1
|
Kaminaga K, Fukunaga H, Hirose E, Watanabe R, Suzuki K, Prise KM, Yokoya A. Time-lapse imaging of cells in spatially fractionated X-ray fields using a mini beam as an alternative to accelerator-based sub-millimeter beams. JOURNAL OF RADIATION RESEARCH 2025; 66:318-328. [PMID: 40349201 PMCID: PMC12100484 DOI: 10.1093/jrr/rraf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 05/14/2025]
Abstract
Due to the limited number of accelerator-based X-ray facilities worldwide that provide beams with an adjustable size, their application for radiobiological research purposes has been restricted. Thus, the development of alternative methods is of technical importance for investigating cell/tissue responses in spatially non-uniform radiation fields. In this study, we performed mini beam irradiation of cells using a lead (Pb) sub-milli-collimator as an alternative method to sub-millimeter beams. Also, we employed human cervical carcinoma HeLa cells and hTERT-immortalized fibroblast BJ-1 cells that express fluorescence ubiquitination-based cell-cycle indicators (FUCCI). Time-lapse imaging revealed differences in the behavior of HeLa and BJ-1 cells in spatially heterogeneous radiation fields; in the case of HeLa cells, G2/M phase-arrested cells in the cell population were clearly observed, distinguishing irradiated from non-irradiated cells at the sub-millimeter scale level. Our findings indicate that FUCCI can be useful as a biological dose indicator, depending on cell type, and Pb sub-milli-collimators show potential as a possible alternative to accelerator-based X-ray sub-millimeter beams for radiobiological research. The use of the collimators, unlike beamtime experiments in synchrotron facilities with the approval of the committee, is highly versatile and may be beneficial in preliminary studies in a normal laboratory environment.
Collapse
Affiliation(s)
- Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, N12 W5 Kita-ku, Sapporo 060-0812, Japan
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo 060-0812, Japan
| | - Eri Hirose
- Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development, Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1112, Japan
| | - Ritsuko Watanabe
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kevin M Prise
- Patrick G Johnstone Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
2
|
Xu C, Chen L, Liu G, Xu J, Lv W, Gao X, Xu P, Tang M, Wang Y, Zhao X, Nie G, Cheng K, Liu F. Tailoring an intravenously injectable oncolytic virus for augmenting radiotherapy. Cell Rep Med 2025; 6:102078. [PMID: 40233744 DOI: 10.1016/j.xcrm.2025.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Oncolytic viruses (OVs) combined with radiotherapy (RT) show promise but are limited by challenges such as poor intravenous delivery and insufficient RT-induced DNA damage. In this study, an oncolytic adenovirus (AD) formulation, RadioOnco (AD@PSSP), is developed to improve delivery, infectivity, immune response, and RT efficacy. The multifunctional polyethylenimine (PEI)-selenium-polyethylene glycol (PEG) (PSSP) enhances intravenous delivery, shields the virus from rapid clearance, and enables targeted delivery to tumor sites after RT. The exposed PEI enhances the infectivity of AD through electrostatic interactions, thereby increasing DNA damage after RT by inhibiting the expression of DNA repair proteins, such as CHEK1 and CDK1. Furthermore, AD-PEI captures and delivers RT-induced tumor-released antigens to lymph nodes, activating robust anti-tumor immune responses. Animal model data demonstrate that RadioOnco overcomes RT resistance, targets distant metastases, and promotes long-term immunity, addressing metastasis and recurrence. In summary, this intravenously injectable OV enhances RT synergy through surface modification with multifunctional materials.
Collapse
Affiliation(s)
- Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Phase I Clinical Trails Center, The First Hospital of China Medical University, Shenyang 110102, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Phase I Clinical Trails Center, The First Hospital of China Medical University, Shenyang 110102, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peijun Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Phase I Clinical Trails Center, The First Hospital of China Medical University, Shenyang 110102, China.
| |
Collapse
|
3
|
Chen C, Gao D, Yue H, Wang H, Qu R, Hu X, Luo L. Predicting breast cancer prognosis based on a novel pathomics model through CHEK1 expression analysis using machine learning algorithms. PLoS One 2025; 20:e0321717. [PMID: 40344565 PMCID: PMC12064205 DOI: 10.1371/journal.pone.0321717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/05/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Checkpoint kinase 1 (CHEK1) is often overexpressed in solid tumors. Nonetheless, the prognostic significance of CHEK1 in breast cancer (BrC) remains unclear. This study used pathomics leverages machine learning to predict BrC prognosis based on CHEK1 gene expression.. METHODS Initially, hematoxylin-eosin (H&E)-stained images obtained from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) were segmented using Otsu's method. Further, the sub-image features were extracted using machine learning algorithms based on PyRadiomics, mRMRe, and Gradient Boosting Machine (GBM). The predicted CHEK1 expression levels were represented as the pathomics score (PS) and validated using the corresponding RNA-seq data. The prognostic significance of both CHEK1 and PS was evaluated using Kaplan-Meier (KM), and univariate and multivariate Cox regression. The model was assessed by comparing CHEK1 expression by immunohistochemistry (IHC) with PS in BrC tissue microarray (TMA). RESULTS A 633 × 10 sub-image set was eligible for training and a 158 × 10 set for validation. 1,488 features were extracted and 8 recursive feature elimination (RFE)-screened features were used to generate the model. A high PS was associated with CHEK1 overexpression, significantly correlating with survival outcomes, especially within 96 months post-diagnosis. Further, patients with high PS responded to anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T lymphocyte antigen-4 (anti-CTLA4) treatments. In TMA validation, the IHC analysis estimated that high PS similarly predicted poorer prognosis and correlated with higher CHEK1 expression. CONCLUSIONS The novel pathomics model reliably predicted CHEK1 expression using machine learning algorithms, which might provide potential clinical utility for prognosis and treatment guidance.
Collapse
Affiliation(s)
- Chen Chen
- Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Dan Gao
- Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Huan Yue
- Clinical Laboratory, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Huijing Wang
- Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Rui Qu
- Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Xiaochi Hu
- Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Libo Luo
- Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| |
Collapse
|
4
|
Ke ZY, Fu T, Wang XC, Ma X, Yin HH, Wang WX, Liu YJ, Liang AL. CHK1 inhibition overcomes gemcitabine resistance in non-small cell lung cancer cell A549. Mol Cell Oncol 2025; 12:2488537. [PMID: 40226818 PMCID: PMC11988257 DOI: 10.1080/23723556.2025.2488537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
The purpose of the study is mainly to investigate anti proliferation of non-small cell lung cancer A549 cells and its mechanism by inhibition of CHK1 expression combined with gemcitabine. The mRNA and protein levels of genes were analyzed by RT-qPCR and Western blot, respectively. Cell viability was detected by CCK-8 assay and clone formation assay. The detection of the cell cycle was used by Annexin V/7-amino-actinomycin D apoptosis detection kit. Analysis of DNA damage was done by immunofluorescence and alkaline comet assay. The results showed that inhibition of CHK1 and gemcitabine combination significantly reduced the proliferation ability of the two cell lines. We also revealed the degradation of full-length PARP and reduced Bcl-2/Bax ratio on increased apoptosis. Inhibition of CHK1 expression leads to DNA damage, induces phosphorylation of γ-H2AX, and affects the repair of homologous recombination ability through Rad51. Mechanistically, gemcitabine increased phosphorylation-ATR and phosphorylation-CHK1, indicating activation of the DNA repair system and ATR-CHK1-CDC25A pathway. Inhibition of CHK1 resulted in increased synthesis of CDK2/Cyclin A2 and CDK2/Cyclin E1 complexes, and more cells entered the subsequent cell cycle, leading to S phase arrest and mitotic catastrophe. We identified inhibition of CHK1 as a potential treatment for NSCLC and confirmed that inhibition of this kinase could overcome acquired gemcitabine resistance.
Collapse
Affiliation(s)
- Zhi-Yin Ke
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| | - Tian Fu
- Department of Clinical Laboratory, Zhanjiang Central Hospital, Zhanjiang, China
| | - Xue-Chun Wang
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| | - Xuan Ma
- Department of Clinical Laboratory, Xinle City Hospital, Shijiazhuang, China
| | - Hai-Han Yin
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| | - Wen-Xuan Wang
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| | - Yong-Jun Liu
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| | - Ai-Ling Liang
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
Di Talia S. Developmental Control of Cell Cycle and Signaling. Cold Spring Harb Perspect Biol 2025; 17:a041499. [PMID: 38858070 PMCID: PMC11864111 DOI: 10.1101/cshperspect.a041499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In most species, the earliest stages of embryogenesis are characterized by rapid proliferation, which must be tightly controlled with other cellular processes across the large scale of the embryo. The study of this coordination has recently revealed new mechanisms of regulation of morphogenesis. Here, I discuss progress on how the integration of biochemical and mechanical signals leads to the proper positioning of cellular components, how signaling waves ensure the synchronization of the cell cycle, and how cell cycle transitions are properly timed. Similar concepts are emerging in the control of morphogenesis of other tissues, highlighting both common and unique features of early embryogenesis.
