1
|
Lawrence S, Lin J, Khurshid A, Utami W, Singhania R, Ashraf S, Thorn GJ, Mangangcha IR, Spriggs K, Kim D, Barrett D, de Moor CH. Cordycepin generally inhibits growth factor signal transduction in a systems pharmacology study. FEBS Lett 2025; 599:415-435. [PMID: 39508147 PMCID: PMC11808429 DOI: 10.1002/1873-3468.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Cordycepin (3' deoxyadenosine) has been widely researched as a potential cancer therapy, but many diverse mechanisms of action have been proposed. Here, we confirm that cordycepin triphosphate is likely to be the active metabolite of cordycepin and that it consistently represses growth factor-induced gene expression. Bioinformatic analysis, quantitative PCR and western blotting confirmed that cordycepin blocks the PI3K/AKT/mTOR and/or MEK/ERK pathways in six cell lines and that AMPK activation is not required. The effects of cordycepin on translation through mTOR pathway repression were detectable within 30 min, indicating a rapid process. These data therefore indicate that cordycepin has a universal mechanism of action, acting as cordycepin triphosphate on an as yet unknown target molecule involved in growth factor signalling.
Collapse
Affiliation(s)
- Steven Lawrence
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
| | - Jialiang Lin
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
| | - Asma Khurshid
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
- Present address:
DOW Research Institute of Biotechnology and Biomedical SciencesDOW University of Health SciencesKarachiPakistan
| | - Wahyu Utami
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
- Present address:
Faculty of PharmacyUniversitas Muhammadiyah SurakartaSurakartaIndonesia
| | - Richa Singhania
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
- Present address:
Department of NeurologyWeill Cornell MedicineNew YorkNYUSA
| | - Sadaf Ashraf
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
- Present address:
Medway School of PharmacyUniversities of Kent and GreenwichChathamUK
| | - Graeme J. Thorn
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
- Present address:
Centre for Biomarkers and BiotherapeuticsBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Irengbam Rocky Mangangcha
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
- Present address:
Department of Zoology, Deshbandhu CollegeUniversity of DelhiNew DelhiIndia
| | - Keith Spriggs
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
| | - Dong‐Hyun Kim
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
| | - David Barrett
- School of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
| | | |
Collapse
|
2
|
Ogawa T, Isik M, Wu Z, Kurmi K, Meng J, Cho S, Lee G, Fernandez-Cardenas LP, Mizunuma M, Blenis J, Haigis MC, Blackwell TK. Nutrient control of growth and metabolism through mTORC1 regulation of mRNA splicing. Mol Cell 2024; 84:4558-4575.e8. [PMID: 39571580 DOI: 10.1016/j.molcel.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024]
Abstract
Cellular growth and organismal development are remarkably complex processes that require the nutrient-responsive kinase mechanistic target of rapamycin complex 1 (mTORC1). Anticipating that important mTORC1 functions remained to be identified, we employed genetic and bioinformatic screening in C. elegans to uncover mechanisms of mTORC1 action. Here, we show that during larval growth, nutrients induce an extensive reprogramming of gene expression and alternative mRNA splicing by acting through mTORC1. mTORC1 regulates mRNA splicing and the production of protein-coding mRNA isoforms largely independently of its target p70 S6 kinase (S6K) by increasing the activity of the serine/arginine-rich (SR) protein RSP-6 (SRSF3/7) and other splicing factors. mTORC1-mediated mRNA splicing regulation is critical for growth; mediates nutrient control of mechanisms that include energy, nucleotide, amino acid, and other metabolic pathways; and may be conserved in humans. Although mTORC1 inhibition delays aging, mTORC1-induced mRNA splicing promotes longevity, suggesting that when mTORC1 is inhibited, enhancement of this splicing might provide additional anti-aging benefits.
Collapse
Affiliation(s)
- Takafumi Ogawa
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Meltem Isik
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Meng
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sungyun Cho
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gina Lee
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - L Paulette Fernandez-Cardenas
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Masaki Mizunuma
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - T Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Nguyen VK, Thu Huong VT, Le Thi Nguyen H, Quan HX, Hoang AT, Phan HT, Van Le Đ, Nguyen HT, Thi Nguyen NT, Thi Nguyen AL, Thi Pham YK, Hung LP, Thanh Nhan GT, Trinh SH, Pham LD. Optimization of donor cell production for somatic cell nuclear transfer in the critically endangered Vietnamese Ỉ pig. Theriogenology 2024; 230:115-120. [PMID: 39293173 DOI: 10.1016/j.theriogenology.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
We aimed to establish efficient donor cells to produce piglets by somatic cell nuclear transfer (SCNT) of the endangered Vietnamese Ỉ pig. In Experiment 1, we assessed the effects of cell passages on the in vitro development of SCNT embryos. Cells with five and six passages showed significantly cleaved and blastocyst formation rates (86.72 and 86.64; 35.68 and 35.51, respectively, P < 0.05). The highest average total cell number per blastocyst was observed in groups of cells with five and six passages (50.45 and 50.18, respectively). Experiment 2 was performed to assess the sex of donor cells on the subsequent development of SCNT embryos. There was no significant difference in the cleaved and blastocyst formation rates, and the average total cell between female and male groups (86.51 % vs 86.94 % and 35.31 % vs 35.08 %, 50.29 % vs 50.67 %, respectively, P > 0.05). Experiment 3 was performed to assess the effect of cell lines on the development of SCNT embryos. Our results showed no significant difference in the success rate of fibroblast nuclear transfer into recipient oocytes, the cleaved and blastocyst formation rates, and the average total cell number per blastocyst among the cell lines 6004, 9154, 9155, 9156 and 9157 (P > 0.05). Experiment 4 was performed to assess the ability of SCNT embryos to induce pregnancy and to develop term. SCNT embryos were produced from Ỉ fibroblast cells established based on the results of Experiments 1, 2 and 3. Transfer of blastocyst stage embryos into 19 recipients (100-120 embryos in each) resulted in 14 pregnancies, in which 8 pregnant females terminated on Day 22-42 and 6 others produced 20 cloned piglets from donor cells of a female pig but 5 piglets died before birth and 15 healthy cloned piglets. However, 3 out of 15 healthy piglets died of unknown causes within 24h of birth and 3 out of 15 healthy piglets died at 3-5 days of age due to diarrhoea, 9 out of 15 healthy piglets are now 3 months of age. Finally, we established a protocol for the donor cell production which enabled the production of the endangered Ỉ pig embryos by SCNT and maximized blastocyst production rate by more than 35 % and pregnant rate after the transfer of cloned Ỉ pig embryos to recipients at 73.68 % for the first time in Vietnam.
