1
|
Krakow EF, Brault M, Summers C, Cunningham TM, Biernacki MA, Black RG, Woodward KB, Vartanian N, Kanaan SB, Yeh AC, Dossa RG, Bar M, Cassaday RD, Dahlberg A, Till BG, Denker AE, Yeung CCS, Gooley TA, Maloney DG, Riddell SR, Greenberg PD, Chapuis AG, Newell EW, Furlan SN, Bleakley M. HA-1-targeted T-cell receptor T-cell therapy for recurrent leukemia after hematopoietic stem cell transplantation. Blood 2024; 144:1069-1082. [PMID: 38683966 PMCID: PMC11406181 DOI: 10.1182/blood.2024024105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
ABSTRACT Relapse is the leading cause of death after allogeneic hematopoietic stem cell transplantation (HCT) for leukemia. T cells engineered by gene transfer to express T cell receptors (TCR; TCR-T) specific for hematopoietic-restricted minor histocompatibility (H) antigens may provide a potent selective antileukemic effect post-HCT. We conducted a phase 1 clinical trial using a novel TCR-T product targeting the minor H antigen, HA-1, to treat or consolidate treatment of persistent or recurrent leukemia and myeloid neoplasms. The primary objective was to evaluate the feasibility and safety of administration of HA-1 TCR-T after HCT. CD8+ and CD4+ T cells expressing the HA-1 TCR and a CD8 coreceptor were successfully manufactured from HA-1-disparate HCT donors. One or more infusions of HA-1 TCR-T following lymphodepleting chemotherapy were administered to 9 HCT recipients who had developed disease recurrence after HCT. TCR-T cells expanded and persisted in vivo after adoptive transfer. No dose-limiting toxicities occurred. Although the study was not designed to assess efficacy, 4 patients achieved or maintained complete remissions following lymphodepletion and HA-1 TCR-T, with 1 patient still in remission at >2 years. Single-cell RNA sequencing of relapsing/progressive leukemia after TCR-T therapy identified upregulated molecules associated with T-cell dysfunction or cancer cell survival. HA-1 TCR-T therapy appears feasible and safe and shows preliminary signals of efficacy. This clinical trial was registered at ClinicalTrials.gov as #NCT03326921.
Collapse
Affiliation(s)
- Elizabeth F. Krakow
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Michelle Brault
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Corinne Summers
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Tanya M. Cunningham
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Melinda A. Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - R. Graeme Black
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kyle B. Woodward
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nicole Vartanian
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Sami B. Kanaan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Albert C. Yeh
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robson G. Dossa
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Merav Bar
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ryan D. Cassaday
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Ann Dahlberg
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Brian G. Till
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Cecilia C. S. Yeung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Ted A. Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - David G. Maloney
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Stanley R. Riddell
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Philip D. Greenberg
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Aude G. Chapuis
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Evan W. Newell
- Vaccine and Infection Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Scott N. Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Marie Bleakley
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
2
|
Abelin JG, Cox AL. Innovations Toward Immunopeptidomics. Mol Cell Proteomics 2024; 23:100823. [PMID: 39095021 PMCID: PMC11419911 DOI: 10.1016/j.mcpro.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past 30 years, immunopeptidomics has grown alongside improvements in mass spectrometry technology, genomics, transcriptomics, T cell receptor sequencing, and immunological assays to identify and characterize the targets of activated T cells. Together, multiple research groups with expertise in immunology, biochemistry, chemistry, and peptide mass spectrometry have come together to enable the isolation and sequence identification of endogenous major histocompatibility complex (MHC)-bound peptides. The idea to apply highly sensitive mass spectrometry techniques to study the landscape of peptide antigens presented by cell surface MHCs was innovative and continues to be successfully used and improved upon to deepen our understanding of how peptide antigens are processed and presented to T cells. Multiple research groups were involved in this bringing immunopeptidomics to the forefront of translational research, and we will highlight the contributions of one of the earliest developers, Professor Donald F. Hunt, and his research group at the University of Virginia. The Hunt laboratory applied cutting edge mass spectroscopy-based immunopeptidomics to study cancer, autoimmunity, transplant rejection, and infectious diseases. Across these diverse research areas, the Hunt laboratory and collaborators would characterize previously unknown MHC peptide-binding motifs and identify immunologically active antigens using ultra sensitive mass spectrometry techniques. Amazingly, many of the MHC-bound peptide antigens discovered in collaborations with the Hunt laboratory were sequenced by mass spectrometry before the completion of the human genome using manual de novo sequencing. In this perspective article, we will chronicle the work of the Hunt laboratory and their many collaborators that would be a major part of the foundation for mass spectrometry-based immunopeptidomics and its application to immunology research.
Collapse
Affiliation(s)
| | - Andrea L Cox
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA; Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Peereboom ET, Maranus AE, Timmerman LM, Geneugelijk K, Spierings E. Experimental Data on PIRCHE and T-Cell Reactivity: HLA-DPB1-Derived Peptides Identified by PIRCHE-I Show Binding to HLA-A*02:01 in vitro and T-Cell Activation in vivo. Transfus Med Hemother 2024; 51:131-139. [PMID: 38867810 PMCID: PMC11166409 DOI: 10.1159/000537789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/11/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Human leukocyte antigen (HLA)-DPB1 mismatches during hematopoietic stem cell transplantation (HSCT) with an unrelated donor result in an increased risk for the development of graft-versus-host disease (GvHD). The number of CD8+ T-cell epitopes available for indirect allorecognition as predicted by the PIRCHE algorithm has been shown to be associated with GvHD development. As a proof of principle, PIRCHE-I predictions for HLA-DPB1 mismatches were validated in vitro and in vivo. Methods PIRCHE-I analysis was performed to identify HLA-DPB1-derived peptides that could theoretically bind to HLA-A*02:01. PIRCHE-I predictions for HLA-DPB1 mismatches were validated in vitro by investigating binding affinities of HLA-DPB1-derived peptides to the HLA-A*02:01 in a competition-based binding assay. To investigate the capacity of HLA-DPB1-derived peptides to elicit a T-cell response in vivo, mice were immunized with these peptides. T-cell alloreactivity was subsequently evaluated using an interferon-gamma ELISpot assay. Results The PIRCHE-I algorithm identified five HLA-DPB1-derived peptides (RMCRHNYEL, YIYNREEFV, YIYNREELV, YIYNREEYA, and YIYNRQEYA) to be presented by HLA-A*02:01. Binding of these peptides to HLA-A*02:01 was confirmed in a competition-based peptide binding assay, all showing an IC50 value of 21 μm or lower. The peptides elicited an interferon-gamma response in vivo. Conclusion Our results indicate that the PIRCHE-I algorithm can identify potential immunogenic HLA-DPB1-derived peptides present in recipients of an HLA-DPB1-mismatched donor. These combined in vitro and in vivo observations strengthen the validity of the PIRCHE-I algorithm to identify HLA-DPB1 mismatch-related GvHD development upon HSCT.
Collapse
Affiliation(s)
- Emma T.M. Peereboom
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anna E. Maranus
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laura M. Timmerman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kirsten Geneugelijk
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Fuchs KJ, Falkenburg JHF, Griffioen M. Minor histocompatibility antigens to predict, monitor or manipulate GvL and GvHD after allogeneic hematopoietic cell transplantation. Best Pract Res Clin Haematol 2024; 37:101555. [PMID: 39098803 DOI: 10.1016/j.beha.2024.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 08/06/2024]
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) provides a potential curative treatment for haematological malignancies. The therapeutic Graft-versus-Leukaemia (GvL) effect is induced by donor T cells attacking patient hematopoietic (malignant) cells. However, if healthy non-hematopoietic tissues are targeted, Graft-versus-Disease (GvHD) may develop. After HLA-matched alloHCT, GvL and GvHD are induced by donor T cells recognizing polymorphic peptides presented by HLA on patient cells, so-called minor histocompatibility antigens (MiHAs). The balance between GvL and GvHD depends on the tissue distribution of MiHAs and T-cell frequencies targeting these MiHAs. T cells against broadly expressed MiHAs induce GvL and GvHD, whereas those targeting MiHAs with hematopoietic-restricted expression induce GvL without GvHD. Recently, the MiHA repertoire identified in natural immune responses after alloHCT was expanded to 159 total HLA-I-restricted MiHAs, including 14 hematopoietic-restricted MiHAs. This review explores their potential relevance to predict, monitor, and manipulate GvL and GvHD for improving clinical outcome after HLA-matched alloHCT.
Collapse
Affiliation(s)
- Kyra J Fuchs
- Department of Hematology, Leiden University Medical Center, 2300, RC, Leiden, the Netherlands
| | - J H Frederik Falkenburg
- Department of Hematology, Leiden University Medical Center, 2300, RC, Leiden, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, 2300, RC, Leiden, the Netherlands.
| |
Collapse
|
5
|
Fleischhauer K. Hidden treasures of histocompatibility. Blood 2024; 143:1792-1794. [PMID: 38696195 DOI: 10.1182/blood.2024024345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Affiliation(s)
- Katharina Fleischhauer
- University Hospital Essen-Institute for Experimental Cellular Therapy and German Cancer Consortium
| |
Collapse
|
6
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
7
|
Schendel DJ. Evolution by innovation as a driving force to improve TCR-T therapies. Front Oncol 2023; 13:1216829. [PMID: 37810959 PMCID: PMC10552759 DOI: 10.3389/fonc.2023.1216829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Adoptive cell therapies continually evolve through science-based innovation. Specialized innovations for TCR-T therapies are described here that are embedded in an End-to-End Platform for TCR-T Therapy Development which aims to provide solutions for key unmet patient needs by addressing challenges of TCR-T therapy, including selection of target antigens and suitable T cell receptors, generation of TCR-T therapies that provide long term, durable efficacy and safety and development of efficient and scalable production of patient-specific (personalized) TCR-T therapy for solid tumors. Multiple, combinable, innovative technologies are used in a systematic and sequential manner in the development of TCR-T therapies. One group of technologies encompasses product enhancements that enable TCR-T therapies to be safer, more specific and more effective. The second group of technologies addresses development optimization that supports discovery and development processes for TCR-T therapies to be performed more quickly, with higher quality and greater efficiency. Each module incorporates innovations layered onto basic technologies common to the field of immunology. An active approach of "evolution by innovation" supports the overall goal to develop best-in-class TCR-T therapies for treatment of patients with solid cancer.