Collapse
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
6
|
Ortega P, Bournique E, Li J, Sanchez A, Santiago G, Harris BR, Green AM, Buisson R. ATR safeguards replication forks against APOBEC3B-induced toxic PARP1 trapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623607. [PMID: 39605722 PMCID: PMC11601322 DOI: 10.1101/2024.11.14.623607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
ATR is the master safeguard of genomic integrity during DNA replication. Acute inhibition of ATR with ATR inhibitor (ATRi) triggers a surge in origin firing, leading to increased levels of single-stranded DNA (ssDNA) that rapidly deplete all available RPA. This leaves ssDNA unprotected and susceptible to breakage, a phenomenon known as replication catastrophe. However, the mechanism by which unprotected ssDNA breaks remains unclear. Here, we reveal that APOBEC3B is the key enzyme targeting unprotected ssDNA at replication forks, triggering a reaction cascade that induces fork collapse and PARP1 hyperactivation. Mechanistically, we demonstrate that uracils generated by APOBEC3B at replication forks are removed by UNG2, creating abasic sites that are subsequently cleaved by APE1 endonuclease. Moreover, we demonstrate that APE1-mediated DNA cleavage is the critical enzymatic step for PARP1 trapping and hyperactivation in cells, regardless of how abasic sites are generated on DNA. Finally, we show that APOBEC3B-induced toxic PARP1 trapping in response to ATRi drives cell sensitivity to ATR inhibition, creating to a context of synthetic lethality when combined with PARP inhibitors. Together, these findings reveal the mechanisms that cause replication forks to break during replication catastrophe and explain why ATRi-treated cells are particularly sensitive to PARP inhibitors.
Collapse
Affiliation(s)
- Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Brooke R. Harris
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Abby M. Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Zhen T, Sun T, Xiong B, Liu H, Wang L, Chen Y, Sun H. New insight into targeting the DNA damage response in the treatment of glioblastoma. Chin J Nat Med 2024; 22:869-886. [PMID: 39428180 DOI: 10.1016/s1875-5364(24)60694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Glioblastoma (GBM) is the most common invasive malignant tumor in human brain tumors, representing the most severe grade of gliomas. Despite existing therapeutic approaches, patient prognosis remains dismal, necessitating the exploration of novel strategies to enhance treatment efficacy and extend survival. Due to the restrictive nature of the blood-brain barrier (BBB), small-molecule inhibitors are prioritized in the treatment of central nervous system tumors. Among these, DNA damage response (DDR) inhibitors have garnered significant attention due to their potent therapeutic potential across various malignancies. This review provides a detailed analysis of DDR pathways as therapeutic targets in GBM, summarizes recent advancements, therapeutic strategies, and ongoing clinical trials, and offers perspectives on future directions in this rapidly evolving field. The goal is to present a comprehensive outlook on the potential of DDR inhibitors in improving GBM management and outcomes.
Collapse
Affiliation(s)
- Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Fan J, Du X, Chen M, Xu Y, Xu J, Lu L, Zhou S, Kong X, Xu K, Zhang H. Critical role of checkpoint kinase 1 in spinal cord injury-induced motor dysfunction in mice. Int Immunopharmacol 2024; 138:112521. [PMID: 38917519 DOI: 10.1016/j.intimp.2024.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurotraumatic condition characterized by severe motor dysfunction and paralysis. Accumulating evidence suggests that DNA damage is involved in SCI pathology. However, the underlying mechanisms remain elusive. Although checkpoint kinase 1 (Chk1)-regulated DNA damage is involved in critical cellular processes, its role in SCI regulation remains unclear. This study aimed to explore the role and potential mechanism of Chk1 in SCI-induced motor dysfunction. Adult female C57BL/6J mice subjected to T9-T10 spinal cord contusions were used as models of SCI. Western blotting, immunoprecipitation, histomorphology, and Chk1 knockdown or overexpression achieved by adeno-associated virus were performed to explore the underlying mechanisms. Levels of p-Chk1 and γ-H2AX (a cellular DNA damage marker) were upregulated, while ferroptosis-related protein levels, including glutathione peroxidase 4 (GPX4) and x-CT were downregulated, in the spinal cord and hippocampal tissues of SCI mice. Functional experiments revealed increased Basso Mouse Scale (BMS) scores, indicating that Chk1 downregulation promoted motor function recovery after SCI, whereas Chk1 overexpression aggravated SCI-induced motor dysfunction. In addition, Chk1 downregulation reversed the SCI-increased levels of GPX4 and x-CT expression in the spinal cord and hippocampus, while immunoprecipitation assays revealed strengthened interactions between p-Chk1 and GPX4 in the spinal cord after SCI. Finally, Chk1 downregulation promoted while Chk1 overexpression inhibited NeuN cellular immunoactivity in the spinal cord after SCI, respectively. Collectively, these preliminary results imply that Chk1 is a novel regulator of SCI-induced motor dysfunction, and that interventions targeting Chk1 may represent promising therapeutic targets for neurotraumatic diseases such as SCI.
Collapse
Affiliation(s)
- Junming Fan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China
| | - Xiaotong Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengfan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinyu Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leilei Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Emergency, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaoyan Zhou
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoxia Kong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ke Xu
- Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China.
| |
Collapse
|
9
|
Li W, Hao Y. Polo-Like Kinase 1 and DNA Damage Response. DNA Cell Biol 2024; 43:430-437. [PMID: 38959179 DOI: 10.1089/dna.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Polo-like kinase 1 (Plk1), an evolutionarily conserved serine/threonine protein kinase, is a key regulator involved in the mitotic process of the cell cycle. Mounting evidence suggests that Plk1 is also involved in a variety of nonmitotic events, including the DNA damage response, DNA replication, cytokinesis, embryonic development, apoptosis, and immune regulation. The DNA damage response (DDR) includes activation of the DNA checkpoint, DNA damage recovery, DNA repair, and apoptosis. Plk1 is not only an important target of the G2/M DNA damage checkpoint but also negatively regulates the G2/M checkpoint commander Ataxia telangiectasia-mutated (ATM), promotes G2/M phase checkpoint recovery, and regulates homologous recombination repair by interacting with Rad51 and BRCA1, the key factors of homologous recombination repair. This article briefly reviews the function of Plk1 in response to DNA damage.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, Characteristic Medical Center, PLA Rocket Force, Beijing, China
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| | - Yongjian Hao
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| |
Collapse
|
10
|
Aumer T, Däther M, Bergmayr L, Kartika S, Zeng T, Ge Q, Giorgio G, Hess AJ, Michalakis S, Traube FR. The type of DNA damage response after decitabine treatment depends on the level of DNMT activity. Life Sci Alliance 2024; 7:e202302437. [PMID: 38906675 PMCID: PMC11192838 DOI: 10.26508/lsa.202302437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Decitabine and azacytidine are considered as epigenetic drugs that induce DNA methyltransferase (DNMT)-DNA crosslinks, resulting in DNA hypomethylation and damage. Although they are already applied against myeloid cancers, important aspects of their mode of action remain unknown, highly limiting their clinical potential. Using a combinatorial approach, we reveal that the efficacy profile of both compounds primarily depends on the level of induced DNA damage. Under low DNMT activity, only decitabine has a substantial impact. Conversely, when DNMT activity is high, toxicity and cellular response to both compounds are dramatically increased, but do not primarily depend on DNA hypomethylation or RNA-associated processes. By investigating proteome dynamics on chromatin, we show that decitabine induces a strictly DNMT-dependent multifaceted DNA damage response based on chromatin recruitment, but not expression-level changes of repair-associated proteins. The choice of DNA repair pathway hereby depends on the severity of decitabine-induced DNA lesions. Although under moderate DNMT activity, mismatch (MMR), base excision (BER), and Fanconi anaemia-dependent DNA repair combined with homologous recombination are activated in response to decitabine, high DNMT activity and therefore immense replication stress induce activation of MMR and BER followed by non-homologous end joining.
Collapse
Affiliation(s)
- Tina Aumer
- Institute of Chemical Epigenetics Munich, Department of Chemistry, University of Munich (LMU), München, Germany
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | - Maike Däther
- Institute of Chemical Epigenetics Munich, Department of Chemistry, University of Munich (LMU), München, Germany
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | - Linda Bergmayr
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | - Stephanie Kartika
- Department of Biochemistry, University of Munich (LMU), München, Germany
| | - Theodor Zeng
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | - Qingyi Ge
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | - Grazia Giorgio
- Department of Ophthalmology, University Hospital LMU Munich, München, Germany
| | - Alexander J Hess
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | | | - Franziska R Traube
- Institute of Chemical Epigenetics Munich, Department of Chemistry, University of Munich (LMU), München, Germany
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
11
|
Islam MS, Al-Jassas RM, Al-Majid AM, Haukka M, Nafie MS, Abu-Serie MM, Teleb M, El-Yazbi A, Alayyaf AMA, Barakat A, Shaaban MM. Exploiting spirooxindoles for dual DNA targeting/CDK2 inhibition and simultaneous mitigation of oxidative stress towards selective NSCLC therapy; synthesis, evaluation, and molecular modelling studies. RSC Med Chem 2024; 15:2937-2958. [PMID: 39149093 PMCID: PMC11324055 DOI: 10.1039/d4md00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
The unique structure of spirooxindoles and their ability to feature various pharmacophoric motifs render them privileged scaffolds for tailoring new multitarget anticancer agents. Herein, a stereoselective multicomponent reaction was utilized to generate a small combinatorial library of pyrazole-tethered spirooxindoles targeting DNA and CDK2 with free radical scavenging potential as an extra bonus. The designed spirooxindoles were directed to combat NSCLC via inducing apoptosis and alleviating oxidative stress. The series' absolute configuration was assigned by X-ray diffraction analysis. Cytotoxicity screening of the developed spirooxindoles against NSCLC A549 and H460 cells compared to normal lung fibroblasts Wi-38 revealed the sensitivity of A549 cells to the compounds and raised 6e and 6h as the study hits (IC50 ∼ 0.09 μM and SI > 3). They damaged DNA at 24.6 and 35.3 nM, and surpassed roscovitine as CDK2 inhibitors (IC50 = 75.6 and 80.2 nM). Docking and MDs simulations postulated their receptors binding modes. The most potent derivative, 6e, induced A549 apoptosis by 40.85% arresting cell cycle at G2/M phase, and exhibited antioxidant activity in a dose-dependent manner compared to Trolox as indicated by DPPH scavenging assay. Finally, in silico ADMET analysis predicted the drug-likeness properties of 6e.