Collapse
Affiliation(s)
- Van Khanh Nguyen
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam.
| | - Vu Thi Thu Huong
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Huong Le Thi Nguyen
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Huu Xuan Quan
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Au Thi Hoang
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Hieu Trung Phan
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Đat Van Le
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Huong Thi Nguyen
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Nhung Tuyet Thi Nguyen
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Anh Lan Thi Nguyen
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Yen Kim Thi Pham
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Lai Phu Hung
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Giang Thi Thanh Nhan
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Son Hong Trinh
- Thuy Phuong Pig Research and Development Centre, National Institute of Animal Science, Hanoi, Viet Nam
| | - Lan Doan Pham
- Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam
| |
Collapse
|
4
|
Secchia S, Beilinson V, Chen X, Yang ZF, Wayman JA, Dhaliwal J, Jurickova I, Angerman E, Denson LA, Miraldi ER, Weirauch MT, Ikegami K. Nutrient starvation activates ECM remodeling gene enhancers associated with inflammatory bowel disease risk in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611754. [PMID: 39314475 PMCID: PMC11418948 DOI: 10.1101/2024.09.06.611754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Nutrient deprivation induces a reversible cell cycle arrest state termed quiescence, which often accompanies transcriptional silencing and chromatin compaction. Paradoxically, nutrient deprivation is associated with activated fibroblast states in pathological microenvironments in which fibroblasts drive extracellular matrix (ECM) remodeling to alter tissue environments. The relationship between nutrient deprivation and fibroblast activation remains unclear. Here, we report that serum deprivation extensively activates transcription of ECM remodeling genes in cultured fibroblasts, despite the induction of quiescence. Starvation-induced transcriptional activation accompanied large-scale histone acetylation of putative distal enhancers, but not promoters. The starvation-activated putative enhancers were enriched for non-coding genetic risk variants associated with inflammatory bowel disease (IBD), suggesting that the starvation-activated gene regulatory network may contribute to fibroblast activation in IBD. Indeed, the starvation-activated gene PLAU, encoding uPA serine protease for plasminogen and ECM, was upregulated in inflammatory fibroblasts in the intestines of IBD patients. Furthermore, the starvation-activated putative enhancer at PLAU, which harbors an IBD risk variant, gained chromatin accessibility in IBD patient fibroblasts. This study implicates nutrient deprivation in transcriptional activation of ECM remodeling genes in fibroblasts and suggests nutrient deprivation as a potential mechanism for pathological fibroblast activation in IBD.
Collapse
Affiliation(s)
- Stefano Secchia
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
- Department of Biology, Lund University, Lund, 22362, Sweden
- Present address: Institute of Human Biology, Basel, Switzerland
| | - Vera Beilinson
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
- Present address: California Institute of Technology, Pasadena, California, USA
| | - Xiaoting Chen
- Division of Allergy and Immunology, CCHMC Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zi F Yang
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joseph A Wayman
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jasbir Dhaliwal
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ingrid Jurickova
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Elizabeth Angerman
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily R Miraldi
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew T Weirauch
- Division of Allergy and Immunology, CCHMC Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kohta Ikegami
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Kwon H, Joh JY, Hong KU. Human CKAP2L shows a cell cycle-dependent expression pattern and exhibits microtubule-stabilizing properties. FEBS Open Bio 2024; 14:1526-1539. [PMID: 39073037 PMCID: PMC11492392 DOI: 10.1002/2211-5463.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Cytoskeleton-associated protein 2-like (CKAP2L) is a paralogue of cytoskeleton-associated protein 2 (CKAP2). We characterized the expression pattern, subcellular localization, and microtubule-stabilizing properties of human CKAP2L. The levels of both CKAP2L transcript and protein were cell cycle phase-dependent, peaking during the G2/M phase and relatively high in certain human tissues, including testis, intestine, and spleen. CKAP2L protein was detectable in all human cancer cell lines we tested. CKAP2L localized to the mitotic spindle apparatus during mitosis, as reported previously. During interphase, however, CKAP2L localized mainly to the nucleus. Ectopic overexpression of CKAP2L resulted in 'microtubule bundling', and, consequently, an elevated CKAP2L level led to prolonged mitosis. These findings support the mitotic role of CKAP2L during the human cell cycle.
Collapse
Affiliation(s)
- Hyerim Kwon
- School of MedicineSungkyunkwan UniversitySuwonKorea
| | - Jonathan Y. Joh
- Department of Pharmacology & ToxicologyUniversity of Louisville School of MedicineKYUSA
| | - Kyung U. Hong
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMAUSA
| |
Collapse
|
6
|
Francia M, Bot M, Boltz T, De la Hoz JF, Boks M, Kahn RS, Ophoff RA. Fibroblasts as an in vitro model of circadian genetic and genomic studies. Mamm Genome 2024; 35:432-444. [PMID: 38960898 PMCID: PMC11329553 DOI: 10.1007/s00335-024-10050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Bipolar disorder (BD) is a heritable disorder characterized by shifts in mood that manifest in manic or depressive episodes. Clinical studies have identified abnormalities of the circadian system in BD patients as a hallmark of underlying pathophysiology. Fibroblasts are a well-established in vitro model for measuring circadian patterns. We set out to examine the underlying genetic architecture of circadian rhythm in fibroblasts, with the goal to assess its contribution to the polygenic nature of BD disease risk. We collected, from primary cell lines of 6 healthy individuals, temporal genomic features over a 48 h period from transcriptomic data (RNA-seq) and open chromatin data (ATAC-seq). The RNA-seq data showed that only a limited number of genes, primarily the known core clock genes such as ARNTL, CRY1, PER3, NR1D2 and TEF display circadian patterns of expression consistently across cell cultures. The ATAC-seq data identified that distinct transcription factor families, like those with the basic helix-loop-helix motif, were associated with regions that were increasing in accessibility over time. Whereas known glucocorticoid receptor target motifs were identified in those regions that were decreasing in accessibility. Further evaluation of these regions using stratified linkage disequilibrium score regression analysis failed to identify a significant presence of them in the known genetic architecture of BD, and other psychiatric disorders or neurobehavioral traits in which the circadian rhythm is affected. In this study, we characterize the biological pathways that are activated in this in vitro circadian model, evaluating the relevance of these processes in the context of the genetic architecture of BD and other disorders, highlighting its limitations and future applications for circadian genomic studies.
Collapse
Affiliation(s)
- Marcelo Francia
- Interdepartmental Program for Neuroscience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Merel Bot
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Toni Boltz
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Juan F De la Hoz
- Bioinformatics Interdepartamental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Boks
- Department Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Imani A, Panahipour L, Kühtreiber H, Mildner M, Gruber R. RNAseq of Gingival Fibroblasts Exposed to PRF Membrane Lysates and PRF Serum. Cells 2024; 13:1308. [PMID: 39120336 PMCID: PMC11311358 DOI: 10.3390/cells13151308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Platelet-rich fibrin (PRF) is prepared by spontaneous coagulation of fractionated blood. When squeezed between two plates, PRF is separated into solid PRF membranes and a liquid exudate, the PRF serum. The question arises regarding how much the overall activity remains in the PRF membranes and what is discarded into the PRF serum. To this end, we have exposed gingival fibroblasts to lysates prepared from PRF membranes and PRF serum, followed by bulk RNA sequencing. A total of 268 up- and 136 down-regulated genes in gingival fibroblasts exposed to PRF membrane lysates were significantly regulated under the premise of a minimum log2 with 2.5-fold change and a minus log10 significance level of two, respectively. PRF serum only caused 62 up- and 32 down-regulated genes under these conditions. Among the 46 commonly up-regulated genes were CXCL1, CXCL5, CXCL6, CXCL8, IL33, IL6, and PTGS2/COX2, stanniocalcin-1-all linked to an inflammatory response. PRF membrane lysates further increased chemokines CCL2, CCL7, CXCL2, CXCL3, and IL1R1, IL1RL1, and IL1RN, as well as the paracrine factors IL11, LIF, IGF1, BMP2, BMP6, FGF2, and CCN2/CTGF, and all hyaluronan synthases. On the other hand, PRF serum increased DKK1. The genes commonly down-regulated by PRF membrane lysates and PRF serum included interferon-induced protein with tetratricopeptide repeats (IFIT1, IFIT2, IFIT3) and odd-skipped-related transcription factors (OSR1 and OSR2), as well as FGF18 and GDF15, respectively. Taken together, PRF membrane lysates, compared to PRF serum, cause a more complex response in gingival fibroblasts, but each increased chemokine expression in gingival fibroblasts.
Collapse
Affiliation(s)
- Atefe Imani
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (A.I.); (L.P.)
| | - Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (A.I.); (L.P.)
| | - Hannes Kühtreiber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (H.K.); (M.M.)
