes features of the zebrafish, Danio rerio, that make it a suitable model organism for studies of regulatory physiology. The review presents the argument that random mutagenesis screens are a valuable gene-finding strategy to identify genes of functional importance and that their utility, although well established for developmental issues, will extend to a variety of topics of interest to the regulatory physiologist. Particular attention is drawn to the range of functional responses amenable to mutagenesis screens in larval zebrafish. Other virtues of the organism, the range of genomic tools, the potential for innovative optical methods, and the tractability for genetic and other experimental manipulations, are also described. Finally, the review provides examples of functional studies in zebrafish, including studies in sensory neurons, cardiac rhythm disturbances, gastrointestinal function, and studies of the developing kidney, that illustrate potential applications. Because of the relative ease with which combinatorial studies can be performed, the zebrafish may eventually be particularly valuable in understanding the functional interaction between subtle gene defects that cause polygenic disorders.
Collapse
Affiliation(s)
- Josephine P Briggs
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-2560, USA.
| |
Collapse
|
12
|
Affiliation(s)
- H W Detrich
- Department of Biology, Northeastern University, Boston, Massachusetts 02155, USA
| | | | | |
Collapse
|
13
|
Gerlai R, Lahav M, Guo S, Rosenthal A. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 2000; 67:773-82. [PMID: 11166068 DOI: 10.1016/s0091-3057(00)00422-6] [Citation(s) in RCA: 542] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Zebra fish may be an ideal vertebrate model system for numerous human diseases with which the genetics and biological mechanisms of the disease may be studied. Zebra fish has been successfully used in developmental genetics, and recently, neurobiologists have also started to study this species. A potentially interesting target disease amenable for analysis with zebra fish is drug addiction, e.g. alcoholism. Although genetic tools to manipulate the genome of zebra fish are available, appropriate phenotypical testing methods are often lacking. In this paper, we describe basic behavioral tests to investigate the acute effects of alcohol on zebra fish. These behavioral paradigms will be useful for the genetic and biological analysis of acute and chronic drug effects as well as addiction. In addition to presenting findings for the acute effects of alcohol, we briefly describe our strategy for generating and screening mutants. We hope that our pilot work will facilitate the future development of behavioral tests and the use of zebra fish in the genetic analysis of the biological effects of drugs of abuse.
Collapse
Affiliation(s)
- R Gerlai
- Neuroscience Department, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
14
|
Smith RC, Rhodes SJ. Applications of developmental biology to medicine and animal agriculture. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2000; 54:213-56. [PMID: 10857390 DOI: 10.1007/978-3-0348-8391-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
With the complete sequence of the human genome expected by winter 2001, genomic-based drug discovery efforts of the pharmaceutical industry are focusing on finding the relatively few therapeutically useful genes from among the total gene set. Methods to rapidly elucidate gene function will have increasing value in these investigations. The use of model organisms in functional genomics has begun to be recognized and exploited and is one example of the emerging use of the tools of developmental biology in recent drug discovery efforts. The use of protein products expressed during embryo-genesis and the use of certain pluripotent cell populations (stem cells) as candidate therapeutics are other applications of developmental biology to the treatment of human diseases. These agents may be used to repair damaged or diseased tissues by inducing or directing developmental programs that recapitulate embryonic processes to replace specialized cells. The activation or silencing of embryonic genes in the disease state, particularly those encoding transcription factors, is another avenue of exploitation. Finally, the direct drug-induced manipulation of embryonic development is a unique application of developmental biology in animal agriculture.
Collapse
Affiliation(s)
- R C Smith
- Department of Biology, Indiana University-Purdue University Indianapolis 46202-5132, USA
| | | |
Collapse
|
15
|
|
16
|
Goolish EM, Evans R, Okutake K, Max R. Chamber Volume Requirements for Reproduction of the ZebrafishDanio rerio. ACTA ACUST UNITED AC 1998. [DOI: 10.1577/1548-8640(1998)060<0127:cvrfro>2.0.co;2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Talbot WS, Egan ES, Gates MA, Walker C, Ullmann B, Neuhauss SC, Kimmel CB, Postlethwait JH. Genetic analysis of chromosomal rearrangements in the cyclops region of the zebrafish genome. Genetics 1998; 148:373-80. [PMID: 9475747 PMCID: PMC1459804 DOI: 10.1093/genetics/148.1.373] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genetic screens in zebrafish have provided mutations in hundreds of genes with essential functions in the developing embryo. To investigate the possible uses of chromosomal rearrangements in the analysis of these mutations, we genetically characterized three gamma-ray induced alleles of cyclops (cyc), a gene required for development of midline structures. We show that cyc maps near one end of Linkage Group 12 (LG 12) and that this region is involved in a reciprocal translocation with LG 2 in one gamma-ray induced mutation, cyc(b213). The translocated segments together cover approximately 5% of the genetic map, and we show that this rearrangement is useful for mapping cloned genes that reside in the affected chromosomal regions. The other two alleles, cyc(b16) and cyc(b229), have deletions in the distal region of LG 12. Interestingly, both of these mutations suppress recombination between genetic markers in LG 12, including markers at a distance from the deletion. This observation raises the possibility that these deletions affect a site required for meiotic recombination on the LG 12 chromosome. The cyc(b16) and cyc(b229) mutations may be useful for balancing other lethal mutations located in the distal region of LG 12. These results show that chromosomal rearrangements can provide useful resources for mapping and genetic analyses in zebrafish.
Collapse
Affiliation(s)
- W S Talbot
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Exquisite embryonic lethal mutations have been isolated in hundreds of genes necessary for zebrafish development. Analysis of this resource promises to enhance our understanding of the molecular genetic mechanisms of vertebrate development. This review discusses the state of the zebrafish genome project and the genetic trickery that can expedite molecular isolation of genes disrupted by these mutations.
Collapse
Affiliation(s)
- J H Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene 97403, USA.
| | | |
Collapse
|