Collapse
Affiliation(s)
- Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Refaah M Al-Jassas
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah Sharjah (P.O. Box 27272) United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - Amira El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria Egypt
| | | | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| |
Collapse
|
12
|
Rowland RJ, Korolchuk S, Salamina M, Tatum NJ, Ault JR, Hart S, Turkenburg JP, Blaza JN, Noble MEM, Endicott JA. Cryo-EM structure of the CDK2-cyclin A-CDC25A complex. Nat Commun 2024; 15:6807. [PMID: 39122719 PMCID: PMC11316097 DOI: 10.1038/s41467-024-51135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The cell division cycle 25 phosphatases CDC25A, B and C regulate cell cycle transitions by dephosphorylating residues in the conserved glycine-rich loop of CDKs to activate their activity. Here, we present the cryo-EM structure of CDK2-cyclin A in complex with CDC25A at 2.7 Å resolution, providing a detailed structural analysis of the overall complex architecture and key protein-protein interactions that underpin this 86 kDa complex. We further identify a CDC25A C-terminal helix that is critical for complex formation. Sequence conservation analysis suggests CDK1/2-cyclin A, CDK1-cyclin B and CDK2/3-cyclin E are suitable binding partners for CDC25A, whilst CDK4/6-cyclin D complexes appear unlikely substrates. A comparative structural analysis of CDK-containing complexes also confirms the functional importance of the conserved CDK1/2 GDSEID motif. This structure improves our understanding of the roles of CDC25 phosphatases in CDK regulation and may inform the development of CDC25-targeting anticancer strategies.
Collapse
Affiliation(s)
- Rhianna J Rowland
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Svitlana Korolchuk
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Fujifilm, Belasis Ave, Stockton-on-Tees, Billingham, TS23 1LH, UK
| | - Marco Salamina
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Evotec (UK) Ltd., Milton, Abingdon, OX14 4RZ, UK
| | - Natalie J Tatum
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sam Hart
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Johan P Turkenburg
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - James N Blaza
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Martin E M Noble
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Jane A Endicott
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
13
|
Magrath JW, Espinosa-Cotton M, Flinchum DA, Sampath SS, Cheung NK, Lee SB. Desmoplastic small round cell tumor: from genomics to targets, potential paths to future therapeutics. Front Cell Dev Biol 2024; 12:1442488. [PMID: 39139449 PMCID: PMC11319132 DOI: 10.3389/fcell.2024.1442488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a highly aggressive pediatric cancer caused by a reciprocal translocation between chromosomes 11 and 22, leading to the formation of the EWSR1::WT1 oncoprotein. DSRCT presents most commonly in the abdominal and pelvic peritoneum and remains refractory to current treatment regimens which include chemotherapy, radiotherapy, and surgery. As a rare cancer, sample and model availability have been a limiting factor to DSRCT research. However, the establishment of rare tumor banks and novel cell lines have recently propelled critical advances in the understanding of DSRCT biology and the identification of potentially promising targeted therapeutics. Here we review model and dataset availability, current understanding of the EWSR1::WT1 oncogenic mechanism, and promising preclinical therapeutics, some of which are now advancing to clinical trials. We discuss efforts to inhibit critical dependencies including NTRK3, EGFR, and CDK4/6 as well as novel immunotherapy strategies targeting surface markers highly expressed in DSRCT such as B7-H3 or neopeptides either derived from or driven by the fusion oncoprotein. Finally, we discuss the prospect of combination therapies and strategies for prioritizing clinical translation.
Collapse
Affiliation(s)
- Justin W. Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Dane A. Flinchum
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nai Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
14
|
Xie B, Sanford EJ, Hung SH, Wagner M, Heyer WD, Smolka MB. Multi-step control of homologous recombination via Mec1/ATR suppresses chromosomal rearrangements. EMBO J 2024; 43:3027-3043. [PMID: 38839993 PMCID: PMC11251156 DOI: 10.1038/s44318-024-00139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
15
|
Egger T, Morano L, Blanchard MP, Basbous J, Constantinou A. Spatial organization and functions of Chk1 activation by TopBP1 biomolecular condensates. Cell Rep 2024; 43:114064. [PMID: 38578830 DOI: 10.1016/j.celrep.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.
Collapse
Affiliation(s)
- Tom Egger
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Laura Morano
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Marie-Pierre Blanchard
- Montpellier Ressources Imageries, BioCampus, Université de Montpellier, CNRS, Montpellier, France
| | - Jihane Basbous
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France.
| | - Angelos Constantinou
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
16
|
Roka Pun H, Karp X. An RNAi screen for conserved kinases that enhance microRNA activity after dauer in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae007. [PMID: 38226857 PMCID: PMC10917497 DOI: 10.1093/g3journal/jkae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/17/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Gene regulation in changing environments is critical for maintaining homeostasis. Some animals undergo a stress-resistant diapause stage to withstand harsh environmental conditions encountered during development. MicroRNAs are one mechanism for regulating gene expression during and after diapause. MicroRNAs downregulate target genes posttranscriptionally through the activity of the microRNA-induced silencing complex. Argonaute is the core microRNA-induced silencing complex protein that binds to both the microRNA and to other microRNA-induced silencing complex proteins. The 2 major microRNA Argonautes in the Caenorhabditis elegans soma are ALG-1 and ALG-2, which function partially redundantly. Loss of alg-1 [alg-1(0)] causes penetrant developmental phenotypes including vulval defects and the reiteration of larval cell programs in hypodermal cells. However, these phenotypes are essentially absent if alg-1(0) animals undergo a diapause stage called dauer. Levels of the relevant microRNAs are not higher during or after dauer, suggesting that activity of the microRNA-induced silencing complex may be enhanced in this context. To identify genes that are required for alg-1(0) mutants to develop without vulval defects after dauer, we performed an RNAi screen of genes encoding conserved kinases. We focused on kinases because of their known role in modulating microRNA-induced silencing complex activity. We found RNAi knockdown of 4 kinase-encoding genes, air-2, bub-1, chk-1, and nekl-3, caused vulval defects and reiterative phenotypes in alg-1(0) mutants after dauer, and that these defects were more penetrant in an alg-1(0) background than in wild type. Our results implicate these kinases as potential regulators of microRNA-induced silencing complex activity during postdauer development in C. elegans.
Collapse
Affiliation(s)
- Himal Roka Pun
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Xantha Karp
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
17
|
Wang T, Chen X, Wang K, Ju J, Yu X, Yu W, Liu C, Wang Y. Cardiac regeneration: Pre-existing cardiomyocyte as the hub of novel signaling pathway. Genes Dis 2024; 11:747-759. [PMID: 37692487 PMCID: PMC10491875 DOI: 10.1016/j.gendis.2023.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 09/12/2023] Open
Abstract
In the mammalian heart, cardiomyocytes are forced to withdraw from the cell cycle shortly after birth, limiting the ability of the heart to regenerate and repair. The development of multimodal regulation of cardiac proliferation has verified that pre-existing cardiomyocyte proliferation is an essential driver of cardiac renewal. With the continuous development of genetic lineage tracking technology, it has been revealed that cell cycle activity produces polyploid cardiomyocytes during the embryonic, juvenile, and adult stages of cardiogenesis, but newly formed mononucleated diploid cardiomyocytes also elevated sporadically during myocardial infarction. It implied that adult cardiomyocytes have a weak regenerative capacity under the condition of ischemia injury, which offers hope for the clinical treatment of myocardial infarction. However, the regeneration frequency and source of cardiomyocytes are still low, and the mechanism of regulating cardiomyocyte proliferation remains further explained. It is noteworthy to explore what force triggers endogenous cardiomyocyte proliferation and heart regeneration. Here, we focused on summarizing the recent research progress of emerging endogenous key modulators and crosstalk with other signaling pathways and furnished valuable insights into the internal mechanism of heart regeneration. In addition, myocardial transcription factors, non-coding RNAs, cyclins, and cell cycle-dependent kinases are involved in the multimodal regulation of pre-existing cardiomyocyte proliferation. Ultimately, awakening the myocardial proliferation endogenous modulator and regeneration pathways may be the final battlefield for the regenerative therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xue Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Wanpeng Yu
- College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Cuiyun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| |
Collapse
|
18
|
Chowdhury SR, Chuong P, Mgbemena VE, Statsyuk A. Development of a PROTAC Targeting Chk1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573733. [PMID: 38260247 PMCID: PMC10802242 DOI: 10.1101/2023.12.30.573733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A series of Chk1 degraders were designed and synthesized. The degraders were developed through the conjugation of a promiscuous kinase binder and thalidomide. One of the degraders PROTAC-2 was able to decrease Chk1 levels in a concentration-dependent manner in A375 cells. The developed probes can be useful for the development of selective and more potent Chk1 degraders.