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (H.K.); (M.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (A.I.); (L.P.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
8
|
Ginley-Hidinger M, Abewe H, Osborne K, Richey A, Kitchen N, Mortenson KL, Wissink EM, Lis J, Zhang X, Gertz J. Cis-regulatory control of transcriptional timing and noise in response to estrogen. CELL GENOMICS 2024; 4:100542. [PMID: 38663407 PMCID: PMC11099348 DOI: 10.1016/j.xgen.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/26/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Cis-regulatory elements control transcription levels, temporal dynamics, and cell-cell variation or transcriptional noise. However, the combination of regulatory features that control these different attributes is not fully understood. Here, we used single-cell RNA-seq during an estrogen treatment time course and machine learning to identify predictors of expression timing and noise. We found that genes with multiple active enhancers exhibit faster temporal responses. We verified this finding by showing that manipulation of enhancer activity changes the temporal response of estrogen target genes. Analysis of transcriptional noise uncovered a relationship between promoter and enhancer activity, with active promoters associated with low noise and active enhancers linked to high noise. Finally, we observed that co-expression across single cells is an emergent property associated with chromatin looping, timing, and noise. Overall, our results indicate a fundamental tradeoff between a gene's ability to quickly respond to incoming signals and maintain low variation across cells.
Collapse
Affiliation(s)
- Matthew Ginley-Hidinger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Hosiana Abewe
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle Osborne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra Richey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Noel Kitchen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Katelyn L Mortenson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin M Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoyang Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Frommer ML, Langridge BJ, Beedie A, Jasionowska S, Awad L, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Exploring Anti-Fibrotic Effects of Adipose-Derived Stem Cells: Transcriptome Analysis upon Fibrotic, Inflammatory, and Hypoxic Conditioning. Cells 2024; 13:693. [PMID: 38667308 PMCID: PMC11049044 DOI: 10.3390/cells13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Autologous fat transfers show promise in treating fibrotic skin diseases, reversing scarring and stiffness, and improving quality of life. Adipose-derived stem cells (ADSCs) within these grafts are believed to be crucial for this effect, particularly their secreted factors, though the specific mechanisms remain unclear. This study investigates transcriptomic changes in ADSCs after in vitro fibrotic, inflammatory, and hypoxic conditioning. High-throughput gene expression assays were conducted on ADSCs exposed to IL1-β, TGF-β1, and hypoxia and in media with fetal bovine serum (FBS). Flow cytometry characterized the ADSCs. RNA-Seq analysis revealed distinct gene expression patterns between the conditions. FBS upregulated pathways were related to the cell cycle, replication, wound healing, and ossification. IL1-β induced immunomodulatory pathways, including granulocyte chemotaxis and cytokine production. TGF-β1 treatment upregulated wound healing and muscle tissue development pathways. Hypoxia led to the downregulation of mitochondria and cellular activity.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Alexandra Beedie
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
10
|
Tierney MT, Polak L, Yang Y, Abdusselamoglu MD, Baek I, Stewart KS, Fuchs E. Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices. Science 2024; 383:eadi7342. [PMID: 38452090 PMCID: PMC11177320 DOI: 10.1126/science.adi7342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.
Collapse
Affiliation(s)
- Matthew T Tierney
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | - Lisa Polak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | | | - Merve Deniz Abdusselamoglu
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | | | - Katherine S Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| |
Collapse
|
11
|
Francia M, Bot M, Boltz T, De la Hoz JF, Boks M, Kahn R, Ophoff R. Fibroblasts as an in vitro model of circadian genetic and genomic studies: A temporal analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541494. [PMID: 38496579 PMCID: PMC10942276 DOI: 10.1101/2023.05.19.541494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bipolar disorder (BD) is a heritable disorder characterized by shifts in mood that manifest in manic or depressive episodes. Clinical studies have identified abnormalities of the circadian system in BD patients as a hallmark of underlying pathophysiology. Fibroblasts are a well-established in vitro model for measuring circadian patterns. We set out to examine the underlying genetic architecture of circadian rhythm in fibroblasts, with the goal to assess its contribution to the polygenic nature of BD disease risk. We collected, from primary cell lines of 6 healthy individuals, temporal genomic features over a 48 hour period from transcriptomic data (RNA-seq) and open chromatin data (ATAC-seq). The RNA-seq data showed that only a limited number of genes, primarily the known core clock genes such as ARNTL, CRY1, PER3, NR1D2 and TEF display circadian patterns of expression consistently across cell cultures. The ATAC-seq data identified that distinct transcription factor families, like those with the basic helix-loop-helix motif, were associated with regions that were increasing in accessibility over time. Whereas known glucocorticoid receptor target motifs were identified in those regions that were decreasing in accessibility. Further evaluation of these regions using stratified linkage disequilibrium score regression (sLDSC) analysis failed to identify a significant presence of them in the known genetic architecture of BD, and other psychiatric disorders or neurobehavioral traits in which the circadian rhythm is affected. In this study, we characterize the biological pathways that are activated in this in vitro circadian model, evaluating the relevance of these processes in the context of the genetic architecture of BD and other disorders, highlighting its limitations and future applications for circadian genomic studies.
Collapse
Affiliation(s)
- Marcelo Francia
- Interdepartmental Program for Neuroscience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Merel Bot
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, UCLA
| | - Toni Boltz
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Juan F De la Hoz
- Bioinformatics Interdepartamental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Boks
- Brain Center University Medical Center Utrecht, Department Psychiatry, University Utrecht,Utrecht, The Netherlands
| | - René Kahn
- Brain Center University Medical Center Utrecht, Department Psychiatry, University Utrecht,Utrecht, The Netherlands
| | - Roel Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, UCLA
| |
Collapse
|
12
|
Park S, Ceulemans E, Van Deun K. A critical assessment of sparse PCA (research): why (one should acknowledge that) weights are not loadings. Behav Res Methods 2024; 56:1413-1432. [PMID: 37540466 PMCID: PMC10991020 DOI: 10.3758/s13428-023-02099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 08/05/2023]
Abstract
Principal component analysis (PCA) is an important tool for analyzing large collections of variables. It functions both as a pre-processing tool to summarize many variables into components and as a method to reveal structure in data. Different coefficients play a central role in these two uses. One focuses on the weights when the goal is summarization, while one inspects the loadings if the goal is to reveal structure. It is well known that the solutions to the two approaches can be found by singular value decomposition; weights, loadings, and right singular vectors are mathematically equivalent. What is often overlooked, is that they are no longer equivalent in the setting of sparse PCA methods which induce zeros either in the weights or the loadings. The lack of awareness for this difference has led to questionable research practices in sparse PCA. First, in simulation studies data is generated mostly based only on structures with sparse singular vectors or sparse loadings, neglecting the structure with sparse weights. Second, reported results represent local optima as the iterative routines are often initiated with the right singular vectors. In this paper we critically re-assess sparse PCA methods by also including data generating schemes characterized by sparse weights and different initialization strategies. The results show that relying on commonly used data generating models can lead to over-optimistic conclusions. They also highlight the impact of choice between sparse weights versus sparse loadings methods and the initialization strategies. The practical consequences of this choice are illustrated with empirical datasets.