Collapse
Affiliation(s)
- Dolores J. Schendel
- Medigene Immunotherapies GmbH, Planegg, Germany
- Medigene AG, Planegg, Germany
| |
Collapse
|
8
|
Transgenic HA-1-Specific CD8 + T-Lymphocytes Selectively Target Leukemic Cells. Cancers (Basel) 2023; 15:cancers15051592. [PMID: 36900382 PMCID: PMC10000933 DOI: 10.3390/cancers15051592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
A significant share of allogeneic hematopoietic stem cell transplantations (allo-HSCT) results in the relapse of malignant disease. The T cell immune response to minor histocompatibility antigens (MiHAs) promotes a favorable graft-versus-leukemia response. The immunogenic MiHA HA-1 is a promising target for leukemia immunotherapy, as it is predominantly expressed in hematopoietic tissues and presented by the common HLA A*02:01 allele. Adoptive transfer of HA-1-specific modified CD8+ T cells could complement allo-HSCT from HA-1- donors to HA-1+ recipients. Using bioinformatic analysis and a reporter T cell line, we discovered 13 T cell receptors (TCRs) specific for HA-1. Their affinities were measured by the response of the TCR-transduced reporter cell lines to HA-1+ cells. The studied TCRs showed no cross-reactivity to the panel of donor peripheral mononuclear blood cells with 28 common HLA alleles. CD8+ T cells after endogenous TCR knock out and introduction of transgenic HA-1-specific TCR were able to lyse hematopoietic cells from HA-1+ patients with acute myeloid, T-, and B-cell lymphocytic leukemia (n = 15). No cytotoxic effect was observed on cells from HA-1- or HLA-A*02-negative donors (n = 10). The results support the use of HA-1 as a target for post-transplant T cell therapy.
Collapse
|
9
|
An unexplored angle: T cell antigen discoveries reveal a marginal contribution of proteasome splicing to the immunogenic MHC class I antigen pool. Proc Natl Acad Sci U S A 2022; 119:e2119736119. [PMID: 35858315 PMCID: PMC9303865 DOI: 10.1073/pnas.2119736119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the current era of T cell–based immunotherapies, it is crucial to understand which types of MHC-presented T cell antigens are produced by tumor cells. In addition to linear peptide antigens, chimeric peptides are generated through proteasome-catalyzed peptide splicing (PCPS). Whether such spliced peptides are abundantly presented by MHC is highly disputed because of disagreement in computational analyses of mass spectrometry data of MHC-eluted peptides. Moreover, such mass spectrometric analyses cannot elucidate how much spliced peptides contribute to the pool of immunogenic antigens. In this Perspective, we explain the significance of knowing the contribution of spliced peptides for accurate analyses of peptidomes on one hand, and to serve as a potential source of targetable tumor antigens on the other hand. Toward a strategy for mass spectrometry independent estimation of the contribution of PCPS to the immunopeptidome, we first reviewed methodologies to identify MHC-presented spliced peptide antigens expressed by tumors. Data from these identifications allowed us to compile three independent datasets containing 103, 74, and 83 confirmed T cell antigens from cancer patients. Only 3.9%, 1.4%, and between 0% and 7.2% of these truly immunogenic antigens are produced by PCPS, therefore providing a marginal contribution to the pool of immunogenic tumor antigens. We conclude that spliced peptides will not serve as a comprehensive source to expand the number of targetable antigens for immunotherapies.
Collapse
|
10
|
Kang S, Li Y, Qiao J, Meng X, He Z, Gao X, Yu L. Antigen-Specific TCR-T Cells for Acute Myeloid Leukemia: State of the Art and Challenges. Front Oncol 2022; 12:787108. [PMID: 35356211 PMCID: PMC8959347 DOI: 10.3389/fonc.2022.787108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The cytogenetic abnormalities and molecular mutations involved in acute myeloid leukemia (AML) lead to unique treatment challenges. Although adoptive T-cell therapies (ACT) such as chimeric antigen receptor (CAR) T-cell therapy have shown promising results in the treatment of leukemias, especially B-cell malignancies, the optimal target surface antigen has yet to be discovered for AML. Alternatively, T-cell receptor (TCR)-redirected T cells can target intracellular antigens presented by HLA molecules, allowing the exploration of a broader territory of new therapeutic targets. Immunotherapy using adoptive transfer of WT1 antigen-specific TCR-T cells, for example, has had positive clinical successes in patients with AML. Nevertheless, AML can escape from immune system elimination by producing immunosuppressive factors or releasing several cytokines. This review presents recent advances of antigen-specific TCR-T cells in treating AML and discusses their challenges and future directions in clinical applications.
Collapse
Affiliation(s)
- Synat Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yisheng Li
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Jingqiao Qiao
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xiangyu Meng
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Ziqian He
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.,Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
11
|
Eldershaw SA, Pearce H, Inman CF, Piper KP, Abbotts B, Stephens C, Nicol S, Croft W, Powell R, Begum J, Taylor G, Nunnick J, Walsh D, Sirovica M, Saddique S, Nagra S, Ferguson P, Moss P, Malladi R. DNA and modified vaccinia Ankara prime-boost vaccination generates strong CD8 + T cell responses against minor histocompatibility antigen HA-1. Br J Haematol 2021; 195:433-446. [PMID: 34046897 DOI: 10.1111/bjh.17495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Allogeneic immune responses underlie the graft-versus-leukaemia effect of stem cell transplantation, but disease relapse occurs in many patients. Minor histocompatibility antigen (mHAg) peptides mediate alloreactive T cell responses and induce graft-versus-leukaemia responses when expressed on patient haematopoietic tissue. We vaccinated nine HA-1-negative donors against HA-1 with a 'prime-boost' protocol of either two or three DNA 'priming' vaccinations prior to 'boost' with modified vaccinia Ankara (MVA). HA-1-specific CD8+ T cell responses were observed in seven donors with magnitude up to 1·5% of total CD8+ T cell repertoire. HA-1-specific responses peaked two weeks post-MVA challenge and were measurable in most donors after 12 months. HA-1-specific T cells demonstrated strong cytotoxic activity and lysed target cells with endogenous HA-1 protein expression. The pattern of T cell receptor (TCR) usage by HA-1-specific T cells revealed strong conservation of T cell receptor beta variable 7-9 (TRBV7-9) usage between donors. These findings describe one of the strongest primary peptide-specific CD8+ T cell responses yet recorded to a DNA-MVA prime-boost regimen and this may reflect the strong immunogenicity of mHAg peptides. Prime-boost vaccination in donors or patients may prove of substantial benefit in boosting graft-versus-leukaemia responses.
Collapse
MESH Headings
- Adult
- Aged
- Allografts
- Antigens, Neoplasm/immunology
- Cytotoxicity, Immunologic
- Epitopes/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Graft vs Leukemia Effect/immunology
- HLA-A2 Antigen/immunology
- Hematopoietic Stem Cell Transplantation
- Humans
- Immunogenicity, Vaccine
- Immunologic Memory
- Male
- Middle Aged
- Minor Histocompatibility Antigens/immunology
- Oligopeptides/immunology
- Peptides/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
- Vaccines, Attenuated
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Vaccinia virus/immunology
- Viral Vaccines/immunology
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- Suzy A Eldershaw
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Charlotte F Inman
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Karen P Piper
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Ben Abbotts
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Christine Stephens
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Samantha Nicol
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Richard Powell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Jusnara Begum
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Graham Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Jane Nunnick
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Donna Walsh
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Mirjana Sirovica
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Shamyla Saddique
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Sandeep Nagra
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| | - Paul Ferguson
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| | - Ram Malladi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
12
|
Cieri N, Maurer K, Wu CJ. 60 Years Young: The Evolving Role of Allogeneic Hematopoietic Stem Cell Transplantation in Cancer Immunotherapy. Cancer Res 2021; 81:4373-4384. [PMID: 34108142 PMCID: PMC8416782 DOI: 10.1158/0008-5472.can-21-0301] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
The year 2020 marked the 30th anniversary of the Nobel Prize in Medicine awarded to E. Donnall Thomas for the development of allogeneic hematopoietic stem cell transplantation (allo-HSCT) to treat hematologic malignancies and other blood disorders. Dr. Thomas, "father of bone marrow transplantation," first developed and reported this technique in 1957, and in the ensuing decades, this seminal study has impacted fundamental work in hematology and cancer research, including advances in hematopoiesis, stem cell biology, tumor immunology, and T-cell biology. As the first example of cancer immunotherapy, understanding the mechanisms of antitumor biology associated with allo-HSCT has given rise to many of the principles used today in the development and implementation of novel transformative immunotherapies. Here we review the historical basis underpinning the development of allo-HSCT as well as advances in knowledge obtained by defining mechanisms of allo-HSCT activity. We review how these principles have been translated to novel immunotherapies currently utilized in clinical practice and describe potential future applications for allo-HSCT in cancer research and development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicoletta Cieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Milone MC, Xu J, Chen SJ, Collins MA, Zhou J, Powell DJ, Melenhorst JJ. Engineering enhanced CAR T-cells for improved cancer therapy. NATURE CANCER 2021; 2:780-793. [PMID: 34485921 PMCID: PMC8412433 DOI: 10.1038/s43018-021-00241-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved from a research tool to a paradigm-shifting therapy with impressive responses in B cell malignancies. This review summarizes the current state of the CAR T-cell field, focusing on CD19- and B cell maturation antigen-directed CAR T-cells, the most developed of the CAR T-cell therapies. We discuss the many challenges to CAR-T therapeutic success and innovations in CAR design and T-cell engineering aimed at extending this therapeutic platform beyond hematologic malignancies.