Collapse
Affiliation(s)
- Sandipan Roy Chowdhury
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health 2, 4349 Martin Luther King Boulevard, Houston, Texas, 77204
| | - Patrick Chuong
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health 2, 4349 Martin Luther King Boulevard, Houston, Texas, 77204
| | - Victoria E Mgbemena
- Department of Biology, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Alexander Statsyuk
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health 2, 4349 Martin Luther King Boulevard, Houston, Texas, 77204
| |
Collapse
|
19
|
Li C, Liao J, Wang X, Chen FX, Guo X, Chen X. Combined Aurora Kinase A and CHK1 Inhibition Enhances Radiosensitivity of Triple-Negative Breast Cancer Through Induction of Apoptosis and Mitotic Catastrophe Associated With Excessive DNA Damage. Int J Radiat Oncol Biol Phys 2023; 117:1241-1254. [PMID: 37393021 DOI: 10.1016/j.ijrobp.2023.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE There is an urgent need for biomarkers and new actionable targets to improve radiosensitivity of triple-negative breast cancer (TNBC) tumors. We characterized the radiosensitizing effects and underlying mechanisms of combined Aurora kinase A (AURKA) and CHK1 inhibition in TNBC. METHODS AND MATERIALS Different TNBC cell lines were treated with AURKA inhibitor (AURKAi, MLN8237) and CHK1 inhibitor (CHK1i, MK8776). Cell responses to irradiation (IR) were then evaluated. Cell apoptosis, DNA damage, cell cycle distribution, and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and Phosphoinositide 3-Kinase (PI3K) pathways were evaluated in vitro. Transcriptomic analysis was performed to facilitate the identification of potential biomarkers. Xenograft and immunohistochemistry were carried out to investigate the radiosensitizing effects of dual inhibition in vivo. Finally, the prognostic effect of CHEK1/AURKA in TNBC samples in the The Cancer Genome Atlas (TCGA) database and our center were analyzed. RESULTS AURKAi (MLN8237) induced overexpression of phospho-CHK1 in TNBC cells. The addition of MK8776 (CHK1i) to MLN8237 greatly reduced cell viability and increased radiosensitivity compared with either the control or MLN8237 alone in vitro. Mechanistically, dual inhibition resulted in inducing excessive DNA damage by prompting G2/M transition to cells with defective spindles, leading to mitotic catastrophe and induction of apoptosis after IR. We also observed that dual inhibition suppressed the phosphorylation of ERK, while activation of ERK with its agonist or overexpression of active ERK1/2 allele could attenuate the apoptosis induced by dual inhibition with IR. Additionally, dual inhibition of AURKA and CHK1 synergistically enhanced radiosensitivity in MDA-MB-231 xenografts. Moreover, we detected that both CHEK1 and AURKA were overexpressed in patients with TNBC and negatively correlated with patient survival. CONCLUSIONS Our findings suggested that AURKAi in combination with CHK1i enhanced TNBC radiosensitivity in preclinical models, potentially providing a novel strategy of precision treatment for patients with TNBC.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jiatao Liao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Xuanyi Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Fei Xavier Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China.
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| |
Collapse
|
20
|
Xie B, Sanford EJ, Hung SH, Wagner MM, Heyer WD, Smolka MB. Multi-Step Control of Homologous Recombination by Mec1/ATR Ensures Robust Suppression of Gross Chromosomal Rearrangements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568146. [PMID: 38045423 PMCID: PMC10690203 DOI: 10.1101/2023.11.21.568146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Maciej Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Knoblochova L, Duricek T, Vaskovicova M, Zorzompokou C, Rayova D, Ferencova I, Baran V, Schultz RM, Hoffmann ER, Drutovic D. CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos. EMBO Rep 2023; 24:e56530. [PMID: 37694680 PMCID: PMC10561370 DOI: 10.15252/embr.202256530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated and transcriptionally quiescent cells into early cleavage-stage blastomeres that are transcriptionally active and totipotent. This developmental transition is accompanied by cell cycle adaptation, such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in two-cell stage mouse embryos. Finally, Chk1 depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.
Collapse
Affiliation(s)
- Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Tomas Duricek
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Chrysoula Zorzompokou
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Diana Rayova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Ivana Ferencova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Vladimir Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of SciencesKosiceSlovakia
| | - Richard M Schultz
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCAUSA
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
22
|
Bichet MC, Adderley J, Avellaneda-Franco L, Magnin-Bougma I, Torriero-Smith N, Gearing LJ, Deffrasnes C, David C, Pepin G, Gantier MP, Lin RCY, Patwa R, Moseley GW, Doerig C, Barr JJ. Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival. PLoS Biol 2023; 21:e3002341. [PMID: 37883333 PMCID: PMC10602308 DOI: 10.1371/journal.pbio.3002341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly purified phage T4, free from bacterial by-products and endotoxins to mammalian cells and analyzed the cellular responses using luciferase reporter and antibody microarray assays. Phage preparations were applied in vitro to either A549 lung epithelial cells, MDCK-I kidney cells, or primary mouse bone marrow derived macrophages with the phage-free supernatant serving as a comparative control. Highly purified T4 phages were rapidly internalized by mammalian cells and accumulated within macropinosomes but did not activate the inflammatory DNA response TLR9 or cGAS-STING pathways. Following 8 hours of incubation with T4 phage, whole cell lysates were analyzed via antibody microarray that detected expression and phosphorylation levels of human signaling proteins. T4 phage application led to the activation of AKT-dependent pathways, resulting in an increase in cell metabolism, survival, and actin reorganization, the last being critical for macropinocytosis and potentially regulating a positive feedback loop to drive further phage internalization. T4 phages additionally down-regulated CDK1 and its downstream effectors, leading to an inhibition of cell cycle progression and an increase in cellular growth through a prolonged G1 phase. These interactions demonstrate that highly purified T4 phages do not activate DNA-mediated inflammatory pathways but do trigger protein phosphorylation cascades that promote cellular growth and survival. We conclude that mammalian cells are internalizing bacteriophages as a resource to promote cellular growth and metabolism.
Collapse
Affiliation(s)
- Marion C. Bichet
- School of Biological Sciences, Monash University, Clayton, Australia
- ACTALIA, Food Safety Department, Saint-Lô, France
- University of Lorraine, CNRS, LCPME, Vandœuvre-lès-Nancy, France
| | - Jack Adderley
- School of Health and Biomedical Science, RMIT University, Bundoora, Australia
| | | | | | | | - Linden J. Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Celine Deffrasnes
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Cassandra David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Genevieve Pepin
- Medical Biology Department, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Ruby CY Lin
- Centre for Infectious Diseases and Microbiology; The Westmead Institute for Medical Research, Westmead, Australia
| | - Ruzeen Patwa
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Christian Doerig
- School of Health and Biomedical Science, RMIT University, Bundoora, Australia
| | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
23
|
Song H, Kim EH, Hong J, Gwon D, Kim JW, Bae GU, Jang CY. Hornerin mediates phosphorylation of the polo-box domain in Plk1 by Chk1 to induce death in mitosis. Cell Death Differ 2023; 30:2151-2166. [PMID: 37596441 PMCID: PMC10482915 DOI: 10.1038/s41418-023-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 08/20/2023] Open
Abstract
The centrosome assembles a bipolar spindle for faithful chromosome segregation during mitosis. To prevent the inheritance of DNA damage, the DNA damage response (DDR) triggers programmed spindle multipolarity and concomitant death in mitosis through a poorly understood mechanism. We identified hornerin, which forms a complex with checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1) to mediate phosphorylation at the polo-box domain (PBD) of Plk1, as the link between the DDR and death in mitosis. We demonstrate that hornerin mediates DDR-induced precocious centriole disengagement through a dichotomous mechanism that includes sequestration of Sgo1 and Plk1 in the cytoplasm through phosphorylation of the PBD in Plk1 by Chk1. Phosphorylation of the PBD in Plk1 abolishes the interaction with Sgo1 and phosphorylation-dependent Sgo1 translocation to the centrosome, leading to precocious centriole disengagement and spindle multipolarity. Mechanistically, hornerin traps phosphorylated Plk1 in the cytoplasm. Furthermore, PBD phosphorylation inactivates Plk1 and disrupts Cep192::Aurora A::Plk1 complex translocation to the centrosome and concurrent centrosome maturation. Remarkably, hornerin depletion leads to chemoresistance against DNA damaging agents by attenuating DDR-induced death in mitosis. These results reveal how the DDR eradicates mitotic cells harboring DNA damage to ensure genome integrity during cell division.
Collapse
Affiliation(s)
- Haiyu Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Jihee Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Dasom Gwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Gyu-Un Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Chang-Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
24
|
Kristeleit R, Plummer R, Jones R, Carter L, Blagden S, Sarker D, Arkenau T, Evans TRJ, Danson S, Symeonides SN, Veal GJ, Klencke BJ, Kowalski MM, Banerji U. A Phase 1/2 trial of SRA737 (a Chk1 inhibitor) administered orally in patients with advanced cancer. Br J Cancer 2023; 129:38-45. [PMID: 37120671 PMCID: PMC10307885 DOI: 10.1038/s41416-023-02279-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND This was a first-in-human Phase 1/2 open-label dose-escalation study of the novel checkpoint kinase 1 (Chk1) inhibitor SRA737. METHODS Patients with advanced solid tumours enrolled in dose-escalation cohorts and received SRA737 monotherapy orally on a continuous daily (QD) dosing schedule in 28-day cycles. Expansion cohorts included up to 20 patients with prospectively selected, pre-specified response predictive biomarkers. RESULTS In total, 107 patients were treated at dose levels from 20-1300 mg. The maximum tolerated dose (MTD) of SRA737 was 1000 mg QD, the recommended Phase 2 dose (RP2D) was 800 mg QD. Common toxicities of diarrhoea, nausea and vomiting were generally mild to moderate. Dose-limiting toxicity at daily doses of 1000 and 1300 mg QD SRA737 included gastrointestinal events, neutropenia and thrombocytopenia. Pharmacokinetic analysis at the 800 mg QD dose showed a mean Cmin of 312 ng/mL (546 nM), exceeding levels required to cause growth delay in xenograft models. No partial or complete responses were seen. CONCLUSIONS SRA737 was well tolerated at doses that achieved preclinically relevant drug concentrations but single agent activity did not warrant further development as monotherapy. Given its mechanism of action resulting in abrogating DNA damage repair, further clinical development of SRA737 should be as combination therapy. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov NCT02797964.