Collapse
Affiliation(s)
- S Park
- Tilburg University, Methods and Statistics, Tilburg, The Netherlands.
| | - E Ceulemans
- KU Leuven, Psychology and Educational Sciences, Leuven, Belgium
| | - K Van Deun
- Tilburg University, Methods and Statistics, Tilburg, The Netherlands
| |
Collapse
|
13
|
Ginley-Hidinger M, Abewe H, Osborne K, Richey A, Kitchen N, Mortenson KL, Wissink EM, Lis J, Zhang X, Gertz J. Cis-regulatory control of transcriptional timing and noise in response to estrogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.532457. [PMID: 36993565 PMCID: PMC10054948 DOI: 10.1101/2023.03.14.532457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cis-regulatory elements control transcription levels, temporal dynamics, and cell-cell variation or transcriptional noise. However, the combination of regulatory features that control these different attributes is not fully understood. Here, we used single cell RNA-seq during an estrogen treatment time course and machine learning to identify predictors of expression timing and noise. We find that genes with multiple active enhancers exhibit faster temporal responses. We verified this finding by showing that manipulation of enhancer activity changes the temporal response of estrogen target genes. Analysis of transcriptional noise uncovered a relationship between promoter and enhancer activity, with active promoters associated with low noise and active enhancers linked to high noise. Finally, we observed that co-expression across single cells is an emergent property associated with chromatin looping, timing, and noise. Overall, our results indicate a fundamental tradeoff between a gene's ability to quickly respond to incoming signals and maintain low variation across cells.
Collapse
Affiliation(s)
- Matthew Ginley-Hidinger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Hosiana Abewe
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle Osborne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra Richey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Noel Kitchen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Katelyn L. Mortenson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin M. Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoyang Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
15
|
Yoshida H. Dissecting the Immune System through Gene Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:219-235. [PMID: 38467983 DOI: 10.1007/978-981-99-9781-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The immune system plays a dual role in human health, functioning both as a protector against pathogens and, at times, as a contributor to disease. This feature emphasizes the importance to uncover the underlying causes of its malfunctions, necessitating an in-depth analysis in both pathological and physiological conditions to better understand the immune system and immune disorders. Recent advances in scientific technology have enabled extensive investigations into gene regulation, a crucial mechanism governing cellular functionality. Studying gene regulatory mechanisms within the immune system is a promising avenue for enhancing our understanding of immune cells and the immune system as a whole. The gene regulatory mechanisms, revealed through various methodologies, and their implications in the field of immunology are discussed in this chapter.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
16
|
Bunch H, Kim D, Naganuma M, Nakagawa R, Cong A, Jeong J, Ehara H, Vu H, Chang JH, Schellenberg MJ, Sekine SI. ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat Commun 2023; 14:8341. [PMID: 38097570 PMCID: PMC10721843 DOI: 10.1038/s41467-023-44089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Masahiro Naganuma
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN BDR Laboratory for Phyloinformatics, Hyogo, 650-0047, Japan
| | - Anh Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hongha Vu
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
17
|
Laurent M, Cordeddu L, Zahedi Y, Ekwall K. LEO1 Is Required for Efficient Entry into Quiescence, Control of H3K9 Methylation and Gene Expression in Human Fibroblasts. Biomolecules 2023; 13:1662. [PMID: 38002344 PMCID: PMC10668985 DOI: 10.3390/biom13111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: The LEO1 (Left open reading frame 1) protein is a conserved subunit of the PAF1C complex (RNA polymerase II-associated factor 1 complex). PAF1C has well-established mechanistic functions in elongation of transcription and RNA processing. We previously showed, in fission yeast, that LEO1 controls histone H3K9 methylation levels by affecting the turnover of histone H3 in chromatin, and that it is essential for the proper regulation of gene expression during cellular quiescence. Human fibroblasts enter a reversible quiescence state upon serum deprivation in the growth media. Here we investigate the function of LEO1 in human fibroblasts. (2) Methods: We knocked out the LEO1 gene using CRISPR/Cas9 methodology in human fibroblasts and verified that the LEO1 protein was undetectable by Western blot. We characterized the phenotype of the ΔLEO1 knockout cells with FACS analysis and cell growth assays. We used RNA-sequencing using spike-in controls to measure gene expression and spike-in controlled ChIP-sequencing experiments to measure the histone modification H3K9me2 genome-wide. (3) Results: Gene expression levels are altered in quiescent cells, however factors controlling chromatin and gene expression changes in quiescent human cells are largely unknown. The ΔLEO1 knockout fibroblasts are viable but have reduced metabolic activity compared to wild-type cells. ΔLEO1 cells showed a slower entry into quiescence and a different morphology compared to wild-type cells. Gene expression was generally reduced in quiescent wild-type cells. The downregulated genes included genes involved in cell proliferation. A small number of genes were upregulated in quiescent wild-type cells including several genes involved in ERK1/ERK2 and Wnt signaling. In quiescent ΔLEO1 cells, many genes were mis-regulated compared to wild-type cells. This included genes involved in Calcium ion transport and cell morphogenesis. Finally, spike-in controlled ChIP-sequencing experiments demonstrated that the histone modification H3K9me2 levels are globally increased in quiescent ΔLEO1 cells. (4) Conclusions: Thus, LEO1 is important for proper entry into cellular quiescence, control of H3K9me2 levels, and gene expression in human fibroblasts.
Collapse
Affiliation(s)
| | | | | | - Karl Ekwall
- Department of Biosciences and Nutrition, Neo Building, Karolinska Institutet, SE-141 83 Huddinge, Sweden; (M.L.); (L.C.); (Y.Z.)
| |
Collapse
|
18
|
Liu H, Arsiè R, Schwabe D, Schilling M, Minia I, Alles J, Boltengagen A, Kocks C, Falcke M, Friedman N, Landthaler M, Rajewsky N. SLAM-Drop-seq reveals mRNA kinetic rates throughout the cell cycle. Mol Syst Biol 2023; 19:1-23. [PMID: 38778223 PMCID: PMC10568207 DOI: 10.15252/msb.202211427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 05/25/2024] Open
Abstract
RNA abundance is tightly regulated in eukaryotic cells by modulating the kinetic rates of RNA production, processing, and degradation. To date, little is known about time‐dependent kinetic rates during dynamic processes. Here, we present SLAM‐Drop‐seq, a method that combines RNA metabolic labeling and alkylation of modified nucleotides in methanol‐fixed cells with droplet‐based sequencing to detect newly synthesized and preexisting mRNAs in single cells. As a first application, we sequenced 7280 HEK293 cells and calculated gene‐specific kinetic rates during the cell cycle using the novel package Eskrate. Of the 377 robust‐cycling genes that we identified, only a minor fraction is regulated solely by either dynamic transcription or degradation (6 and 4%, respectively). By contrast, the vast majority (89%) exhibit dynamically regulated transcription and degradation rates during the cell cycle. Our study thus shows that temporally regulated mRNA degradation is fundamental for the correct expression of a majority of cycling genes. SLAM‐Drop‐seq, combined with Eskrate, is a powerful approach to understanding the underlying mRNA kinetics of single‐cell gene expression dynamics in continuous biological processes.
Collapse
Affiliation(s)
- Haiyue Liu
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Roberto Arsiè
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Daniel Schwabe
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marcel Schilling
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Igor Minia
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jonathan Alles
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anastasiya Boltengagen
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christine Kocks
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Martin Falcke
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Physics, Humboldt University Berlin, Berlin, Germany
| | - Nir Friedman
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Center for Computational Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany.
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Center for Cardiovascular Research (DZHK), Berlin, Germany.
- NeuroCure Cluster of Excellence, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin, Germany.