Collapse
Affiliation(s)
- Michael C. Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jie Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Sai-Juan Chen
- Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - McKensie A. Collins
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiafeng Zhou
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, PR China
| | - Daniel J. Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Story CM, Wang T, Bhatt VR, Battiwalla M, Badawy SM, Kamoun M, Gragert L, Brown V, Baxter-Lowe LA, Marsh SGE, Gadalla SM, Schetelig J, Mytilineos J, Miklos D, Waller EK, Kuxhausen M, Spellman S, Lee S, Paczesny S, Lansford JL, Vincent BG, Riches ML, Armistead PM. Genetics of HLA Peptide Presentation and Impact on Outcomes in HLA-Matched Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2021; 27:591-599. [PMID: 33882342 DOI: 10.1016/j.jtct.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/06/2023]
Abstract
Minor histocompatibility antigens (mHAs), recipient-derived peptide epitopes presented on the cell surface, are known to mediate graft-versus-host disease (GVHD); however, there are no current methods to associate mHA features with GVHD risk. This deficiency is due in part to the lack of technological means to accurately predict, let alone confirm, the tremendous number of potential mHAs in each individual transplant. Previous studies have shown that different HLA molecules present varying fractions of candidate peptide epitopes; however, the genetic "distance" between HLA-matched donors and recipients is relatively constrained. From these 2 observations, it is possible that the HLA type for a donor-recipient pair (DRP) would provide a surrogate measurement of the number of predicted mHAs, which could be related to GVHD risk. Because different HLA molecules present variable numbers of peptide antigens, a predicted cumulative peptide-binding efficiency can be calculated for individual DRP based on the pair's HLA type. The purpose of this study was to test whether cumulative peptide-binding efficiency is associated with the risk of acute GVHD (aGVHD) or relapse. In this retrospective Center for International Blood and Marrow Transplant Research study, a total of 3242 HLA-matched DRPs were analyzed for predicted cumulative peptide-binding efficiency using their HLA types and were divided into tertiles based on their scores. Univariable and multivariable analyses was performed to test for associations between cumulative peptide-binding efficiency for DRPs, divided into the HLA-matched related donor (MRD) and HLA-matched unrelated donor (MUD) cohorts, and the primary outcomes of aGVHD and relapse. Secondary outcomes investigated included overall survival, disease-free survival, and transplantation-related mortality. Using a computationally generated peptidome as a test dataset, the tested series of HLA class I displayed peptide-binding frequencies ranging from 0.1% to 3.8% of the full peptidome, and HLA class II molecules had peptide-binding frequencies of 12% to 77% across the HLA-DRB1 allotypes. By increasing binding efficiency tertile, the cumulative incidence of aGVHD at 6 months for MUD patients was 41%, 41%, and 45% for HLA class I (P = .336) and 44%, 41%, and 42% for HLA class II (P = .452). The cumulative incidences of relapse at 3 years for MUD transplant recipients were 36%, 38%, and 38% for HLA class I (P = .533) and 37%, 37%, and 38% for HLA class II (P = .896). The findings were similar for MRD transplant recipients. Multivariable analysis did not identify any impact of peptide-binding efficiency on aGVHD or relapse in MUD or MRD transplant recipients. Whereas GVHD is mediated by minor antigen mismatches in the context of HLA-matched allo-HCT, peptide-binding efficiency, which was used as a surrogate measurement for predicted number of binding antigens, did not provide additional clinical information for GVHD risk assessment. The negative result may be due to the limitations of this surrogate marker, or it is possible that GVHD is driven by a subset of immunogenic mHAs. Further research should be directed at direct mHA epitope and immunogenicity prediction.
Collapse
Affiliation(s)
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vijaya Raj Bhatt
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Minoo Battiwalla
- Director of Outcomes Research, Sarah Cannon Blood Cancer Network, Nashville, Tennessee
| | - Sherif M Badawy
- Division of Hematology, Oncology and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Malek Kamoun
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Loren Gragert
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Valerie Brown
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Penn State Hershey Children's Hospital and College of Medicine, Hershey, Pennsylvania
| | - Lee Ann Baxter-Lowe
- Director of HLA Laboratory, Children's Hospital of Los Angeles, Los Angeles, California
| | - Steven G E Marsh
- Anthony Nolan Research Institute & University College London Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, Maryland
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, and DKMS, Clinical Trials Unit, Dresden, Germany
| | | | - David Miklos
- BMT and Cell Therapy Division, Department of Medicine, Stanford Health Care, Stanford, California
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Michelle Kuxhausen
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephanie Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Jefferson L Lansford
- Orthopedic Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Benjamin G Vincent
- BMTCT Program, Division of Hematology, University of North Carolina, Chapel Hill, North Carolina; BMTCT Program, Division of Hematology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Marcie L Riches
- BMTCT Program, Division of Hematology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Paul M Armistead
- Internal Medicine, University of North Carolina, Chapel Hill, North Carolina; BMTCT Program, Division of Hematology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
15
|
Schlottmann F, Bucan V, Vogt PM, Krezdorn N. A Short History of Skin Grafting in Burns: From the Gold Standard of Autologous Skin Grafting to the Possibilities of Allogeneic Skin Grafting with Immunomodulatory Approaches. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:225. [PMID: 33801228 PMCID: PMC7998351 DOI: 10.3390/medicina57030225] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Due to groundbreaking and pioneering developments in the last century, significant improvements in the care of burn patients have been achieved. In addition to the still valid therapeutic standard of autologous split-thickness skin grafting, various commercially available skin substitutes are currently available. Significant progress in the field of tissue engineering has led to the development of promising therapeutic approaches. However, scientific advances in the field of allografting and transplant immunology are of great importance. The achievement of various milestones over the past decades has provided thought-provoking impulses in the field of skin allotransplantation. Thus, biologically viable skin allotransplantation is still not a part of the clinical routine. The purpose of this article is to review the achievements in burn surgery with regards to skin allotransplantation in recent years.
Collapse
Affiliation(s)
- Frederik Schlottmann
- Department of Plastic, Aesthetic, Hand- and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; (V.B.); (P.M.V.); (N.K.)
| | | | | | | |
Collapse
|
16
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020; 11:1689. [PMID: 33013822 PMCID: PMC7494743 DOI: 10.3389/fimmu.2020.01689] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.
Collapse
Affiliation(s)
- Francesco Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano – Bicocca, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
A minority of T cells recognizing tumor-associated antigens presented in self-HLA can provoke antitumor reactivity. Blood 2020; 136:455-467. [DOI: 10.1182/blood.2019004443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
Tumor-associated antigens (TAAs) are monomorphic self-antigens that are proposed as targets for immunotherapeutic approaches to treat malignancies. We investigated whether T cells with sufficient avidity to recognize naturally overexpressed self-antigens in the context of self-HLA can be found in the T-cell repertoire of healthy donors. Minor histocompatibility antigen (MiHA)-specific T cells were used as a model, as the influence of thymic selection on the T-cell repertoire directed against MiHA can be studied in both self (MiHApos donors) and non-self (MiHAneg donors) backgrounds. T-cell clones directed against the HLA*02:01-restricted MiHA HA-1H were isolated from HA-1Hneg/HLA-A*02:01pos and HA-1Hpos/HLA-A*02:01pos donors. Of the 16 unique HA-1H–specific T-cell clones, five T-cell clones derived from HA-1Hneg/HLA-A*02:01pos donors and one T-cell clone derived from an HA-1Hpos/HLA-A*02:01pos donor showed reactivity against HA-1Hpos target cells. In addition, in total, 663 T-cell clones (containing at least 91 unique clones expressing different T-cell receptors) directed against HLA*02:01-restricted peptides of TAA WT1-RMF, RHAMM-ILS, proteinase-3-VLQ, PRAME-VLD, and NY-eso-1-SLL were isolated from HLA-A*02:01pos donors. Only 3 PRAME-VLD–specific and one NY-eso-1-SLL–specific T-cell clone provoked interferon-γ production and/or cytolysis upon stimulation with HLA-A*02:01pos malignant cell lines (but not primary malignant samples) naturally overexpressing the TAA. These results show that self-HLA–restricted T cells specific for self-antigens such as MiHA in MiHApos donors and TAAs are present in peripheral blood of healthy individuals. However, clinical efficacy would require highly effective in vivo priming by peptide vaccination in the presence of proper adjuvants or in vitro expansion of the low numbers of self-antigen–specific T cells of sufficient avidity to recognize endogenously processed antigen.
Collapse
|
18
|
Mutis T, Xagara A, Spaapen RM. The Connection Between Minor H Antigens and Neoantigens and the Missing Link in Their Prediction. Front Immunol 2020; 11:1162. [PMID: 32670277 PMCID: PMC7326952 DOI: 10.3389/fimmu.2020.01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022] Open
Abstract
For hundreds of thousands of years, the human genome has extensively evolved, resulting in genetic variations in almost every gene. Immunological reflections of these genetic variations become clearly visible after an allogeneic stem cell transplantation (allo-SCT) as minor Histocompatibility (H) antigens. Minor H antigens are peptides cleaved from genetically encoded variable protein regions after which they are presented at the cell surface by HLA molecules. After allo-SCT with minor H antigen mismatches between donor and recipient, donor T cells recognize the minor H antigens of the recipient as foreign, evoking strong alloreactive immune responses. Studies in the late eighties have discovered that a subset of minor H antigens are encoded by hematopoietic system-specific genes. After allo-SCT, this subset is strictly expressed on the hematopoietic malignant cells and was therefore the first well-defined highly immunogenic group of tumor-specific antigens. In the last decade, neoantigens derived from genetic mutations in tumors have been identified as another group of immunogenic tumor-specific antigens. Therefore, hematopoietic minor H antigens and neoantigens are therapeutic equivalents. This review will connect our current knowledge about the immune biology and identification of minor H antigens and neoantigens leading to novel conclusions on their prediction.