Collapse
Affiliation(s)
| | - Ruth Plummer
- Newcastle University and Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Robert Jones
- Velindre School of Medicine, Cardiff University, and Velindre University NHS Trust, Cardiff, UK
| | - Louise Carter
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Sarah Blagden
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford University Hospital NHS Trust, Oxford, UK
| | | | | | - Thomas R Jeffry Evans
- The Beatson West of Scotland Cancer Centre and the University of Glasgow, Glasgow, UK
| | - Sarah Danson
- Sheffield ECMC, Department of Oncology and Metabolism, University of Sheffield, and Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | - Stefan N Symeonides
- Edinburgh ECMC, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh Cancer Centre, Edinburgh, UK
| | - Gareth J Veal
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | | | | | - Udai Banerji
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
25
|
Kratz A, Kim M, Kelly MR, Zheng F, Koczor CA, Li J, Ono K, Qin Y, Churas C, Chen J, Pillich RT, Park J, Modak M, Collier R, Licon K, Pratt D, Sobol RW, Krogan NJ, Ideker T. A multi-scale map of protein assemblies in the DNA damage response. Cell Syst 2023; 14:447-463.e8. [PMID: 37220749 PMCID: PMC10330685 DOI: 10.1016/j.cels.2023.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
The DNA damage response (DDR) ensures error-free DNA replication and transcription and is disrupted in numerous diseases. An ongoing challenge is to determine the proteins orchestrating DDR and their organization into complexes, including constitutive interactions and those responding to genomic insult. Here, we use multi-conditional network analysis to systematically map DDR assemblies at multiple scales. Affinity purifications of 21 DDR proteins, with/without genotoxin exposure, are combined with multi-omics data to reveal a hierarchical organization of 605 proteins into 109 assemblies. The map captures canonical repair mechanisms and proposes new DDR-associated proteins extending to stress, transport, and chromatin functions. We find that protein assemblies closely align with genetic dependencies in processing specific genotoxins and that proteins in multiple assemblies typically act in multiple genotoxin responses. Follow-up by DDR functional readouts newly implicates 12 assembly members in double-strand-break repair. The DNA damage response assemblies map is available for interactive visualization and query (ccmi.org/ddram/).
Collapse
Affiliation(s)
- Anton Kratz
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Minkyu Kim
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA; University of Texas Health Science Center San Antonio, Department of Biochemistry and Structural Biology, San Antonio, TX 78229, USA
| | - Marcus R Kelly
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Fan Zheng
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Christopher A Koczor
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA
| | - Jianfeng Li
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA
| | - Keiichiro Ono
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Yue Qin
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Christopher Churas
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Jing Chen
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Rudolf T Pillich
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Jisoo Park
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Maya Modak
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Rachel Collier
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Kate Licon
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Dexter Pratt
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Robert W Sobol
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA; Brown University, Department of Pathology and Laboratory Medicine and Legorreta Cancer Center, Providence, RI 02903, USA.
| | - Nevan J Krogan
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.
| | - Trey Ideker
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.
| |
Collapse
|
26
|
Lee SS, Vũ TT, Weiss AS, Yeo GC. Stress-induced senescence in mesenchymal stem cells: Triggers, hallmarks, and current rejuvenation approaches. Eur J Cell Biol 2023; 102:151331. [PMID: 37311287 DOI: 10.1016/j.ejcb.2023.151331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as promising cell-based therapies in the treatment of degenerative and inflammatory conditions. However, despite accumulating evidence of the breadth of MSC functional potency, their broad clinical translation is hampered by inconsistencies in therapeutic efficacy, which is at least partly due to the phenotypic and functional heterogeneity of MSC populations as they progress towards senescence in vitro. MSC senescence, a natural response to aging and stress, gives rise to altered cellular responses and functional decline. This review describes the key regenerative properties of MSCs; summarises the main triggers, mechanisms, and consequences of MSC senescence; and discusses current cellular and extracellular strategies to delay the onset or progression of senescence, or to rejuvenate biological functions lost to senescence.
Collapse
Affiliation(s)
- Sunny Shinchen Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Thu Thuy Vũ
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Viet Nam
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
27
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23:78-94. [PMID: 36471053 DOI: 10.1038/s41568-022-00535-5] [Citation(s) in RCA: 368] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Hu Y, Rosado D, Lindbäck LN, Micko J, Pedmale UV. Cryptochromes and UBP12/13 deubiquitinases antagonistically regulate DNA damage response in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524001. [PMID: 36712126 PMCID: PMC9882212 DOI: 10.1101/2023.01.15.524001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cryptochromes (CRYs) are evolutionarily conserved blue-light receptors that evolved from bacterial photolyases that repair damaged DNA. Today, CRYs have lost their ability to repair damaged DNA; however, prior reports suggest that human CRYs can respond to DNA damage. Currently, the role of CRYs in the DNA damage response (DDR) is lacking, especially in plants. Therefore, we evaluated the role of plant CRYs in DDR along with UBP12/13 deubiquitinases, which interact with and regulate the CRY2 protein. We found that cry1cry2 was hypersensitive, while ubp12ubp13 was hyposensitive to UVC-induced DNA damage. Elevated UV-induced cyclobutane pyrimidine dimers (CPDs) and the lack of DNA repair protein RAD51 accumulation in cry1cry2 plants indicate that CRYs are required for DNA repair. On the contrary, CPD levels diminished and RAD51 protein levels elevated in plants lacking UBP12 and UBP13, indicating their role in DDR repression. Temporal transcriptomic analysis revealed that DDR-induced transcriptional responses were subdued in cry1cry2, but elevated in ubp12ubp13 compared to WT. Through transcriptional modeling of the time-course transcriptome, we found that genes quickly induced by UVC (15 min) are targets of CAMTA 1-3 transcription factors, which we found are required for DDR. This transcriptional regulation seems, however, diminished in the cry1cry2 mutant, indicating that CAMTAs are required for CRY2-mediated DDR. Furthermore, we observed enhanced CRY2-UBP13 interaction and formation of CRY2 nuclear speckles under UVC, suggesting that UVC activates CRY2 similarly to blue light. Together, our data reveal the temporal dynamics of the transcriptional events underlying UVC-induced genotoxicity and expand our knowledge of the role of CRY and UBP12/13 in DDR.
Collapse
Affiliation(s)
- Yuzhao Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Daniele Rosado
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Louise N. Lindbäck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Julie Micko
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| |
Collapse
|
29
|
Li X, Wang L, Liu X, Zheng Z, Kong D. Cellular regulation and stability of DNA replication forks in eukaryotic cells. DNA Repair (Amst) 2022; 120:103418. [DOI: 10.1016/j.dnarep.2022.103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
|
30
|
Kim HJ, Seo BG, Seo EC, Lee KM, Hwangbo C. Checkpoint Kinase 1 (CHK1) Functions as Both a Diagnostic Marker and a Regulator of Epithelial-to-Mesenchymal Transition (EMT) in Triple-Negative Breast Cancer. Curr Issues Mol Biol 2022; 44:5848-5865. [PMID: 36547059 PMCID: PMC9777496 DOI: 10.3390/cimb44120398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is more difficult to treat and has a higher mortality rate than other subtypes. Although hormone receptor-targeted therapy is an effective treatment to increase survival rate in breast cancer patients, it is not suitable for TNBC patients. To address the issues, differentially expressed genes (DEGs) in TNBC patients from the Gene Expression Omnibus (GEO) database were analyzed. A total of 170 genes were obtained from three Genomic Spatial Events (GSEs) using the intersection of each GSE dataset and 61 DEGs were identified after validation with the gene enrichment analysis. We combined this with the degree scores from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein-protein interaction (PPI) network, of which 7 genes were correlated with survival rate. Finally, a proteomics database revealed that only the CHK1 protein level was differently expressed in basal-like compared with other subtypes. We demonstrated that CHK1 expression was higher in TNBC cell lines compared with non-TNBC cell lines, and CHK1 promotes epithelial to mesenchymal transition (EMT) as well as migration and invasion ability. Our study provides new insight into the TNBC subnetwork that may be useful in the prognosis and treatment of TNBC patients.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), PMBBRC and Research Institute of Life Sciences, Geongsang National University, Jinju 52828, Republic of Korea
- Correspondence: (H.-J.K.); (C.H.)
| | - Bo-Gyeong Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), PMBBRC and Research Institute of Life Sciences, Geongsang National University, Jinju 52828, Republic of Korea
| | - Eun-Chan Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), PMBBRC and Research Institute of Life Sciences, Geongsang National University, Jinju 52828, Republic of Korea
| | - Kwang-Min Lee
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), PMBBRC and Research Institute of Life Sciences, Geongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), PMBBRC and Research Institute of Life Sciences, Geongsang National University, Jinju 52828, Republic of Korea
- Correspondence: (H.-J.K.); (C.H.)
| |
Collapse
|
31
|
Construction of a Versatile, Programmable RNA-Binding Protein Using Designer PPR Proteins and Its Application for Splicing Control in Mammalian Cells. Cells 2022; 11:cells11223529. [PMID: 36428958 PMCID: PMC9688318 DOI: 10.3390/cells11223529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
RNAs play many essential roles in gene expression and are involved in various human diseases. Although genome editing technologies have been established, the engineering of sequence-specific RNA-binding proteins that manipulate particular cellular RNA molecules is immature, in contrast to nucleotide-based RNA manipulation technology, such as siRNA- and RNA-targeting CRISPR/Cas. Here, we demonstrate a versatile RNA manipulation technology using pentatricopeptide-repeat (PPR)-motif-containing proteins. First, we developed a rapid construction and evaluation method for PPR-based designer sequence-specific RNA-binding proteins. This system has enabled the steady construction of dozens of functional designer PPR proteins targeting long 18 nt RNA, which targets a single specific RNA in the mammalian transcriptome. Furthermore, the cellular functionality of the designer PPR proteins was first demonstrated by the control of alternative splicing of either a reporter gene or an endogenous CHK1 mRNA. Our results present a versatile protein-based RNA manipulation technology using PPR proteins that facilitates the understanding of unknown RNA functions and the creation of gene circuits and has potential for use in future therapeutics.