- National Center for Tumor Diseases (NCT), Berlin, Germany.
| |
Collapse
|
19
|
Li A, Luo L, Du W, Yu Z, He L, Fu S, Wang Y, Zhou Y, Yang C, Yang Y, Fang W, Zhang L, Hong S. Deciphering transcriptomic determinants of the divergent link between PD-L1 and immunotherapy efficacy. NPJ Precis Oncol 2023; 7:87. [PMID: 37696887 PMCID: PMC10495439 DOI: 10.1038/s41698-023-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Programmed cell death ligand 1 (PD-L1) expression remains the most widely used biomarker for predicting response to immune checkpoint inhibitors (ICI), but its predictiveness varies considerably. Identification of factors accounting for the varying PD-L1 performance is urgently needed. Here, using data from three independent trials comprising 1239 patients, we have identified subsets of cancer with distinct PD-L1 predictiveness based on tumor transcriptome. In the Predictiveness-High (PH) group, PD-L1+ tumors show better overall survival, progression-free survival, and objective response rate with ICI than PD-L1- tumors across three trials. However, the Predictiveness-Low (PL) group demonstrates an opposite trend towards better outcomes for PD-L1- tumors. PD-L1+ tumors from the PH group demonstrate the superiority of ICI over chemotherapy, whereas PD-L1+ tumors from the PL group show comparable efficacy between two treatments or exhibit an opposite trend favoring chemotherapy. This observation of context-dependent predictiveness remains strong regardless of immune subtype (Immune-Enriched or Non-Immune), PD-L1 regulation mechanism (adaptative or constitutive), tumor mutation burden, or neoantigen load. This work illuminates avenues for optimizing the use of PD-L1 expression in clinical decision-making and trial design, although this exploratory concept should be further confirmed in large trials.
Collapse
Affiliation(s)
- Anlin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Linfeng Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixin Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lina He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sha Fu
- Department of Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen University, Guangzhou, China
| | - Yuanyuan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yixin Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunlong Yang
- Department of Oncology, The People's Hospital of Fengqing, Lincang, China
| | - Yunpeng Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Shaodong Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Oncology, The People's Hospital of Fengqing, Lincang, China.
| |
Collapse
|
20
|
Filipescu D, Carcamo S, Agarwal A, Tung N, Humblin É, Goldberg MS, Vyas NS, Beaumont KG, Demircioglu D, Sridhar S, Ghiraldini FG, Capparelli C, Aplin AE, Salmon H, Sebra R, Kamphorst AO, Merad M, Hasson D, Bernstein E. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat Cell Biol 2023; 25:1332-1345. [PMID: 37605008 PMCID: PMC10495263 DOI: 10.1038/s41556-023-01208-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.
Collapse
Affiliation(s)
- Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aman Agarwal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Étienne Humblin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikki S Vyas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subhasree Sridhar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Capparelli
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut Curie, INSERM, U932, and PSL Research University, Paris, France
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Jane EP, Reslink MC, Gatesman TA, Halbert ME, Miller TA, Golbourn BJ, Casillo SM, Mullett SJ, Wendell SG, Obodo U, Mohanakrishnan D, Dange R, Michealraj A, Brenner C, Agnihotri S, Premkumar DR, Pollack IF. Targeting mitochondrial energetics reverses panobinostat- and marizomib-induced resistance in pediatric and adult high-grade gliomas. Mol Oncol 2023; 17:1821-1843. [PMID: 37014128 PMCID: PMC10483615 DOI: 10.1002/1878-0261.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
In previous studies, we demonstrated that panobinostat, a histone deacetylase inhibitor, and bortezomib, a proteasomal inhibitor, displayed synergistic therapeutic activity against pediatric and adult high-grade gliomas. Despite the remarkable initial response to this combination, resistance emerged. Here, in this study, we aimed to investigate the molecular mechanisms underlying the anticancer effects of panobinostat and marizomib, a brain-penetrant proteasomal inhibitor, and the potential for exploitable vulnerabilities associated with acquired resistance. RNA sequencing followed by gene set enrichment analysis (GSEA) was employed to compare the molecular signatures enriched in resistant compared with drug-naïve cells. The levels of adenosine 5'-triphosphate (ATP), nicotinamide adenine dinucleotide (NAD)+ content, hexokinase activity, and tricarboxylic acid (TCA) cycle metabolites required for oxidative phosphorylation to meet their bioenergetic needs were analyzed. Here, we report that panobinostat and marizomib significantly depleted ATP and NAD+ content, increased mitochondrial permeability and reactive oxygen species generation, and promoted apoptosis in pediatric and adult glioma cell lines at initial treatment. However, resistant cells exhibited increased levels of TCA cycle metabolites, which required for oxidative phosphorylation to meet their bioenergetic needs. Therefore, we targeted glycolysis and the electron transport chain (ETC) with small molecule inhibitors, which displayed substantial efficacy, suggesting that resistant cell survival is dependent on glycolytic and ETC complexes. To verify these observations in vivo, lonidamine, an inhibitor of glycolysis and mitochondrial function, was chosen. We produced two diffuse intrinsic pontine glioma (DIPG) models, and lonidamine treatment significantly increased median survival in both models, with particularly dramatic effects in panobinostat- and marizomib-resistant cells. These data provide new insights into mechanisms of treatment resistance in gliomas.
Collapse
Affiliation(s)
- Esther P. Jane
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Matthew C. Reslink
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Taylor A. Gatesman
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Matthew E. Halbert
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Tracy A. Miller
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Brian J. Golbourn
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Stephanie M. Casillo
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPAUSA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPAUSA
| | - Udochukwu Obodo
- Department of Diabetes & Cancer MetabolismCity of Hope Medical CenterDuarteCAUSA
| | | | - Riya Dange
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Antony Michealraj
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Charles Brenner
- Department of Diabetes & Cancer MetabolismCity of Hope Medical CenterDuarteCAUSA
| | - Sameer Agnihotri
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Daniel R. Premkumar
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Ian F. Pollack
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| |
Collapse
|
22
|
Nishikori S, Yasuda J, Murata K, Takegaki J, Harada Y, Shirai Y, Fujita S. Resistance training rejuvenates aging skin by reducing circulating inflammatory factors and enhancing dermal extracellular matrices. Sci Rep 2023; 13:10214. [PMID: 37353523 PMCID: PMC10290068 DOI: 10.1038/s41598-023-37207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023] Open
Abstract
Aerobic training (AT) is suggested to be an effective anti-aging strategy for skin aging. However, the respective effects of resistance training (RT) have not been studied. Therefore, we compared the effects of AT and RT on skin aging in a 16-week intervention in 61 healthy sedentary middle-aged Japanese women. Data from 56 women were available for analysis. Both interventions significantly improved skin elasticity and upper dermal structure, and RT also improved dermal thickness. After the training intervention, expression of dermal extracellular matrix-related genes was increased in normal human primary dermal fibroblasts. AT and RT had different effects on circulating levels of factors, such as cytokines, hormones in serum, and metabolites, and RT increased dermal biglycan (BGN). To our knowledge, this is the first report to show different effects of AT and RT on skin aging and identify the key factors involved in RT-induced skin rejuvenation.
Collapse
Affiliation(s)
- Shu Nishikori
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Jun Yasuda
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Kao Murata
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Junya Takegaki
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Yasuko Harada
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Yuki Shirai
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan.
| |
Collapse
|
23
|
Wang Z, Gu H, Zhao M, Li D, Wang J. MSC-CSMC: A multi-objective semi-supervised clustering algorithm based on constraints selection and multi-source constraints for gene expression data. Front Genet 2023; 14:1135260. [PMID: 36923794 PMCID: PMC10008853 DOI: 10.3389/fgene.2023.1135260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
Many clustering techniques have been proposed to group genes based on gene expression data. Among these methods, semi-supervised clustering techniques aim to improve clustering performance by incorporating supervisory information in the form of pairwise constraints. However, noisy constraints inevitably exist in the constraint set obtained on the practical unlabeled dataset, which degenerates the performance of semi-supervised clustering. Moreover, multiple information sources are not integrated into multi-source constraints to improve clustering quality. To this end, the research proposes a new multi-objective semi-supervised clustering algorithm based on constraints selection and multi-source constraints (MSC-CSMC) for unlabeled gene expression data. The proposed method first uses the gene expression data and the gene ontology (GO) that describes gene annotation information to form multi-source constraints. Then, the multi-source constraints are applied to the clustering by improving the constraint violation penalty weight in the semi-supervised clustering objective function. Furthermore, the constraints selection and cluster prototypes are put into the multi-objective evolutionary framework by adopting a mixed chromosome encoding strategy, which can select pairwise constraints suitable for clustering tasks through synergistic optimization to reduce the negative influence of noisy constraints. The proposed MSC-CSMC algorithm is testified using five benchmark gene expression datasets, and the results show that the proposed algorithm achieves superior performance.