Collapse
Affiliation(s)
- Tuna Mutis
- Department of Hematology, Amsterdam UMC, VU Medical Center, Amsterdam, Netherlands
| | - Anastasia Xagara
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Choi EY, Choi K, Nam G, Kim W, Chung M. H60: A Unique Murine Hematopoietic Cell-Restricted Minor Histocompatibility Antigen for Graft-versus-Leukemia Effect. Front Immunol 2020; 11:1163. [PMID: 32587590 PMCID: PMC7297985 DOI: 10.3389/fimmu.2020.01163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an important treatment for many types of hematological malignancies. Matching of donor and recipient for the major histocompatibility complex (MHC) improves the HSCT reconstitution, but donor-derived T cells reactive to non-MHC encoded minor histocompatibility antigens (MiHAs) can induce graft-versus-host disease (GVHD) while also being needed for graft-versus-leukemia (GVL) effects. MiHAs are allelically variant self-peptides presented conventionally on MHC molecules, but are alloantigenic in transplantation settings. Immunodominant MiHAs are most strongly associated with GVHD and GVL. There is need for mouse paradigms to understand these contradictory effects. H60 is a highly immunodominant mouse MiHA with hematopoietic cell-restricted expression. Immunodominance of H60 is tightly associated with its allelic nature (presence vs. absence of the transcripts), and the qualitative (TCR diversity) and quantitative (frequency) traits of the reactive T cells. The identity as a hematopoietic cell-restricted antigen (HRA) of H60 assists the appearance of the immunodominace in allo-HSCT circumstances, and generation of GVL effects without induction of serious GVHD after adoptive T cell transfer. Also it allows the low avidity T cells to escape thymic negative selection and exert GVL effect in the periphery, which is a previously unevaluated finding related to HRAs. In this review, we describe the molecular features and immunobiology in detail through which H60 selectively exerts its potent GVL effect. We further describe how lessons learned can be extrapolated to human allo-HCST.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyungho Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Giri Nam
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Woojin Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Minho Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Penter L, Wu CJ. Personal tumor antigens in blood malignancies: genomics-directed identification and targeting. J Clin Invest 2020; 130:1595-1607. [PMID: 31985488 PMCID: PMC7108890 DOI: 10.1172/jci129209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hematological malignancies have long been at the forefront of the development of novel immune-based treatment strategies. The earliest successful efforts originated from the extensive body of work in the field of allogeneic hematopoietic stem cell transplantation. These efforts laid the foundation for the recent exciting era of cancer immunotherapy, which includes immune checkpoint blockade, personal neoantigen vaccines, and adoptive T cell transfer. At the heart of the specificity of these novel strategies is the recognition of target antigens presented by malignant cells to T cells. Here, we review the advances in systematic identification of minor histocompatibility antigens and neoantigens arising from personal somatic alterations or recurrent driver mutations. These exciting efforts pave the path for the implementation of personalized combinatorial cancer therapy.
Collapse
Affiliation(s)
- Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité – Universitätsmedizin Berlin (CVK), Berlin, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Kremer AN, Bausenwein J, Lurvink E, Kremer AE, Rutten CE, van Bergen CAM, Kretschmann S, van der Meijden E, Honders MW, Mazzeo D, Watts C, Mackensen A, Falkenburg JHF, Griffioen M. Discovery and Differential Processing of HLA Class II-Restricted Minor Histocompatibility Antigen LB-PIP4K2A-1S and Its Allelic Variant by Asparagine Endopeptidase. Front Immunol 2020; 11:381. [PMID: 32218783 PMCID: PMC7078166 DOI: 10.3389/fimmu.2020.00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/17/2020] [Indexed: 12/03/2022] Open
Abstract
Minor histocompatibility antigens are the main targets of donor-derived T-cells after allogeneic stem cell transplantation. Identification of these antigens and understanding their biology are a key requisite for more insight into how graft vs. leukemia effect and graft vs. host disease could be separated. We here identified four new HLA class II-restricted minor histocompatibility antigens using whole genome association scanning. For one of the new antigens, i.e., LB-PIP4K2A-1S, we measured strong T-cell recognition of the donor variant PIP4K2A-1N when pulsed as exogenous peptide, while the endogenously expressed variant in donor EBV-B cells was not recognized. We showed that lack of T-cell recognition was caused by intracellular cleavage by a protease named asparagine endopeptidase (AEP). Furthermore, microarray gene expression analysis showed that PIP4K2A and AEP are both ubiquitously expressed in a wide variety of healthy tissues, but that expression levels of AEP were lower in primary acute myeloid leukemia (AML). In line with that, we confirmed low activity of AEP in AML cells and demonstrated that HLA-DRB1*03:01 positive primary AML expressing LB-PIP4K2A-1S or its donor variant PIP4K2A-1N were both recognized by specific T-cells. In conclusion, LB-PIP4K2A-1S not only represents a novel minor histocompatibility antigen but also provides evidence that donor T-cells after allogeneic stem cell transplantation can target the autologous allelic variant as leukemia-associated antigen. Furthermore, it demonstrates that endopeptidases can play a role in cell type-specific intracellular processing and presentation of HLA class II-restricted antigens, which may be explored in future immunotherapy of AML.
Collapse
Affiliation(s)
- Anita N. Kremer
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Judith Bausenwein
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ellie Lurvink
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Andreas E. Kremer
- Department of Internal Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Caroline E. Rutten
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Sascha Kretschmann
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Edith van der Meijden
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Maria W. Honders
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniela Mazzeo
- Division of Cell Signaling & Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Colin Watts
- Division of Cell Signaling & Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Akatsuka Y. TCR-Like CAR-T Cells Targeting MHC-Bound Minor Histocompatibility Antigens. Front Immunol 2020; 11:257. [PMID: 32184779 PMCID: PMC7058980 DOI: 10.3389/fimmu.2020.00257] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 11/20/2022] Open
Abstract
Minor histocompatibility antigens (mHAgs) in allogeneic hematopoietic stem cell transplantation are highly immunogenic as they are foreign antigens and cause polymorphism between donors and recipients. Adoptive cell therapy with mHAg-specific T cells may be an effective option for therapy against recurring hematological malignancies following transplantation. Genetically modified T cells with T cell receptors (TCRs) specific to mHAgs have been developed, but formation of mispaired chimeric TCRs between endogenous and exogenous TCR chains may compromise their function. An alternative approach is the development of chimeric antigen receptor (CAR)-T cells with TCR-like specificity whose CAR transmembrane and intracellular domains do not compete with endogenous TCR for CD3 complexes and transmit their own activation signals. However, it has been shown that the recognition of low-density antigens by high-affinity CAR-T cells has poor sensitivity and specificity. This mini review focuses on the potential for and limitations of TCR-like CAR-T cells in targeting human leukocyte antigen-bound peptide antigens, based on their recognition mechanisms and their application in targeting mHAgs.
Collapse
Affiliation(s)
- Yoshiki Akatsuka
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
23
|
Summers C, Sheth VS, Bleakley M. Minor Histocompatibility Antigen-Specific T Cells. Front Pediatr 2020; 8:284. [PMID: 32582592 PMCID: PMC7283489 DOI: 10.3389/fped.2020.00284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
Minor Histocompatibility (H) antigens are major histocompatibility complex (MHC)/Human Leukocyte Antigen (HLA)-bound peptides that differ between allogeneic hematopoietic stem cell transplantation (HCT) recipients and their donors as a result of genetic polymorphisms. Some minor H antigens can be used as therapeutic T cell targets to augment the graft-vs.-leukemia (GVL) effect in order to prevent or manage leukemia relapse after HCT. Graft engineering and post-HCT immunotherapies are being developed to optimize delivery of T cells specific for selected minor H antigens. These strategies have the potential to reduce relapse risk and thereby permit implementation of HCT approaches that are associated with less toxicity and fewer late effects, which is particularly important in the growing and developing pediatric patient. Most minor H antigens are expressed ubiquitously, including on epithelial tissues, and can be recognized by donor T cells following HCT, leading to graft-vs.-host disease (GVHD) as well as GVL. However, those minor H antigens that are expressed predominantly on hematopoietic cells can be targeted for selective GVL. Once full donor hematopoietic chimerism is achieved after HCT, hematopoietic-restricted minor H antigens are present only on residual recipient malignant hematopoietic cells, and these minor H antigens serve as tumor-specific antigens for donor T cells. Minor H antigen-specific T cells that are delivered as part of the donor hematopoietic stem cell graft at the time of HCT contribute to relapse prevention. However, in some cases the minor H antigen-specific T cells delivered with the graft may be quantitatively insufficient or become functionally impaired over time, leading to leukemia relapse. Following HCT, adoptive T cell immunotherapy can be used to treat or prevent relapse by delivering large numbers of donor T cells targeting hematopoietic-restricted minor H antigens. In this review, we discuss minor H antigens as T cell targets for augmenting the GVL effect in engineered HCT grafts and for post-HCT immunotherapy. We will highlight the importance of these developments for pediatric HCT.
Collapse
Affiliation(s)
- Corinne Summers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Vipul S Sheth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
Hardy MP, Vincent K, Perreault C. The Genomic Landscape of Antigenic Targets for T Cell-Based Leukemia Immunotherapy. Front Immunol 2019; 10:2934. [PMID: 31921187 PMCID: PMC6933603 DOI: 10.3389/fimmu.2019.02934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
Intensive fundamental and clinical research in cancer immunotherapy has led to the emergence and evolution of two parallel universes with surprisingly little interactions: the realm of hematologic malignancies and that of solid tumors. Treatment of hematologic cancers using allogeneic hematopoietic cell transplantation (AHCT) serendipitously led to the discovery that T cells specific for minor histocompatibility antigens (MiHAs) could cure hematopoietic cancers. Besides, studies based on treatment of solid tumor with ex vivo-expanded tumor infiltrating lymphocytes or immune checkpoint therapy demonstrated that anti-tumor responses could be achieved by targeting tumor-specific antigens (TSAs). It is our contention that much insight can be gained by sharing the tremendous amount of data generated in the two-abovementioned universes. Our perspective article has two specific goals. First, to discuss the value of methods currently used for MiHA and TSA discovery and to explain the key role of mass spectrometry analyses in this process. Second, to demonstrate the importance of broadening the scope of TSA discovery efforts beyond classic annotated protein-coding genomic sequences.