Collapse
|
32
|
Aljabal G, Yap BK. In Silico Studies on GCP-Lys-OMe as a Potential 14-3-3σ Homodimer Stabilizer. Pharmaceuticals (Basel) 2022; 15:ph15101290. [PMID: 36297403 PMCID: PMC9609495 DOI: 10.3390/ph15101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
14-3-3 sigma is a vital negative cell cycle regulator. Its expression is consistently downregulated in many types of cancer through gene promoter hypermethylation or proteasomal degradation. 14-3-3 sigma needs to form a homodimer to be functional, while dimers are less prone to degradation than monomers. This suggests that a homodimer stabilizer may increase the tumor suppressive activities of 14-3-3 sigma. However, no known homodimer stabilizer of 14-3-3 sigma has been reported to date. Therefore, this study attempts to test the potential capability of GCP-Lys-OMe (previously reported to bind at the dimer interface of 14-3-3 zeta isoform), to bind and stabilize the 14-3-3 sigma homodimer. In silico docking of GCP-Lys-OMe on 14-3-3 sigma showed more favorable interaction energy (−9.63 kcal/mole) to the dimer interface than 14-3-3 zeta (−7.73 kcal/mole). Subsequent 100 ns molecular dynamics simulation of the GCP-Lys-OMe/14-3-3 sigma complex revealed a highly stable interaction with an average root-mean-square deviation of 0.39 nm (protein backbone) and 0.77 nm (ligand atoms). More contacts between residues at the homodimer interface and a smaller coverage of conformational space of protein atoms were detected for the bound form than for the apo form. These results suggest that GCP-Lys-OMe is a potential homodimer stabilizer of 14-3-3 sigma.
Collapse
|
33
|
Safeguarding DNA Replication: A Golden Touch of MiDAS and Other Mechanisms. Int J Mol Sci 2022; 23:ijms231911331. [PMID: 36232633 PMCID: PMC9570362 DOI: 10.3390/ijms231911331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase. As a result, cells have adapted several mechanisms ensuring replication completion before entry into mitosis and segregating chromosomes with minimal, if any, abnormalities. In this review, we describe the possible obstacles that a replication fork might encounter and how the cell manages to protect DNA replication from S to the next G1.
Collapse
|
34
|
Taylor MJ, Thompson AM, Alhajlah S, Tuxworth RI, Ahmed Z. Inhibition of Chk2 promotes neuroprotection, axon regeneration, and functional recovery after CNS injury. SCIENCE ADVANCES 2022; 8:eabq2611. [PMID: 36103534 PMCID: PMC9473583 DOI: 10.1126/sciadv.abq2611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
DNA double-strand breaks occur in many acute and long-term neurological conditions, including neurodegeneration, neurotrauma, and stroke. Nonrepaired breaks chronically activate the DNA damage response in neurons, leading to neural dysfunction and apoptosis. Here, we show that targeting of the central ATM-Chk2 pathway regulating the response to double-strand breaks slows neural decline in Drosophila models of chronic neurodegeneration. Inhibitors of ATM-Chk2, but not the parallel ATR-Chk1 pathway, also promote marked, functional recovery after acute central nervous system injury in rats, suggesting that inhibiting nonhomologous end-joining rather than homologous recombination is crucial for neuroprotection. We demonstrate that the Chk2 inhibitor, prexasertib, which has been evaluated in phase 2 clinical trials for cancer, has potent neuroprotective effects and represents a new treatment option to promote functional recovery after spinal cord or optic nerve injury.
Collapse
Affiliation(s)
- Matthew J. Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adam M. Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sharif Alhajlah
- Applied Medical Science College, Shaqra University, Addawadmi, Riyadh, Saudi Arabia
| | - Richard I. Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
35
|
Zhang F, Chen L. Molecular Threat of Splicing Factor Mutations to Myeloid Malignancies and Potential Therapeutic Modulations. Biomedicines 2022; 10:biomedicines10081972. [PMID: 36009519 PMCID: PMC9405558 DOI: 10.3390/biomedicines10081972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Splicing factors are frequently mutated in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These mutations are presumed to contribute to oncogenic transformation, but the underlying mechanisms remain incompletely understood. While no specific treatment option is available for MDS/AML patients with spliceosome mutations, novel targeting strategies are actively explored, leading to clinical trials of small molecule inhibitors that target the spliceosome, DNA damage response pathway, and immune response pathway. Here, we review recent progress in mechanistic understanding of splicing factor mutations promoting disease progression and summarize potential therapeutic strategies, which, if successful, would provide clinical benefit to patients carrying splicing factor mutations.
Collapse
|
36
|
Lohmüller M, Roeck BF, Szabo TG, Schapfl MA, Pegka F, Herzog S, Villunger A, Schuler F. The SKP2-p27 axis defines susceptibility to cell death upon CHK1 inhibition. Mol Oncol 2022; 16:2771-2787. [PMID: 35673965 PMCID: PMC9348596 DOI: 10.1002/1878-0261.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Checkpoint kinase 1 (CHK1; encoded by CHEK1) is an essential gene that monitors DNA replication fidelity and prevents mitotic entry in the presence of under-replicated DNA or exogenous DNA damage. Cancer cells deficient in p53 tumor suppressor function reportedly develop a strong dependency on CHK1 for proper cell cycle progression and maintenance of genome integrity, sparking interest in developing kinase inhibitors. Pharmacological inhibition of CHK1 triggers B-Cell CLL/Lymphoma 2 (BCL2)-regulated cell death in malignant cells largely independently of p53, and has been suggested to kill p53-deficient cancer cells even more effectively. Next to p53 status, our knowledge about factors predicting cancer cell responsiveness to CHK1 inhibitors is limited. Here, we conducted a genome-wide CRISPR/Cas9-based loss-of-function screen to identify genes defining sensitivity to chemical CHK1 inhibitors. Next to the proapoptotic BCL2 family member, BCL2 Binding Component 3 (BBC3; also known as PUMA), the F-box protein S-phase Kinase-Associated Protein 2 (SKP2) was validated to tune the cellular response to CHK1 inhibition. SKP2 is best known for degradation of the Cyclin-dependent Kinase Inhibitor 1B (CDKN1B; also known as p27), thereby promoting G1-S transition and cell cycle progression in response to mitogens. Loss of SKP2 resulted in the predicted increase in p27 protein levels, coinciding with reduced DNA damage upon CHK1-inhibitor treatment and reduced cell death in S-phase. Conversely, overexpression of SKP2, which consequently results in reduced p27 protein levels, enhanced cell death susceptibility to CHK1 inhibition. We propose that assessing SKP2 and p27 expression levels in human malignancies will help to predict the responsiveness to CHK1-inhibitor treatment.
Collapse
Affiliation(s)
- Michael Lohmüller
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Bernhard F Roeck
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Tamas G Szabo
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Fragka Pegka
- Institute for Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Sebastian Herzog
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
37
|
Ghalia HE, Amina G, Aissouq AE, Oussama C, Hicham EH, Abdelkrim O, Mohammed B. A quantitative study of the structure-activity relationship and molecular docking of 5.6.7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents using quantum chemical descriptors and statistical methods. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell 2022; 82:2298-2314. [PMID: 35714587 DOI: 10.1016/j.molcel.2022.05.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Faithful DNA replication is critical for the maintenance of genomic integrity. Although DNA replication machinery is highly accurate, the process of DNA replication is constantly challenged by DNA damage and other intrinsic and extrinsic stresses throughout the genome. A variety of cellular stresses interfering with DNA replication, which are collectively termed replication stress, pose a threat to genomic stability in both normal and cancer cells. To cope with replication stress and maintain genomic stability, cells have evolved a complex network of cellular responses to alleviate and tolerate replication problems. This review will focus on the major sources of replication stress, the impacts of replication stress in cells, and the assays to detect replication stress, offering an overview of the hallmarks of DNA replication stress.