Collapse
Affiliation(s)
- Zeyuan Wang
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Hong Gu
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Minghui Zhao
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Dan Li
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jia Wang
- Department of Breast Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
24
|
Glucocorticoids increase tissue cell protection against pore-forming toxins from pathogenic bacteria. Commun Biol 2023; 6:186. [PMID: 36807406 PMCID: PMC9938277 DOI: 10.1038/s42003-023-04568-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Many species of pathogenic bacteria damage tissue cells by secreting toxins that form pores in plasma membranes. Here we show that glucocorticoids increase the intrinsic protection of tissue cells against pore-forming toxins. Dexamethasone protected several cell types against the cholesterol-dependent cytolysin, pyolysin, from Trueperella pyogenes. Dexamethasone treatment reduced pyolysin-induced leakage of potassium and lactate dehydrogenase, limited actin cytoskeleton alterations, reduced plasma membrane blebbing, and prevented cytolysis. Hydrocortisone and fluticasone also protected against pyolysin-induced cell damage. Furthermore, dexamethasone protected HeLa and A549 cells against the pore-forming toxins streptolysin O from Streptococcus pyogenes, and alpha-hemolysin from Staphylococcus aureus. Dexamethasone cytoprotection was not associated with changes in cellular cholesterol or activating mitogen-activated protein kinase (MAPK) cell stress responses. However, cytoprotection was dependent on the glucocorticoid receptor and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR). Collectively, our findings imply that glucocorticoids could be exploited to limit tissue damage caused by pathogens secreting pore-forming toxins.
Collapse
|
25
|
Macromolecular crowding regulates matrix composition and gene expression in human gingival fibroblast cultures. Sci Rep 2023; 13:2047. [PMID: 36739306 PMCID: PMC9899282 DOI: 10.1038/s41598-023-29252-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 02/06/2023] Open
Abstract
Standard cell cultures are performed in aqueous media with a low macromolecule concentration compared to tissue microenvironment. In macromolecular crowding (MMC) experiments, synthetic polymeric crowders are added into cell culture media to better mimic macromolecule concentrations found in vivo. However, their effect on cultured cells is incompletely understood and appears context-dependent. Here we show using human gingival fibroblasts, a cell type associated with fast and scarless wound healing, that MMC (standard medium supplemented with Ficoll 70/400) potently modulates fibroblast phenotype and extracellular matrix (ECM) composition compared to standard culture media (nMMC) over time. MMC significantly reduced cell numbers, but increased accumulation of collagen I, cellular fibronectin, and tenascin C, while suppressing level of SPARC (Secreted Protein Acidic and Cysteine Rich). Out of the 75 wound healing and ECM related genes studied, MMC significantly modulated expression of 25 genes compared to nMMC condition. MMC also suppressed myofibroblast markers and promoted deposition of basement membrane molecules collagen IV, laminin 1, and expression of LAMB3 (Laminin Subunit Beta 3) gene. In cell-derived matrices produced by a novel decellularization protocol, the altered molecular composition of MMC matrices was replicated. Thus, MMC may improve cell culture models for research and provide novel approaches for regenerative therapy.
Collapse
|
26
|
Hwang H, Chang HR, Baek D. Determinants of Functional MicroRNA Targeting. Mol Cells 2023; 46:21-32. [PMID: 36697234 PMCID: PMC9880601 DOI: 10.14348/molcells.2023.2157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) play cardinal roles in regulating biological pathways and processes, resulting in significant physiological effects. To understand the complex regulatory network of miRNAs, previous studies have utilized massivescale datasets of miRNA targeting and attempted to computationally predict the functional targets of miRNAs. Many miRNA target prediction tools have been developed and are widely used by scientists from various fields of biology and medicine. Most of these tools consider seed pairing between miRNAs and their mRNA targets and additionally consider other determinants to improve prediction accuracy. However, these tools exhibit limited prediction accuracy and high false positive rates. The utilization of additional determinants, such as RNA modifications and RNA-binding protein binding sites, may further improve miRNA target prediction. In this review, we discuss the determinants of functional miRNA targeting that are currently used in miRNA target prediction and the potentially predictive but unappreciated determinants that may improve prediction accuracy.
Collapse
Affiliation(s)
- Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee Ryung Chang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Ashton MN, Worsham AE, Strawn MD, Fisher GD, Perry CJ, Ferguson MP, Zumwalt M, Brindley GW, Hashemi J, Mansouri H, Slauterbeck JR, Hardy DM. Degraded RNA from Human Anterior Cruciate Ligaments Yields Valid Gene Expression Profiles. Int J Mol Sci 2023; 24:1895. [PMID: 36768233 PMCID: PMC9916516 DOI: 10.3390/ijms24031895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Correlating gene expression patterns with biomechanical properties of connective tissues provides insights into the molecular processes underlying the tissue growth and repair. Cadaveric specimens such as human knees are widely considered suitable for biomechanical studies, but their usefulness for gene expression experiments is potentially limited by the unavoidable, nuclease-mediated degradation of RNA. Here, we tested whether valid gene expression profiles can be obtained using degraded RNA from human anterior cruciate ligaments (ACLs). Human ACL RNA (N = 6) degraded in vitro by limited ribonuclease digestion resemble highly degraded RNA isolated from cadaveric tissue. PCR threshold cycle (Ct) values for 90 transcripts (84 extracellular matrix, 6 housekeeping) in degraded RNAs variably ranged higher than values obtained from their corresponding non-degraded RNAs, reflecting both the expected loss of target templates in the degraded preparations as well as differences in the extent of degradation. Relative Ct values obtained for mRNAs in degraded preparations strongly correlated with the corresponding levels in non-degraded RNA, both for each ACL as well as for the pooled results from all six ACLs. Nuclease-mediated degradation produced similar, strongly correlated losses of housekeeping and non-housekeeping gene mRNAs. RNA degraded in situ yielded comparable results, confirming that in vitro digestion effectively modeled degradation by endogenous ribonucleases in frozen and thawed ACL. We conclude that, contrary to conventional wisdom, PCR-based expression analyses can yield valid mRNA profiles even from RNA preparations that are more than 90% degraded, such as those obtained from connective tissues subjected to biomechanical studies. Furthermore, legitimate quantitative comparisons between variably degraded tissues can be made by normalizing data to appropriate housekeeping transcripts.
Collapse
Affiliation(s)
- Megan N. Ashton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Asha E. Worsham
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Matthew D. Strawn
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Geoffrey D. Fisher
- Department of Anesthesiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cody J. Perry
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Orthopaedic Surgery & Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Matthew P. Ferguson
- Department of Orthopaedic Surgery & Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Mimi Zumwalt
- Department of Orthopaedic Surgery & Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - George W. Brindley
- Department of Orthopaedic Surgery & Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Javad Hashemi
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Hossein Mansouri
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - James R. Slauterbeck
- Department of Orthopaedic Surgery, University of South Alabama, Mobile, AL 36604, USA
| | - Daniel M. Hardy
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Orthopaedic Surgery & Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
28
|
Fan W, Yang L, Bouguila N. Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models With Watson Distributions. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:9654-9668. [PMID: 34784270 DOI: 10.1109/tpami.2021.3128271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper aims at proposing an unsupervised hierarchical nonparametric Bayesian framework for modeling axial data (i.e., observations are axes of direction) that can be partitioned into multiple groups, where each observation within a group is sampled from a mixture of Watson distributions with an infinite number of components that are allowed to be shared across different groups. First, we propose a hierarchical nonparametric Bayesian model for modeling grouped axial data based on the hierarchical Pitman-Yor process mixture model of Watson distributions. Then, we demonstrate that by setting the discount parameters of the proposed model to 0, another hierarchical nonparametric Bayesian model based on hierarchical Dirichlet process can be derived for modeling axial data. To learn the proposed models, we systematically develop a closed-form optimization algorithm based on the collapsed variational Bayes (CVB) inference. Furthermore, to ensure the convergence of the proposed learning algorithm, an annealing mechanism is introduced to the framework of CVB inference, leading to an averaged collapsed variational Bayes inference strategy. The merits of the proposed models for modeling grouped axial data are demonstrated through experiments on both synthetic data and real-world applications involving gene expression data clustering and depth image analysis.