Collapse
Affiliation(s)
- Marie-Pierre Hardy
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Krystel Vincent
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Claude Perreault
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| |
Collapse
|
25
|
Romaniuk DS, Postovskaya AM, Khmelevskaya AA, Malko DB, Efimov GA. Rapid Multiplex Genotyping of 20 HLA-A *02:01 Restricted Minor Histocompatibility Antigens. Front Immunol 2019; 10:1226. [PMID: 31275297 PMCID: PMC6593292 DOI: 10.3389/fimmu.2019.01226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
A subset of MHC-associated self-peptides presented by the recipient's cells and immunologically foreign to the donor can induce an allogeneic immune response after hematopoietic stem cell transplantation (HSCT). These immunogenic peptides originate from the genomic polymorphisms and are known as minor histocompatibility antigens (MiHA). MiHA mismatches trigger the post-transplant immune response, which could manifest in both the deleterious “graft-vs.-host” disease and the beneficial “graft-vs.-leukemia” effect. Importantly, some MiHAs are considered to be promising targets for posttransplant T-cell immunotherapy of hematopoietic malignancies. This creates a demand for a robust and fast approach to genotyping MiHA-encoding polymorphisms. We report a multiplex real-time PCR method for the genotyping of 20 polymorphisms that are encoding HLA-A*02:01-restricted MiHAs. This method uses allele-specific primers and gene-specific hydrolysis probes. In 1 h it allows for the detection of MiHA mismatches in a donor-recipient pair without the need for electrophoresis, sequencing, or other time-consuming techniques. We validated the method with Sanger and NGS sequencing and demonstrated good performance over a wide range of DNA concentrations. We propose our protocol as a fast and accurate method of identifying mismatched MiHAs. The information on the MiHA mismatches is useful for studying the allogeneic immune response following HSCT and for selecting the targets for post-transplant T-cell therapy.
Collapse
Affiliation(s)
- Dmitrii S Romaniuk
- Laboratory for Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Anna M Postovskaya
- Laboratory for Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Alexandra A Khmelevskaya
- Laboratory for Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Dmitry B Malko
- Laboratory for Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Grigory A Efimov
- Laboratory for Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| |
Collapse
|
26
|
Computational modeling and confirmation of leukemia-associated minor histocompatibility antigens. Blood Adv 2019; 2:2052-2062. [PMID: 30115642 DOI: 10.1182/bloodadvances.2018022475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
T-cell responses to minor histocompatibility antigens (mHAs) mediate both antitumor immunity (graft-versus-leukemia [GVL]) and graft-versus-host disease (GVHD) in allogeneic stem cell transplant. Identifying mHAs with high allele frequency, tight binding affinity to common HLA molecules, and narrow tissue restriction could enhance immunotherapy against leukemia. Genotyping and HLA allele data from 101 HLA-matched donor-recipient pairs (DRPs) were computationally analyzed to predict both class I and class II mHAs likely to induce either GVL or GVHD. Roughly twice as many mHAs were predicted in HLA-matched unrelated donor (MUD) stem cell transplantation (SCT) compared with HLA-matched related transplants, an expected result given greater genetic disparity in MUD SCT. Computational analysis predicted 14 of 18 previously identified mHAs, with 2 minor antigen mismatches not being contained in the patient cohort, 1 missed mHA resulting from a noncanonical translation of the peptide antigen, and 1 case of poor binding prediction. A predicted peptide epitope derived from GRK4, a protein expressed in acute myeloid leukemia and testis, was confirmed by targeted differential ion mobility spectrometry-tandem mass spectrometry. T cells specific to UNC-GRK4-V were identified by tetramer analysis both in DRPs where a minor antigen mismatch was predicted and in DRPs where the donor contained the allele encoding UNC-GRK4-V, suggesting that this antigen could be both an mHA and a cancer-testis antigen. Computational analysis of genomic and transcriptomic data can reliably predict leukemia-associated mHA and can be used to guide targeted mHA discovery.
Collapse
|
27
|
Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Semin Immunol 2019; 42:101306. [DOI: 10.1016/j.smim.2019.101306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
|
28
|
Martínez-Bravo MJ, Sánchez B, Acevedo MJ, Pérez-Simón JA, Núñez-Roldán A, Aguilera I. De novo recipient-specific Glutathione S-transferase T1 antibody development after HLA-identical hematopoietic cell transplantation. Transpl Immunol 2017; 46:36-41. [PMID: 29246878 DOI: 10.1016/j.trim.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
Donor-specific antibodies against Glutathione S-transferase T1 (GSTT1) have been associated with de novo immune hepatitis after liver transplantation. These antibodies have also been found very early in allo-HCT associated with acute hepatic GvHD but in all the cases the donor cells had experienced previous priming through pregnancies. It remained to be explored whether or not primary recognition of the antigen occurs after HCT and what could be the consequences in the long term outcome. We genotyped a cohort of 68 HCT patients and found 11 with the GSTT1 null donor/positive recipient mismatch. After testing 114 serum samples, we found a unique case of a 33-year-old patient transplanted from his HLA-identical sibling donor in which IgG GSTT1 antibodies were detected for the first time on day +178. After stimulation of peripheral blood mononuclear cells with GSTT1 peptides we could demonstrate that this patient also had GSTT1-specific T lymphocytes that became activated upon exposure to the GSTT1 antigen. In this report, we describe the first case in which simultaneous T and B cell response against GSTT1 is developed in HCT although the clinical consequences in GvHD are still unclear.
Collapse
Affiliation(s)
- María José Martínez-Bravo
- Immunology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Seville 41013, Spain
| | - Berta Sánchez
- Immunology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Seville 41013, Spain.
| | - María José Acevedo
- Immunology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Seville 41013, Spain.
| | - José Antonio Pérez-Simón
- Haematology Laboratories, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
| | - Antonio Núñez-Roldán
- Immunology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Seville 41013, Spain.
| | - Isabel Aguilera
- Immunology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Seville 41013, Spain.
| |
Collapse
|
29
|
Audehm S, Krackhardt AM. Specific Adoptive Cellular Immunotherapy in Allogeneic Stem Cell Transplantation. Oncol Res Treat 2017; 40:691-696. [PMID: 29069663 DOI: 10.1159/000484051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents a treatment option for a diversity of advanced hematopoietic malignancies providing hope for long-term responses especially due to immunogenic effects associated with the treatment modality. Despite respectable progress in the field, relapses and/or opportunistic infections are major reasons for the high treatment-related mortality. However, a number of novel immunotherapeutic approaches using defined cell populations have been developed to directly target residual malignant cells as well as defined infectious diseases. We here provide an overview of current adoptive cellular immunotherapies in the context of allo-HSCT and close with an outlook on new directions within the field.
Collapse
Affiliation(s)
- Stefan Audehm
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
30
|
Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse. Blood 2017; 131:108-120. [PMID: 29051183 DOI: 10.1182/blood-2017-07-791608] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022] Open
Abstract
Leukemia relapse remains the major cause of allogeneic hematopoietic stem cell transplantation (HCT) failure, and the prognosis for patients with post-HCT relapse is poor. There is compelling evidence that potent selective antileukemic effects can be delivered by donor T cells specific for particular minor histocompatibility (H) antigens. Thus, T-cell receptors (TCRs) isolated from minor H antigen-specific T cells represent an untapped resource for developing targeted T-cell immunotherapy to manage post-HCT leukemic relapse. Recognizing that several elements may be crucial to the efficacy and safety of engineered T-cell immunotherapy, we developed a therapeutic transgene with 4 components: (1) a TCR specific for the hematopoietic-restricted, leukemia-associated minor H antigen, HA-1; (2) a CD8 coreceptor to promote function of the class I-restricted TCR in CD4+ T cells; (3) an inducible caspase 9 safety switch to enable elimination of the HA-1 TCR T cells in case of toxicity; and (4) a CD34-CD20 epitope to facilitate selection of the engineered cell product and tracking of transferred HA-1 TCR T cells. The T-cell product includes HA-1 TCR CD4+ T cells to augment the persistence and function of the HA-1 TCR CD8+ T cells and includes only memory T cells; naive T cells are excluded to limit the potential for alloreactivity mediated by native TCR coexpressed by HA-1 TCR T cells. We describe the development of this unique immunotherapy and demonstrate functional responses to primary leukemia by CD4+ and CD8+ T cells transduced with a lentiviral vector incorporating the HA-1 TCR transgene construct.
Collapse
|
31
|
Reindl-Schwaighofer R, Heinzel A, Signorini L, Thaunat O, Oberbauer R. Mechanisms underlying human genetic diversity: consequence for antigraft antibody responses. Transpl Int 2017; 31:239-250. [DOI: 10.1111/tri.13059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/28/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis; Department of Internal Medicine III; Medical University of Vienna; Vienna Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis; Department of Internal Medicine III; Medical University of Vienna; Vienna Austria
| | - Lorenzo Signorini
- Renal and Dialysis Unit; Department of Medicine; University of Verona; Verona Italy
| | - Olivier Thaunat
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service de Transplantation; Néphrologie et Immunologie Clinique; INSERM U1111; Université Lyon-I; Lyon France
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis; Department of Internal Medicine III; Medical University of Vienna; Vienna Austria
| |
Collapse
|
32
|
Abstract
Historically, immune-based therapies have played a leading role in the treatment of hematologic malignancies, with the efficacy of stem cell transplantation largely attributable to donor immunity against malignant cells. As new and more targeted immunotherapies have developed, their role in the treatment of hematologic malignancies is evolving and expanding. Herein, we discuss approaches for antigen discovery and review known and novel tumor antigens in hematologic malignancies. We further explore the role of established and investigational immunotherapies in hematologic malignancies, with a focus on personalization of treatment modalities such as cancer vaccines and adoptive cell therapy. Finally, we identify areas of active investigation and development. Immunotherapy is at an exciting crossroads for the treatment of hematologic malignancies, with further investigation aimed at producing effective, targeted immune therapies that maximize antitumor effects while minimizing toxicity.