Collapse
Affiliation(s)
- Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
39
|
Lopez KE, Bouchier-Hayes L. Lethal and Non-Lethal Functions of Caspases in the DNA Damage Response. Cells 2022; 11:cells11121887. [PMID: 35741016 PMCID: PMC9221191 DOI: 10.3390/cells11121887] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Members of the caspase family are well known for their roles in the initiation and execution of cell death. Due to their function in the removal of damaged cells that could otherwise become malignant, caspases are important players in the DNA damage response (DDR), a network of pathways that prevent genomic instability. However, emerging evidence of caspases positively or negatively impacting the accumulation of DNA damage in the absence of cell death demonstrates that caspases play a role in the DDR that is independent of their role in apoptosis. This review highlights the apoptotic and non-apoptotic roles of caspases in the DDR and how they can impact genomic stability and cancer treatment.
Collapse
Affiliation(s)
- Karla E. Lopez
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
40
|
Dong MZ, Ouyang YC, Gao SC, Ma XS, Hou Y, Schatten H, Wang ZB, Sun QY. PPP4C facilitates homologous recombination DNA repair by dephosphorylating PLK1 during early embryo development. Development 2022; 149:dev200351. [PMID: 35546066 DOI: 10.1242/dev.200351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/24/2022] [Indexed: 12/17/2023]
Abstract
Mammalian early embryo cells have complex DNA repair mechanisms to maintain genomic integrity, and homologous recombination (HR) plays the main role in response to double-strand DNA breaks (DSBs) in these cells. Polo-like kinase 1 (PLK1) participates in the HR process and its overexpression has been shown to occur in a variety of human cancers. Nevertheless, the regulatory mechanism of PLK1 remains poorly understood, especially during the S and G2 phase. Here, we show that protein phosphatase 4 catalytic subunit (PPP4C) deletion causes severe female subfertility due to accumulation of DNA damage in oocytes and early embryos. PPP4C dephosphorylated PLK1 at the S137 site, negatively regulating its activity in the DSB response in early embryonic cells. Depletion of PPP4C induced sustained activity of PLK1 when cells exhibited DNA lesions that inhibited CHK2 and upregulated the activation of CDK1, resulting in inefficient loading of the essential HR factor RAD51. On the other hand, when inhibiting PLK1 in the S phase, DNA end resection was restricted. These results demonstrate that PPP4C orchestrates the switch between high-PLK1 and low-PLK1 periods, which couple the checkpoint to HR.
Collapse
Affiliation(s)
- Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Cai Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| |
Collapse
|
41
|
A clinically relevant heterozygous ATR mutation sensitizes colorectal cancer cells to replication stress. Sci Rep 2022; 12:5422. [PMID: 35361811 PMCID: PMC8971416 DOI: 10.1038/s41598-022-09308-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) ranks third among the most frequent malignancies and represents the second most common cause of cancer-related deaths worldwide. By interfering with the DNA replication process of cancer cells, several chemotherapeutic molecules used in CRC therapy induce replication stress (RS). At the cellular level, this stress is managed by the ATR-CHK1 pathway, which activates the replication checkpoint. In recent years, the therapeutic value of targeting this pathway has been demonstrated. Moreover, MSI + (microsatellite instability) tumors frequently harbor a nonsense, heterozygous mutation in the ATR gene. Using isogenic HCT116 clones, we showed that this mutation of ATR sensitizes the cells to several drugs, including SN-38 (topoisomerase I inhibitor) and VE-822 (ATR inhibitor) and exacerbates their synergistic effects. We showed that this mutation bottlenecks the replication checkpoint leading to extensive DNA damage. The combination of VE-822 and SN-38 induces an exhaustion of RPA and a subsequent replication catastrophe. Surviving cells complete replication and accumulate in G2 in a DNA-PK-dependent manner, protecting them from cell death. Together, our results suggest that RPA and DNA-PK represent promising therapeutic targets to optimize the inhibition of the ATR-CHK1 pathway in oncology. Ultimately, ATR frameshift mutations found in patients may also represent important prognostic factors.
Collapse
|
42
|
Zhang Y, Luo S, Jia Y, Zhang X. Telomere maintenance mechanism dysregulation serves as an early predictor of adjuvant therapy response and a potential therapeutic target in human cancers. Int J Cancer 2022; 151:313-327. [PMID: 35342938 DOI: 10.1002/ijc.34007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Telomere maintenance mechanisms (TMMs) rescue cells from telomere crisis, endow cells immortal property, stabilize genomic integrity. However, TMM-associated molecular profiles and their clinical outcomes in cancer remain elusive. Here, we performed a pan-cancer and integrated analysis of TMM gene expression profiles from 10,107 unique samples with clinicopathological, molecular and outcome features across 7 malignancies from the same microarray platform (Affymetrix GPL570 platform). This resource was divided into Case-Control datasets for obtaining dysregulated TMM genes and Survival datasets for evaluating clinical outcomes. Multidimensional data from The Cancer Genome Atlas (TCGA) were used to elucidate associations between TMM dysregulation and survival, genomic instability. Our results demonstrated that TMMs had a consistent dysregulation spectrum across cancers, based on which we developed the TMM-dysregulation signature TMScore that was positively associated with various tumor adverse features. Two opposite prognostic patterns of TMScore independent of clinicopathological and molecular characteristics were identified, which might be explained by genomic instability: breast and lung cancer patients with elevated TMScore had inferior outcomes, suggesting TMScore-related genes as potential therapeutic targets, on the contrary, colon and stomach cancer patients had superior outcomes. Most important, the prognostic value of TMScore was still significant regardless of whether patients had received adjuvant therapy, which was valuable for discriminating non-responders from responders, and could predict the effectiveness of adjuvant therapy. In summary, our resources delineate TMMs dysregulated landscape across cancers, shed light on the impact of TMMs dysregulation on patient outcomes and adjuvant therapy, and provide novel therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Yajing Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China.,Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shangyi Luo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China.,Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Jia
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China.,Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China.,Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
43
|
Vogeley C, Rolfes KM, Krutmann J, Haarmann-Stemmann T. The Aryl Hydrocarbon Receptor in the Pathogenesis of Environmentally-Induced Squamous Cell Carcinomas of the Skin. Front Oncol 2022; 12:841721. [PMID: 35311158 PMCID: PMC8927079 DOI: 10.3389/fonc.2022.841721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most frequent malignancies in humans and academia as well as public authorities expect a further increase of its incidence in the next years. The major risk factor for the development of SCC of the general population is the repeated and unprotected exposure to ultraviolet (UV) radiation. Another important risk factor, in particular with regards to occupational settings, is the chronic exposure to polycyclic aromatic hydrocarbons (PAH) which are formed during incomplete combustion of organic material and thus can be found in coal tar, creosote, bitumen and related working materials. Importantly, both exposomal factors unleash their carcinogenic potential, at least to some extent, by activating the aryl hydrocarbon receptor (AHR). The AHR is a ligand-dependent transcription factor and key regulator in xenobiotic metabolism and immunity. The AHR is expressed in all cutaneous cell-types investigated so far and maintains skin integrity. We and others have reported that in response to a chronic exposure to environmental stressors, in particular UV radiation and PAHs, an activation of AHR and downstream signaling pathways critically contributes to the development of SCC. Here, we summarize the current knowledge about AHR's role in skin carcinogenesis and focus on its impact on defense mechanisms, such as DNA repair, apoptosis and anti-tumor immune responses. In addition, we discuss the possible consequences of a simultaneous exposure to different AHR-stimulating environmental factors for the development of cutaneous SCC.
Collapse
Affiliation(s)
- Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
44
|
IP-Se-06, a Selenylated Imidazo[1,2-a]pyridine, Modulates Intracellular Redox State and Causes Akt/mTOR/HIF-1α and MAPK Signaling Inhibition, Promoting Antiproliferative Effect and Apoptosis in Glioblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3710449. [PMID: 35360199 PMCID: PMC8964227 DOI: 10.1155/2022/3710449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiforme (GBM) is a notably lethal brain tumor associated with high proliferation rate and therapeutic resistance, while currently effective treatment options are still lacking. Imidazo[1,2-a]pyridine derivatives and organoselenium compounds are largely used in medicinal chemistry and drug development. This study is aimed at further investigating the antitumor mechanism of IP-Se-06 (3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazol[1,2-a]pyridine), a selenylated imidazo[1,2-a]pyridine derivative in glioblastoma cells. IP-Se-06 exhibited high cytotoxicity against A172 cells (IC50 = 1.8 μM) and selectivity for this glioblastoma cell. The IP-Se-06 compound has pharmacological properties verified in its ADMET profile, especially related to blood-brain barrier (BBB) permeability. At low concentration (1 μM), IP-Se-06 induced intracellular redox state modulation with depletion of TrxR and GSH levels as well as inhibition of NRF2 protein. IP-Se-06 also decreased mitochondrial membrane potential, induced cytochrome c release, and chromatin condensation. Furthermore, IP-Se-06 induced apoptosis by decreasing levels of Bcl-xL while increasing levels of γ-H2AX and p53 proteins. Treatment with IP-Se-06 induced cell cycle arrest and showed antiproliferative effect by inhibition of Akt/mTOR/HIF-1α and ERK 1/2 signaling pathways. In addition, IP-Se-06 displayed significant inhibition of p38 MAPK and p-p38, leading to inhibition of inflammasome complex proteins (NLRP3 and caspase-1) in glioblastoma cells. These collective findings demonstrated that IP-Se-06 is a bioactive molecule that can be considered a candidate for the development of a novel drug for glioblastoma treatment.