Collapse
|
29
|
Hayflick SJ, Jeong SY, Sibon OCM. PKAN pathogenesis and treatment. Mol Genet Metab 2022; 137:283-291. [PMID: 36240582 PMCID: PMC9970616 DOI: 10.1016/j.ymgme.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Studies aimed at supporting different treatment approaches for pantothenate kinase-associated neurodegeneration (PKAN) have revealed the complexity of coenzyme A (CoA) metabolism and the limits of our current knowledge about disease pathogenesis. Here we offer a foundation for critically evaluating the myriad approaches, argue for the importance of unbiased disease models, and highlight some of the outstanding questions that are central to our understanding and treating PKAN.
Collapse
Affiliation(s)
- Susan J Hayflick
- Departments of Molecular & Medical Genetics, Pediatrics, and Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Suh Young Jeong
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ody C M Sibon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV, the Netherlands
| |
Collapse
|
30
|
Hamel KM, Liimatta KQ, Belgodere JA, Bunnell BA, Gimble JM, Martin EC. Adipose-Derived Stromal/Stem Cell Response to Tumors and Wounds: Evaluation of Patient Age. Stem Cells Dev 2022; 31:579-592. [PMID: 35262397 PMCID: PMC9836707 DOI: 10.1089/scd.2021.0280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/05/2022] [Indexed: 01/22/2023] Open
Abstract
Tumors were characterized as nonhealing wounds by Virchow in 1858 and Dvorak in 1986. Since then, researchers have analyzed tumors from a new perspective. The parallels between tumorigenesis and physiological wound healing can provide a new framework for developing antitumor therapeutics. One commonality between tumors and wounds is the involvement of the stromal environment, particularly adipose stromal/stem cells (ASCs). ASCs exhibit dual functions, in which they stimulate tumor progression and assist in tissue repair and regeneration. Numerous studies have focused on the role of ASCs in cancer and wound healing, but none to date has linked age, cancer, and wound healing. Furthermore, very few studies have focused on the role of donor-specific characteristics of ASCs, such as age and their role in facilitating ASC behavior in cancer and wound healing. This review article is designed to provide important insights into the impact of donor age on ASC tumor and wound response and their role in facilitating ASC behavior in cancer and wound healing.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A. Bunnell
- University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | | | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
31
|
Gala HP, Saha D, Venugopal N, Aloysius A, Purohit G, Dhawan J. A transcriptionally repressed quiescence program is associated with paused RNAPII and is poised for cell cycle reentry. J Cell Sci 2022; 135:275901. [PMID: 35781573 DOI: 10.1242/jcs.259789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Adult stem cells persist in mammalian tissues by entering a state of reversible quiescence/ G0, associated with low transcription. Using cultured myoblasts and muscle stem cells, we report that in G0, global RNA content and synthesis are substantially repressed, correlating with decreased RNA Polymerase II (RNAPII) expression and activation. Integrating RNAPII occupancy and transcriptome profiling, we identify repressed networks and a role for promoter-proximal RNAPII pausing in G0. Strikingly, RNAPII shows enhanced pausing in G0 on repressed genes encoding regulators of RNA biogenesis (Nucleolin, Rps24, Ctdp1); release of pausing is associated with their increased expression in G1. Knockdown of these transcripts in proliferating cells leads to induction of G0 markers, confirming the importance of their repression in establishment of G0. A targeted screen of RNAPII regulators revealed that knockdown of Aff4 (positive regulator of elongation) unexpectedly enhances expression of G0-stalled genes and hastens S phase; NELF, a regulator of pausing appears to be dispensable. We propose that RNAPII pausing contributes to transcriptional control of a subset of G0-repressed genes to maintain quiescence and impacts the timing of the G0-G1 transition.
Collapse
Affiliation(s)
- Hardik P Gala
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Debarya Saha
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Nisha Venugopal
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Ajoy Aloysius
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India.,National Center for Biological Sciences, Bangalore, 560065, India
| | - Gunjan Purohit
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
32
|
Koranne R, Brown K, Vandenbroek H, Taylor WR. C9ORF78 partially localizes to centromeres and plays a role in chromosome segregation. Exp Cell Res 2022; 413:113063. [PMID: 35167828 DOI: 10.1016/j.yexcr.2022.113063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022]
Abstract
C9ORF78 is a poorly characterized protein found in diverse eukaryotes. Previous work indicated overexpression of C9ORF78 in malignant tissues indicating a possible involvement in growth regulatory pathways. Additional studies in fission yeast and humans uncover a potential function in regulating the spliceosome. In studies of GFP-tagged C9ORF78 we observed a dramatic reduction in protein abundance in cells grown to confluence and/or deprived of serum growth factors. Serum stimulation induced synchronous re-expression of the protein in HeLa cells. This effect was also observed with the endogenous protein. Overexpressing either E2F1 or N-Myc resulted in elevated C9ORF78 expression potentially explaining the serum-dependent upregulation of the protein. Immunofluorescence analysis indicates that C9ORF78 localizes to nuclei in interphase but does not appear to concentrate in speckles as would be expected for a splicing protein. Surprisingly, a subpopulation of C9ORF78 co-localizes with ACA, Mad1 and Ndc80 in mitotic cells suggesting that this protein associates with kinetochores or centromeres. Levels of C9ORF78 at the centromere/kinetochore also increased upon activation of the mitotic checkpoint. Furthermore, knocking-down C9ORF78 caused mitotic defects. These studies uncover novel mitotic function and subcellular localization of C9ORF78.
Collapse
Affiliation(s)
- Radhika Koranne
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, MS 601, Toledo, OH, 43606, USA
| | - Kayla Brown
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, MS 601, Toledo, OH, 43606, USA
| | - Hannah Vandenbroek
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, MS 601, Toledo, OH, 43606, USA
| | - William R Taylor
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, MS 601, Toledo, OH, 43606, USA.