Collapse
Affiliation(s)
- David A. Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Petersdorf EW. Role of major histocompatibility complex variation in graft-versus-host disease after hematopoietic cell transplantation. F1000Res 2017; 6:617. [PMID: 28529723 PMCID: PMC5419254 DOI: 10.12688/f1000research.10990.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Graft-versus-host disease (GVHD) remains a significant potentially life-threatening complication of allogeneic hematopoietic cell transplantation (HCT). Since the discovery of the human leukocyte antigen (HLA) system over 50 years ago, significant advances have clarified the nature of HLA variation between transplant recipients and donors as a chief etiology of GVHD. New information on coding and non-coding gene variation and GVHD risk provides clinicians with options to consider selected mismatched donors when matched donors are not available. These advances have increased the availability of unrelated donors for patients in need of a transplant and have lowered the overall morbidity and mortality of HCT.
Collapse
|
34
|
Ghimire S, Weber D, Mavin E, Wang XN, Dickinson AM, Holler E. Pathophysiology of GvHD and Other HSCT-Related Major Complications. Front Immunol 2017; 8:79. [PMID: 28373870 PMCID: PMC5357769 DOI: 10.3389/fimmu.2017.00079] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
For over 60 years, hematopoietic stem cell transplantation has been the major curative therapy for several hematological and genetic disorders, but its efficacy is limited by the secondary disease called graft versus host disease (GvHD). Huge advances have been made in successful transplantation in order to improve patient quality of life, and yet, complete success is hard to achieve. This review assimilates recent updates on pathophysiology of GvHD, prophylaxis and treatment of GvHD-related complications, and advances in the potential treatment of GvHD.
Collapse
Affiliation(s)
- Sakhila Ghimire
- Department of Internal Medicine III, University Medical Centre , Regensburg , Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Medical Centre , Regensburg , Germany
| | - Emily Mavin
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle , UK
| | - Xiao Nong Wang
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle , UK
| | - Anne Mary Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle , UK
| | - Ernst Holler
- Department of Internal Medicine III, University Medical Centre , Regensburg , Germany
| |
Collapse
|
35
|
Thordardottir S, Schaap N, Louer E, Kester MGD, Falkenburg JHF, Jansen J, Radstake TRD, Hobo W, Dolstra H. Hematopoietic stem cell-derived myeloid and plasmacytoid DC-based vaccines are highly potent inducers of tumor-reactive T cell and NK cell responses ex vivo. Oncoimmunology 2017; 6:e1285991. [PMID: 28405517 PMCID: PMC5384421 DOI: 10.1080/2162402x.2017.1285991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 12/28/2022] Open
Abstract
Because of the potent graft-versus-tumor (GVT) effect, allogeneic stem cell transplantation (alloSCT) can be a curative therapy for hematological malignancies. However, relapse remains the most frequent cause of treatment failure, illustrating the necessity for development of adjuvant post-transplant therapies to boost GVT immunity. Dendritic cell (DC) vaccination is a promising strategy in this respect, in particular, where distinct biologic functions of naturally occurring DC subsets, i.e. myeloid DCs (mDCs) and plasmacytoid DCs (pDCs), are harnessed. However, it is challenging to obtain high enough numbers of primary DC subsets from blood for immunotherapy due to their low frequencies. Therefore, we present here an ex vivo GMP-compliant cell culture protocol for generating different DC subsets from CD34+ hematopoietic stem and progenitor cells (HSPCs) of alloSCT donor origin. High numbers of BDCA1+ mDCs and pDCs could be generated, sufficient for multiple vaccination cycles. These HSPC-derived DC subsets were highly potent in inducing antitumor immune responses in vitro. Notably, HSPC-derived BDCA1+ mDCs were superior in eliciting T cell responses. They efficiently primed naïve T cells and robustly expanded patient-derived minor histocompatibility antigen (MiHA)-specific T cells. Though the HSPC-pDCs also efficiently induced T cell responses, they exhibited superior capacity in activating NK cells. pDC-primed NK cells highly upregulated TRAIL and possessed strong cytolytic capacity against tumor cells. Collectively, these findings indicate that HSPC-derived DC vaccines, comprising both mDCs and pDCs, may possess superior potential to boost antitumor immunity post alloSCT, due to their exceptional T cell and NK cell stimulatory capacity.
Collapse
Affiliation(s)
- Soley Thordardottir
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Nicolaas Schaap
- Department of Hematology, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Elja Louer
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center , Leiden, the Netherlands
| | | | - Joop Jansen
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Timothy R D Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center , Nijmegen, the Netherlands
| |
Collapse
|
36
|
van Bergen CAM, van Luxemburg-Heijs SAP, de Wreede LC, Eefting M, von dem Borne PA, van Balen P, Heemskerk MHM, Mulder A, Claas FHJ, Navarrete MA, Honders WM, Rutten CE, Veelken H, Jedema I, Halkes CJM, Griffioen M, Falkenburg JHF. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J Clin Invest 2017; 127:517-529. [PMID: 28067665 DOI: 10.1172/jci86175] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/17/2016] [Indexed: 01/10/2023] Open
Abstract
Patients with leukemia who receive a T cell-depleted allogeneic stem cell graft followed by postponed donor lymphocyte infusion (DLI) can experience graft-versus-leukemia (GVL) reactivity, with a lower risk of graft-versus-host disease (GVHD). Here, we have investigated the magnitude, diversity, and specificity of alloreactive CD8 T cells in patients who developed GVL reactivity after DLI in the absence or presence of GVHD. We observed a lower magnitude and diversity of CD8 T cells for minor histocompatibility antigens (MiHAs) in patients with selective GVL reactivity without GVHD. Furthermore, we demonstrated that MiHA-specific T cell clones from patients with selective GVL reactivity showed lower reactivity against nonhematopoietic cells, even when pretreated with inflammatory cytokines. Expression analysis of MiHA-encoding genes showed that similar types of antigens were recognized in both patient groups, but in patients who developed GVHD, T cell reactivity was skewed to target broadly expressed MiHAs. As an inflammatory environment can render nonhematopoietic cells susceptible to T cell recognition, prevention of such circumstances favors induction of selective GVL reactivity without development of GVHD.
Collapse
|
37
|
Pont MJ, Honders MW, Kremer AN, van Kooten C, Out C, Hiemstra PS, de Boer HC, Jager MJ, Schmelzer E, Vries RG, Al Hinai AS, Kroes WG, Monajemi R, Goeman JJ, Böhringer S, Marijt WAF, Falkenburg JHF, Griffioen M. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies. PLoS One 2016; 11:e0155165. [PMID: 27171398 PMCID: PMC4865094 DOI: 10.1371/journal.pone.0155165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers.
Collapse
Affiliation(s)
- M. J. Pont
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - M. W. Honders
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - A. N. Kremer
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - C. van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - C. Out
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - P. S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - H. C. de Boer
- Department of Nephrology and the Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - M. J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - E. Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - R. G. Vries
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - A. S. Al Hinai
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - W. G. Kroes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - R. Monajemi
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - J. J. Goeman
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
- Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S. Böhringer
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - W. A. F. Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - J. H. F. Falkenburg
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - M. Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
38
|
Kanakry CG, Coffey DG, Towlerton AMH, Vulic A, Storer BE, Chou J, Yeung CCS, Gocke CD, Robins HS, O'Donnell PV, Luznik L, Warren EH. Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide. JCI Insight 2016; 1. [PMID: 27213183 DOI: 10.1172/jci.insight.86252] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Posttransplantation cyclophosphamide (PTCy) effectively prevents graft-versus-host disease (GVHD), but its immunologic impact is poorly understood. We assessed lymphocyte reconstitution via flow cytometry (n = 74) and antigen receptor sequencing (n = 35) in recipients of myeloablative, HLA-matched allogeneic BM transplantation using PTCy. Recovering T cells were primarily phenotypically effector memory with lower T cell receptor β (TRB) repertoire diversity than input donor repertoires. Recovering B cells were predominantly naive with immunoglobulin heavy chain locus (IGH) repertoire diversity similar to donors. Numerical T cell reconstitution and TRB diversity were strongly associated with recipient cytomegalovirus seropositivity. Global similarity between input donor and recipient posttransplant repertoires was uniformly low at 1-2 months after transplant but increased over the balance of the first posttransplant year. Blood TRB repertoires at ≥3 months after transplant were often dominated by clones present in the donor blood/marrow memory CD8+ compartment. Limited overlap was observed between the TRB repertoires of T cells infiltrating the skin or gastrointestinal tract versus the blood. Although public TRB sequences associated with herpesvirus- or alloantigen-specific CD8+ T cells were detected in some patients, posttransplant TRB and IGH repertoires were unique to each individual. These data define the immune dynamics occurring after PTCy and establish a benchmark against which immune recovery after other transplantation approaches can be compared.
Collapse
Affiliation(s)
- Christopher G Kanakry
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David G Coffey
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Andrea M H Towlerton
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Ante Vulic
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Jeffrey Chou
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Cecilia C S Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Christopher D Gocke
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harlan S Robins
- Public Health Sciences Division, FHCRC, Seattle, Washington, USA
| | - Paul V O'Donnell
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Griffioen M, van Bergen CAM, Falkenburg JHF. Autosomal Minor Histocompatibility Antigens: How Genetic Variants Create Diversity in Immune Targets. Front Immunol 2016; 7:100. [PMID: 27014279 PMCID: PMC4791598 DOI: 10.3389/fimmu.2016.00100] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/01/2016] [Indexed: 11/13/2022] Open
Abstract
Allogeneic stem cell transplantation (alloSCT) can be a curative treatment for hematological malignancies. Unfortunately, the desired anti-tumor or graft-versus-leukemia (GvL) effect is often accompanied with undesired side effects against healthy tissues known as graft-versus-host disease (GvHD). After HLA-matched alloSCT, GvL and GvHD are both mediated by donor-derived T-cells recognizing polymorphic peptides presented by HLA surface molecules on patient cells. These polymorphic peptides or minor histocompatibility antigens (MiHA) are produced by genetic differences between patient and donor. Since polymorphic peptides may be useful targets to manipulate the balance between GvL and GvHD, the dominant repertoire of MiHA needs to be discovered. In this review, the diversity of autosomal MiHA characterized thus far as well as the various molecular mechanisms by which genetic variants create immune targets and the role of cryptic transcripts and proteins as antigen sources are described. The tissue distribution of MiHA as important factor in GvL and GvHD is considered as well as possibilities how hematopoietic MiHA can be used for immunotherapy to augment GvL after alloSCT. Although more MiHA are still needed for comprehensive understanding of the biology of GvL and GvHD and manipulation by immunotherapy, this review shows insight into the composition and kinetics of in vivo immune responses with respect to specificity, diversity, and frequency of specific T-cells and surface expression of HLA-peptide complexes and other (accessory) molecules on the target cell. A complex interplay between these factors and their environment ultimately determines the spectrum of clinical manifestations caused by immune responses after alloSCT.