Collapse
|
45
|
Shen D, Liu H, Qian F, Wang P. Design, synthesis and evaluation of novel thienopyridazine derivatives as Chk1/2 inhibitors. Bioorg Chem 2022; 121:105704. [PMID: 35240418 DOI: 10.1016/j.bioorg.2022.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/02/2022]
Abstract
In order to search for novel checkpoint kinase 1/2 (Chk1) inhibitors, we have designed and synthesized a series of new compounds incorporating thienopyridazine core. Bioevaluation showed that compounds 10j, 10i, 13e and 10o exhibited relatively good inhibitory activity. Notably, compound 10o displayed high selectivity against a panel of kinases and inhibited Chk1/2 signaling pathway stimulated by DNA damage drugs in cellular level. Molecular docking of 10o to the ATP-binding site of Chk1 kinase domain indicated the existence of polar interactions between 10o and the ATP-ribose-binding residues of Chk1. In mouse HT-29 xenografts, a synergistic effect was observed. Co-treatment by CPT-11 and 10o significantly diminished the tumor volume, indicating the great potential of 10o as a candidate of Chk1/2 inhibitor.
Collapse
Affiliation(s)
- Dadong Shen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research & Development Center, Zhejiang Medicine Co. Ltd, Shaoxing 312500, China
| | - Hanyu Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng Qian
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
46
|
MiR-139-3p Targets CHEK1 Modulating DNA Repair and Cell Viability in Lung Squamous Carcinoma Cells. Mol Biotechnol 2022; 64:832-840. [PMID: 35150405 DOI: 10.1007/s12033-022-00462-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
Non-small-cell lung carcinoma (NSCLC) can be classified into several subtypes, where lung squamous carcinoma (LUSC) is one common subtype. Though miR-139-3p has been reported to be implicated in the development of various cancers, its mechanisms and functions remain unclear in LUSC. In this study, miR-139-3p was screened as one of the significantly down-regulated miRNAs in LUSC by an "edgeR" differential analysis based on TCGA database, which was verified by qRT-PCR in LUSC cell lines as well. The viability and cell cycle of the LUSC cells were examined by CCK-8 and flow cytometry, respectively, exhibiting that upregulating miR-139-3p restrained cell viability and thus accelerating the cell cycle. To explain this phenomenon, we further explored the downstream target gene through miRTarBase and starBase databases, where CHEK1 was predicted as one candidate. The targeting relationship was verified by a dual luciferase assay, identifying that CHEK1 could be targeted by miR-139-3p. Then, qRT-PCR and western blot analyses were performed to detect the expression of CHEK1 mRNA and proteins under the alteration of miR-139-3p expression. Rescue experiments were conducted to confirm the impacts of miR-139-3p/CHEK1 axis on the cell viability and cell cycle of LUSC. The results indicated that the effects of miR-139-3p on the LUSC cell phenotypes could be blocked by overexpressing CHEK1. In conclusion, our study provides a novel insight into the regulatory role of miR-139-3p in the development of LUSC.
Collapse
|
47
|
Li Y, Liu X, Zhang S, Wang L, Zhang L, Zuo Z. Computational simulation studies on the binding selectivity of Wee1 and Checkpoint kinase 1 by molecular dynamics simulation combined with free energy calculations. J Biomol Struct Dyn 2022; 40:1172-1181. [PMID: 33016857 DOI: 10.1080/07391102.2020.1823882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Wee1 kinase and Checkpoint kinase 1 (Chk1) kinase, which are well known to be involved in cancer, are promising targets for cancer therapy. Most of developed Wee1 inhibitors can inhibit activity of Chk1 kinase to different degrees as well. The poor selectivity brought side effects and selective inhibitor is needed. However, the selective mechanisms of Wee1 versus Chk1 are not clear. Therefore, the design of selective Wee1 and Chk1 inhibitors would provide a meaningful starting for the development of anticancer drugs with optimal efficacy. In this study, Wee1 inhibitors with different selectivity over Chk1 were chosen to analyze the selectivity mechanism by means of molecular docking, molecular dynamics simulations and binding free energy calculations. Two key residues of Wee1 kinase and two critical residues of Chk1 were mutated to detect their effect on ligand binding into protein. The results indicated that these residues play a pivotal role in the binding interactions of ligands to receptors through hydrogen bond and hydrophobic interaction with inhibitors. This may provide a better understanding of the selective mechanism of Wee1 and Chk1. It would be beneficial to the discovery and optimization of selective Wee1 and Chk1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yaping Li
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Xingyong Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Liangliang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Li Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Zhili Zuo
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
48
|
Identification of a novel catalytic inhibitor of topoisomerase II alpha that engages distinct mechanisms in p53 wt or p53 -/- cells to trigger G2/M arrest and senescence. Cancer Lett 2022; 526:284-303. [PMID: 34843865 DOI: 10.1016/j.canlet.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
We report a novel topoisomerase IIα inhibitor, mercaptopyridine oxide (MPO), which induces G2/M arrest and senescence with distinctly different cell cycle regulators (p21 or p14ARF) in HCT116p 53WT and HCT116 p53-/- cells, respectively. MPO treatment induced defective topoisomerase IIα-mediated decatenation process and inhibition of the enzyme's catalytic activity that stalled entry into mitosis. Topoisomerase IIα inhibition was associated with ROS-mediated activation of ATM-Chk2 kinase axis in HCT116 p53WT cells, but not in HCT116 p53-/- cells displaying early Chk1 activation. Results suggest that E2F1 stabilization might link MPO-induced p53 phospho-activation in HCT116 p53WT cells or p14ARF induction in HCT116 p53-/- cells. Also, interaction between topoisomerase IIα and Chk1 was induced in both cell lines, which could be important for decatenation checkpoint activation, even upon p53 ablation. Notably, TCGA dataset analyses revealed topoisomerase IIα upregulation across a wide array of cancers, which was associated with lower overall survival. Corroborating that increased topoisomerase IIα expression might offer susceptibility to the novel inhibitor, MPO (5 μM) induced strong inhibition in colony forming ability of pancreatic and hepatocellular cancer cell lines. These data highlight a novel topoisomerase IIα inhibitor and provide proof-of-concept for its therapeutic potential against cancers even with loss-of-function of p53.
Collapse
|
49
|
The metabolic stress-activated checkpoint LKB1-MARK3 axis acts as a tumor suppressor in high-grade serous ovarian carcinoma. Commun Biol 2022; 5:39. [PMID: 35017636 PMCID: PMC8752757 DOI: 10.1038/s42003-021-02992-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive gynecological malignancy, resulting in approximately 70% of ovarian cancer deaths. However, it is still unclear how genetic dysregulations and biological processes generate the malignant subtype of HGSOC. Here we show that expression levels of microtubule affinity-regulating kinase 3 (MARK3) are downregulated in HGSOC, and that its downregulation significantly correlates with poor prognosis in HGSOC patients. MARK3 overexpression suppresses cell proliferation and angiogenesis of ovarian cancer cells. The LKB1-MARK3 axis is activated by metabolic stress, which leads to the phosphorylation of CDC25B and CDC25C, followed by induction of G2/M phase arrest. RNA-seq and ATAC-seq analyses indicate that MARK3 attenuates cell cycle progression and angiogenesis partly through downregulation of AP-1 and Hippo signaling target genes. The synthetic lethal therapy using metabolic stress inducers may be a promising therapeutic choice to treat the LKB1-MARK3 axis-dysregulated HGSOCs. Machino et al discover that low expression of microtubule affinity-regulating kinase 3 (MARK3) correlates with poor prognosis in high-grade serous ovarian carcinoma (HGSOC) patients. They find that the LKB1-MARK3 axis is activated by metabolic stress to block the cell cycle at the G2/M checkpoint, and characterise other MARK3 regulated pathways through RNA and ATAC sequencing.
Collapse
|
50
|
Boice AG, Lopez KE, Pandita RK, Parsons MJ, Charendoff CI, Charaka V, Carisey AF, Pandita TK, Bouchier-Hayes L. Caspase-2 regulates S-phase cell cycle events to protect from DNA damage accumulation independent of apoptosis. Oncogene 2022; 41:204-219. [PMID: 34718349 PMCID: PMC8738157 DOI: 10.1038/s41388-021-02085-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Abstract
In addition to its classical role in apoptosis, accumulating evidence suggests that caspase-2 has non-apoptotic functions, including regulation of cell division. Loss of caspase-2 is known to increase proliferation rates but how caspase-2 is regulating this process is currently unclear. We show that caspase-2 is activated in dividing cells in G1-phase of the cell cycle. In the absence of caspase-2, cells exhibit numerous S-phase defects including delayed exit from S-phase, defects in repair of chromosomal aberrations during S-phase, and increased DNA damage following S-phase arrest. In addition, caspase-2-deficient cells have a higher frequency of stalled replication forks, decreased DNA fiber length, and impeded progression of DNA replication tracts. This indicates that caspase-2 protects from replication stress and promotes replication fork protection to maintain genomic stability. These functions are independent of the pro-apoptotic function of caspase-2 because blocking caspase-2-induced cell death had no effect on cell division, DNA damage-induced cell cycle arrest, or DNA damage. Thus, our data supports a model where caspase-2 regulates cell cycle and DNA repair events to protect from the accumulation of DNA damage independently of its pro-apoptotic function.
Collapse
Affiliation(s)
- Ashley G Boice
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Karla E Lopez
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Raj K Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas A&M Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Melissa J Parsons
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chloe I Charendoff
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, TX, 77030, USA
| | - Vijay Charaka
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Alexandre F Carisey
- Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, TX, 77030, USA
- Department of Pediatrics, Section of Allergy and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tej K Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas A&M Institute of Biosciences and Technology, Houston, TX, 77030, USA
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|