Collapse
Affiliation(s)
- Marieke Griffioen
- Department of Hematology, Leiden University Medical Center , Leiden , Netherlands
| | | | | |
Collapse
|
40
|
Oostvogels R, Lokhorst HM, Mutis T. Minor histocompatibility Ags: identification strategies, clinical results and translational perspectives. Bone Marrow Transplant 2015; 51:163-71. [PMID: 26501766 DOI: 10.1038/bmt.2015.256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 12/14/2022]
Abstract
Allogeneic stem cell transplantation (allo-SCT) and donor lymphocyte infusion are effective treatment modalities for various hematological malignancies. Their therapeutic effect, the graft-versus-tumor (GvT) effect, is based mainly on an alloimmune response of donor T cells directed at tumor cells, in which differences in the expression of minor histocompatibility Ags (mHags) on the cells of the patient and donor have a crucial role. However, these differences are also responsible for induction of sometimes detrimental GvHD. As relapse and development of GvHD pose major threats for a large proportion of allotransplanted patients, additional therapeutic strategies are required. To augment the GvT response without increasing the risk of GvHD, specific mHag-directed immunotherapeutic strategies have been developed. Over the past years, much effort has been put into the identification of therapeutically relevant mHags to enable these strategies for a substantial proportion of patients. Currently, the concept of mHag-directed immunotherapy is tested in clinical trials on feasibility, safety and efficacy. In this review, we will summarize the recent developments in mHag identification and the clinical data on mHag-specific immune responses and mHag-directed therapies in patients with hematological malignancies. Finally, we will outline the current challenges and future prospectives in the field.
Collapse
Affiliation(s)
- R Oostvogels
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - H M Lokhorst
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - T Mutis
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Falkenburg JHF, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol 2015; 9:1894-903. [PMID: 26578450 DOI: 10.1016/j.molonc.2015.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Several mechanisms can be responsible for control of hematological tumors by allo-reactive T cells. Following allogeneic stem cell transplantation (alloSCT) donor T cells recognizing genetic disparities presented on recipient cells and not on donor cells are main effectors of tumor control, but also of the detrimental graft versus host disease (GVHD). Since after transplantation normal hematopoiesis is of donor origin, any T cell response directed against polymorphic antigens expressed on hematopoietic recipient cells but not on donor cells will result in an anti-tumor response not affecting normal hematopoiesis. After fully HLA-matched alloSCT, T cells recognizing polymorphic peptides derived from proteins encoded by genes selectively expressed in hematopoietic lineages may result in anti-tumor responses without GVHD. Due to the high susceptibility of hematopoietic cells for T cell recognition, a low amplitude of the overall T cell response may also be in favor of the anti-tumor reactivity in hematological malignancies. A mismatch between donor and patient for specific HLA-alleles can also be exploited to induce a selective T cell response against patient (malignant) hematopoietic cells. If restricting HLA class II molecules are selectively expressed on hematopoietic cells under non-inflammatory circumstances, allo HLA class-II responses may control the tumor with limited risk of GVHD. Alternatively, T cells recognizing hematopoiesis-restricted antigens presented in the context of mismatched HLA alleles may be used to treat patients with hematological cancers. This review discusses various ways to manipulate the allo-immune response aiming to exploit the powerful ability of allo-reactive T-cells to control the malignancies without causing severe damage to non-hematopoietic tissues.
Collapse
Affiliation(s)
- J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, Netherlands
| | - I Jedema
- Department of Hematology, Leiden University Medical Center, Netherlands.
| |
Collapse
|
42
|
Spierings E. Minor histocompatibility antigens: past, present, and future. ACTA ACUST UNITED AC 2015; 84:374-60. [PMID: 25262921 DOI: 10.1111/tan.12445] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Indexed: 01/02/2023]
Abstract
Minor histocompatibility (H) antigens are key molecules driving allo-immune responses in both graft-versus-host-disease (GvHD) and in graft-versus-leukemia (GvL) reactivity in human leukocyte antigen (HLA)-matched hematopoietic stem-cell transplantation (HSCT). Dissection of the dual function of minor H antigens became evident through their different modes of tissue and cell expression, i.e. hematopoietic system-restricted or broad. Broadly expressed minor H antigens can cause both GvHD and GvL effects, while hematopoietic system-restricted minor H antigens are more prone to induce GvL responses. This phenomenon renders the latter group of minor H antigens as curative tools for HSCT-based immunotherapy of hematological malignancies and disorders, in which minor H antigen-specific responses are enhanced in order to eradicate the malignant cells. This article describes the immunogenetics of minor H antigens and methods that have been developed to identify them. Moreover, it summarizes the clinical relevance of minor H antigens in transplantation, with special regards to allogeneic HSCT and solid-organ transplantation.
Collapse
Affiliation(s)
- Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
43
|
Linscheid C, Heitmann E, Singh P, Wickstrom E, Qiu L, Hodes H, Nauser T, Petroff MG. Trophoblast expression of the minor histocompatibility antigen HA-1 is regulated by oxygen and is increased in placentas from preeclamptic women. Placenta 2015; 36:832-8. [PMID: 26095815 DOI: 10.1016/j.placenta.2015.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Maternal T-cells reactive towards paternally inherited fetal minor histocompatibility antigens are expanded during pregnancy. Placental trophoblast cells express at least four fetal antigens, including human minor histocompatibility antigen 1 (HA-1). We investigated oxygen as a potential regulator of HA-1 and whether HA-1 expression is altered in preeclamptic placentas. METHODS Expression and regulation of HA-1 mRNA and protein were examined by qRT-PCR and immunohistochemistry, using first, second, and third trimester placentas, first trimester placental explant cultures, and term purified cytotrophoblast cells. Low oxygen conditions were achieved by varying ambient oxygen, and were mimicked using cobalt chloride. HA-1 mRNA and protein expression levels were evaluated in preeclamptic and control placentas. RESULTS HA-1 protein expression was higher in the syncytiotrophoblast of first trimester as compared to second trimester and term placentas (P<0.01). HA-1 mRNA was increased in cobalt chloride-treated placental explants and purified cytotrophoblast cells (P = 0.04 and P<0.01, respectively) and in purified cytotrophoblast cells cultured under 2% as compared to 8% and 21% oxygen (P<0.01). HA-1 mRNA expression in preeclamptic vs. control placentas was increased 3.3-fold (P = 0.015). HA-1 protein expression was increased in syncytial nuclear aggregates and the syncytiotrophoblast of preeclamptic vs. control placentas (P = 0.02 and 0.03, respectively). DISCUSSION Placental HA-1 expression is regulated by oxygen and is increased in the syncytial nuclear aggregates and syncytiotrophoblast of preeclamptic as compared to control placentas. Increased HA-1 expression, combined with increased preeclamptic syncytiotrophoblast deportation, provides a novel potential mechanism for exposure of the maternal immune system to increased fetal antigenic load during preeclampsia.
Collapse
Affiliation(s)
- C Linscheid
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - E Heitmann
- Saint Luke's Health System, Department of Maternal and Fetal Medicine, Kansas City, MO, USA
| | - P Singh
- Saint Luke's Health System, Department of Maternal and Fetal Medicine, Kansas City, MO, USA
| | - E Wickstrom
- Saint Luke's Health System, Department of Maternal and Fetal Medicine, Kansas City, MO, USA
| | - L Qiu
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - H Hodes
- The Center for Women's Health, Overland Park, KS, USA
| | - T Nauser
- The Center for Women's Health, Overland Park, KS, USA
| | - M G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
44
|
Inaguma Y, Akatsuka Y, Hosokawa K, Maruyama H, Okamoto A, Katagiri T, Shiraishi K, Murayama Y, Tsuzuki-Iba S, Mizutani Y, Nishii C, Yamamoto N, Demachi-Okamura A, Kuzushima K, Ogawa S, Emi N, Nakao S. Induction of HLA-B*40:02-restricted T cells possessing cytotoxic and suppressive functions against haematopoietic progenitor cells from a patient with severe aplastic anaemia. Br J Haematol 2015; 172:131-4. [PMID: 25929998 DOI: 10.1111/bjh.13464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yoko Inaguma
- Department of Haematology, Fujita Health University School of Medicine, Aichi, Japan
| | - Yoshiki Akatsuka
- Department of Haematology, Fujita Health University School of Medicine, Aichi, Japan.
| | - Kohei Hosokawa
- Cellular Transplantation Biology, Kanazawa University Graduate School, Ishikawa, Japan
| | - Hiroyuki Maruyama
- Cellular Transplantation Biology, Kanazawa University Graduate School, Ishikawa, Japan
| | - Akinao Okamoto
- Department of Haematology, Fujita Health University School of Medicine, Aichi, Japan
| | - Takamasa Katagiri
- Cellular Transplantation Biology, Kanazawa University Graduate School, Ishikawa, Japan
| | - Keiko Shiraishi
- Division of Immunology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Yuko Murayama
- Department of Haematology, Fujita Health University School of Medicine, Aichi, Japan
| | - Sachiko Tsuzuki-Iba
- Department of Haematology, Fujita Health University School of Medicine, Aichi, Japan
| | - Yuuki Mizutani
- Department of Clinical Laboratory, Fujita Health University School of Medicine, Aichi, Japan
| | - Chikako Nishii
- Department of Clinical Laboratory, Fujita Health University School of Medicine, Aichi, Japan
| | - Naoki Yamamoto
- Laboratory of Molecular Biology and Histochemistry, Fujita Health University Joint Research Laboratory, Aichi, Japan
| | | | - Kiyotaka Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Seishi Ogawa
- Departments of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuhiko Emi
- Department of Haematology, Fujita Health University School of Medicine, Aichi, Japan
| | - Shinji Nakao
- Cellular Transplantation Biology, Kanazawa University Graduate School, Ishikawa, Japan
| |
Collapse
|
45
|
Janelle V, Carli C, Taillefer J, Orio J, Delisle JS. Defining novel parameters for the optimal priming and expansion of minor histocompatibility antigen-specific T cells in culture. J Transl Med 2015; 13:123. [PMID: 25925868 PMCID: PMC4413989 DOI: 10.1186/s12967-015-0495-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/16/2015] [Indexed: 01/23/2023] Open
Abstract
Background Adoptive transfer of minor histocompatibility antigen (MiHA)-specific T cells is a promising therapy for patients with hematological cancers. However, the efficacy of the transferred cells is hampered by the acquisition of terminal effector differentiation and exhaustion features during expansion in vitro thus preventing their function and persistence in vivo. Yet, the factors that induce T-cell differentiation and functional impairment in culture remain poorly defined and are likely to vary depending on the method used for expansion. Methods Using the clinically relevant HLA-A0201-restricted MiHA HA-1 as well as reagents and procedures that are readily transferable to a clinical environment, we designed a novel culture protocol and defined how exhaustion features appeared in function of time. The optimal time points for the expansion of “fit” MiHA-specific T cells were delineated using phenotypic and functional assessments including KLRG-1 and PD-1 surface markers as well as Ki67 staining and cytokine secretion assays. Results Following a priming phase, an enrichment step and a rapid expansion stage, our method generates MiHA-specific T-cell lines. Evidence of phenotypic and functional dysfunction appear in function of culture duration, but display different characteristics following the extension of the priming or rapid expansion phases. While repeated antigen exposure during the priming phase induced the decline of the antigen-specific population and the expression of PD-1 and KLRG-1 on antigen-specific CD8+ T cells, the prolongation of an antigen-free expansion phase induced proliferation arrest and the relative loss of antigen-specific cells without impairing polyfunctional cytokine secretion or inducing PD-1 and KLRG-1 expression. A similar pattern was also observed after stimulating a virus-specific memory repertoire, except for the more rapid acquisition of exhaustion features upon repeated antigen exposure. Conclusion Our results offer novel insights on the impact of culture duration on the acquisition of T-cell exhaustion features. Using a new clinical-compliant protocol, we define critical parameters to monitor in order to optimally differentiate and expand MiHA-specific T cells in culture prior to adoptive transfer. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0495-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valérie Janelle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada.
| | - Cédric Carli
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada.
| | - Julie Taillefer
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada.
| | - Julie Orio
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada.
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada. .,Division of Hematology-Oncology, Hôpital Maisonneuve-Rosemont and Department of Medicine, University of Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
46
|
van der Waart AB, Fredrix H, van der Voort R, Schaap N, Hobo W, Dolstra H. siRNA silencing of PD-1 ligands on dendritic cell vaccines boosts the expansion of minor histocompatibility antigen-specific CD8(+) T cells in NOD/SCID/IL2Rg(null) mice. Cancer Immunol Immunother 2015; 64:645-54. [PMID: 25724840 PMCID: PMC4412509 DOI: 10.1007/s00262-015-1668-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Abstract
Allogeneic stem cell transplantation (allo-SCT) can be a curative therapy for patients suffering from hematological malignancies. The therapeutic efficacy is based on donor-derived CD8+ T cells that recognize minor histocompatibility antigens (MiHAs) expressed by patient’s tumor cells. However, these responses are not always sufficient, and persistence and recurrence of the malignant disease are often observed. Therefore, application of additive therapy targeting hematopoietic-restricted MiHAs is essential. Adoptive transfer of MiHA-specific CD8+ T cells in combination with dendritic cell (DC) vaccination could be a promising strategy. Though effects of DC vaccination in anti-cancer therapy have been demonstrated, improvement in DC vaccination therapy is needed, as clinical responses are limited. In this study, we investigated the potency of program death ligand (PD-L) 1 and 2 silenced DC vaccines for ex vivo priming and in vivo boosting of MiHA-specific CD8+ T cell responses. Co-culturing CD8+ T cells with MiHA-loaded DCs resulted in priming and expansion of functional MiHA-specific CD8+ T cells from the naive repertoire, which was augmented upon silencing of PD-L1 and PD-L2. Furthermore, DC vaccination supported and expanded adoptively transferred antigen-specific CD8+ T cells in vivo. Importantly, the use of PD-L silenced DCs improved boosting and further expansion of ex vivo primed MiHA-specific CD8+ T cells in immunodeficient mice. In conclusion, adoptive transfer of ex vivo primed MiHA-specific CD8+ T cells in combination with PD-L silenced DC vaccination, targeting MiHAs restricted to the hematopoietic system, is an interesting approach to boost GVT immunity in allo-SCT patients and thereby prevent relapse.
Collapse
Affiliation(s)
- Anniek B. van der Waart
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Hanny Fredrix
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Robbert van der Voort
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicolaas Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
47
|
van Rood JJ, Claas FH, Brand A, Tilanus MG, van Kooten C. Half a century of Dutch transplant immunology. Immunol Lett 2014; 162:145-9. [DOI: 10.1016/j.imlet.2014.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Zilberberg J, Feinman R, Korngold R. Strategies for the identification of T cell-recognized tumor antigens in hematological malignancies for improved graft-versus-tumor responses after allogeneic blood and marrow transplantation. Biol Blood Marrow Transplant 2014; 21:1000-7. [PMID: 25459643 DOI: 10.1016/j.bbmt.2014.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/02/2014] [Indexed: 12/13/2022]
Abstract
Allogeneic blood and marrow transplantation (allo-BMT) is an effective immunotherapeutic treatment that can provide partial or complete remission for patients with hematological malignancies. Mature donor T cells in the donor inoculum play a central role in mediating graft-versus-tumor (GVT) responses by destroying residual tumor cells that persist after conditioning regimens. Alloreactivity towards minor histocompatibility antigens (miHA), which are varied tissue-related self-peptides presented in the context of major histocompatibility complex (MHC) molecules on recipient cells, some of which may be shared on tumor cells, is a dominant factor for the development of GVT. Potentially, GVT can also be directed to tumor-associated antigens or tumor-specific antigens that are more specific to the tumor cells themselves. The full exploitation of allo-BMT, however, is greatly limited by the development of graft-versus-host disease (GVHD), which is mediated by the donor T cell response against the miHA expressed in the recipient's cells of the intestine, skin, and liver. Because of the significance of GVT and GVHD responses in determining the clinical outcome of patients, miHA and tumor antigens have been intensively studied, and one active immunotherapeutic approach to separate these two responses has been cancer vaccination after allo-BMT. The combination of these two strategies has an advantage over vaccination of the patient without allo-BMT because his or her immune system has already been exposed and rendered unresponsive to the tumor antigens. The conditioning for allo-BMT eliminates the patient's existing immune system, including regulatory elements, and provides a more permissive environment for the newly developing donor immune compartment to selectively target the malignant cells. Utilizing recent technological advances, the identities of many human miHA and tumor antigenic peptides have been defined and are currently being evaluated in clinical and basic immunological studies for their ability to produce effective T cell responses. The first step towards this goal is the identification of targetable tumor antigens. In this review, we will highlight some of the technologies currently used to identify tumor antigens and anti-tumor T cell clones in hematological malignancies.
Collapse
Affiliation(s)
- Jenny Zilberberg
- Research Department and John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey.
| | - Rena Feinman
- Research Department and John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey
| | - Robert Korngold
- Research Department and John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey
| |
Collapse
|
49
|
Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood 2014; 124:3490-500. [PMID: 25336630 DOI: 10.1182/blood-2014-05-578583] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Effective T-cell therapy against cancer is dependent on the formation of long-lived, stem cell-like T cells with the ability to self-renew and differentiate into potent effector cells. Here, we investigated the in vivo existence of stem cell-like antigen-specific T cells in allogeneic stem cell transplantation (allo-SCT) patients and their ex vivo generation for additive treatment posttransplant. Early after allo-SCT, CD8+ stem cell memory T cells targeting minor histocompatibility antigens (MiHAs) expressed by recipient tumor cells were not detectable, emphasizing the need for improved additive MiHA-specific T-cell therapy. Importantly, MiHA-specific CD8+ T cells with an early CCR7+CD62L+CD45RO+CD27+CD28+CD95+ memory-like phenotype and gene signature could be expanded from naive precursors by inhibiting Akt signaling during ex vivo priming and expansion. This resulted in a MiHA-specific CD8+ T-cell population containing a high proportion of stem cell-like T cells compared with terminal differentiated effector T cells in control cultures. Importantly, these Akt-inhibited MiHA-specific CD8+ T cells showed a superior expansion capacity in vitro and in immunodeficient mice and induced a superior antitumor effect in intrafemural multiple myeloma-bearing mice. These findings provide a rationale for clinical exploitation of ex vivo-generated Akt-inhibited MiHA-specific CD8+ T cells in additive immunotherapy to prevent or treat relapse in allo-SCT patients.
Collapse
|
50
|
Melief CJM, Scheper RJ, de Vries IJM. Scientific contributions toward successful cancer immunotherapy in The Netherlands. Immunol Lett 2014; 162:121-6. [PMID: 25455598 DOI: 10.1016/j.imlet.2014.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This historical overview shows that immunologists and clinicians from The Netherlands have contributed in a major way to better insights in the nature of cancer immunity. This work involved elucidation of the nature of cancer-associated antigens in autologous and allogeneic settings in addition to understanding of the cellular basis of natural immune responses against cancers and of important immune evasion mechanisms. Insight into such basic immunological mechanisms has contributed to the development of innovating therapies.
Collapse
Affiliation(s)
- Cornelis J M Melief
- Leiden University Medical Center, The Netherlands; ISA Pharmaceuticals, The Netherlands.
| | - Rik J Scheper
- Department of Pathology, Free University Hospital, Amsterdam, The Netherlands
| | | |
Collapse
|