| |
Collapse
|
33
|
Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14051231. [PMID: 35267539 PMCID: PMC8909913 DOI: 10.3390/cancers14051231] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in determining the biological behavior of several of the more aggressive malignancies. Among the various cell types evident in the tumor “field”, cancer-associated fibroblasts (CAFs) are a heterogenous collection of activated fibroblasts secreting a wide repertoire of factors that regulate tumor development and progression, inflammation, drug resistance, metastasis and recurrence. Insensitivity to chemotherapeutics and metastatic spread are the major contributors to cancer patient mortality. This review discusses the complex interactions between CAFs and the various populations of normal and neoplastic cells that interact within the dynamic confines of the tumor microenvironment with a focus on the involved pathways and genes. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous population of stromal cells found in solid malignancies that coexist with the growing tumor mass and other immune/nonimmune cellular elements. In certain neoplasms (e.g., desmoplastic tumors), CAFs are the prominent mesenchymal cell type in the tumor microenvironment, where their presence and abundance signal a poor prognosis in multiple cancers. CAFs play a major role in the progression of various malignancies by remodeling the supporting stromal matrix into a dense, fibrotic structure while secreting factors that lead to the acquisition of cancer stem-like characteristics and promoting tumor cell survival, reduced sensitivity to chemotherapeutics, aggressive growth and metastasis. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Clarifying the molecular basis for such multidirectional crosstalk among the various normal and neoplastic cell types present in the tumor microenvironment may yield novel targets and new opportunities for therapeutic intervention. This review highlights the most recent concepts regarding the complexity of CAF biology including CAF heterogeneity, functionality in drug resistance, contribution to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
Collapse
|
34
|
Wangkheimayum J, Paul D, Chanda DD, Melson Singha K, Bhattacharjee A. Elevated expression of rsmI can act as a reporter of aminoglycoside resistance in Escherichia coli using kanamycin as signal molecule. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105229. [PMID: 35104679 DOI: 10.1016/j.meegid.2022.105229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
We aimed to design and analyse expressional response of endogenous and exogenous 16S rRNA methyl transferase genes under sub inhibitory concentration stress of different clinically relevant aminoglycoside antibiotics in Escherichia coli to identify an endogenous marker. One hundred twenty nine aminoglycoside resistant E. coli of clinical origin were collected for detection of 16S rRNA methyl transferase genes by PCR assay and each gene type was cloned within E. coli JM107. Parent isolates were subjected to plasmid elimination by SDS treatment. Expression analysis of both acquired and endogenous 16S rRNA methyl transferase genes were performed by quantitative real-time PCR in clones and parent isolates under aminoglycoside stress (4 mg/L). Majority of the isolates were harbouring rmtC (35/129), followed by rmtB (32/129), rmtA (21/129), rmtE (13/129), armA (11/129) rmtF (9/129) and rmtH (8/129). Plasmid was successfully eliminated for all the isolates with 6% of SDS. Expression analysis indicates that kanamycin, tobramycin and netilmicin stress could increase the expression of 16S rRNA methyltransferese genes. In the presence of kanamycin stress the expression of rsmI was consistently elevated for all the wild type isolates and clones tested. Except for isolates harbouring rmtB and rmtC expression of rsmE and rsmF was increased in the presence of all aminoglycosides. For all the cured mutants it was apparently observed that expression of endogenous methyl transferases were marginally increased. Elevated expression of constitutive rsmI can be used as a potential biomarker for detection of acquired 16S rRNA methyl transferase mediated aminoglycoside resistance by using sub inhibitory concentration of kanamycin as signal molecule.
Collapse
Affiliation(s)
| | - Deepjyoti Paul
- Department of Microbiology, Assam University Silchar, India
| | | | - K Melson Singha
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | | |
Collapse
|
35
|
Reduction in gene expression noise by targeted increase in accessibility at gene loci. Proc Natl Acad Sci U S A 2021; 118:2018640118. [PMID: 34625470 DOI: 10.1073/pnas.2018640118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 01/30/2023] Open
Abstract
Many eukaryotic genes are expressed in randomly initiated bursts that are punctuated by periods of quiescence. Here, we show that the intermittent access of the promoters to transcription factors through relatively impervious chromatin contributes to this "noisy" transcription. We tethered a nuclease-deficient Cas9 fused to a histone acetyl transferase at the promoters of two endogenous genes in HeLa cells. An assay for transposase-accessible chromatin using sequencing showed that the activity of the histone acetyl transferase altered the chromatin architecture locally without introducing global changes in the nucleus and rendered the targeted promoters constitutively accessible. We measured the gene expression variability from the gene loci by performing single-molecule fluorescence in situ hybridization against mature messenger RNAs (mRNAs) and by imaging nascent mRNA molecules present at active gene loci in single cells. Because of the increased accessibility of the promoter to transcription factors, the transcription from two genes became less noisy, even when the average levels of expression did not change. In addition to providing evidence for chromatin accessibility as a determinant of the noise in gene expression, our study offers a mechanism for controlling gene expression noise which is otherwise unavoidable.
Collapse
|
36
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
37
|
Tarnawski AS, Ahluwalia A. The Critical Role of Growth Factors in Gastric Ulcer Healing: The Cellular and Molecular Mechanisms and Potential Clinical Implications. Cells 2021; 10:cells10081964. [PMID: 34440733 PMCID: PMC8392882 DOI: 10.3390/cells10081964] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
In this article we review the cellular and molecular mechanisms of gastric ulcer healing. A gastric ulcer (GU) is a deep defect in the gastric wall penetrating through the entire mucosa and the muscularis mucosae. GU healing is a regeneration process that encompasses cell dedifferentiation, proliferation, migration, re-epithelialization, formation of granulation tissue, angiogenesis, vasculogenesis, interactions between various cells and the matrix, and tissue remodeling, all resulting in scar formation. All these events are controlled by cytokines and growth factors (e.g., EGF, TGFα, IGF-1, HGF, bFGF, TGFβ, NGF, VEGF, angiopoietins) and transcription factors activated by tissue injury. These growth factors bind to their receptors and trigger cell proliferation, migration, and survival pathways through Ras, MAPK, PI3K/Akt, PLC-γ, and Rho/Rac/actin signaling. The triggers for the activation of these growth factors are tissue injury and hypoxia. EGF, its receptor, IGF-1, HGF, and COX-2 are important for epithelial cell proliferation, migration, re-epithelialization, and gastric gland reconstruction. VEGF, angiopoietins, bFGF, and NGF are crucial for blood vessel regeneration in GU scars. The serum response factor (SRF) is essential for VEGF-induced angiogenesis, re-epithelialization, and blood vessel and muscle restoration. Local therapy with cDNA of human recombinant VEGF165 in combination with angiopoietin1, or with the NGF protein, dramatically accelerates GU healing and improves the quality of mucosal restoration within ulcer scars. The future directions for accelerating and improving healing include local gene and protein therapies with growth factors, their combinations, and the use of stem cells and tissue engineering.
Collapse
Affiliation(s)
- Andrzej S. Tarnawski
- Medical Research Service, VA Long Beach Healthcare System Long Beach, 5901 East Seventh Street, Long Beach, CA 90822, USA
- Division of Gastroenterology, Department of Medicine and Digestive Health Institute, The University of California-Irvine, Irvine, CA 92697, USA
- Correspondence: (A.S.T.); (A.A.); Tel.: +1-(562)-826-5813 (A.A.); Fax: +1-(562)-826-5675 (A.A.)
| | - Amrita Ahluwalia
- Medical Research Service, VA Long Beach Healthcare System Long Beach, 5901 East Seventh Street, Long Beach, CA 90822, USA
- Correspondence: (A.S.T.); (A.A.); Tel.: +1-(562)-826-5813 (A.A.); Fax: +1-(562)-826-5675 (A.A.)
| |
Collapse
|
38
|
Sharma KL, Jia S, Beacon TH, Adewumi I, López C, Hu P, Xu W, Davie JR. Mitogen-induced transcriptional programming in human fibroblasts. Gene 2021; 800:145842. [PMID: 34274479 DOI: 10.1016/j.gene.2021.145842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Treatment of serum-starved quiescent human cells with fetal bovine serum (FBS), epidermal growth factor (EGF), or the phorbol ester (12-O-tetradecanoylphorbol-13-acetate, TPA) activates the RAS-MAPK pathway which initiates a transcriptional program which drives cells toward proliferation. Stimulation of the RAS-MAPK pathway activates mitogen- and stress-activated kinases (MSK) 1 and 2, which phosphorylate histone H3 at S10 (H3S10ph) or S28 (H3S28ph) (nucleosomal response) located at the regulatory regions of immediate-early genes, setting in motion a series of chromatin remodeling events that result in transcription initiation. To investigate immediate-early genes regulated by the MSK, we have completed transcriptome analyses (RNA sequencing) of human normal fibroblast cells (CCD-1070Sk) stimulated with EGF or TPA ± H89, a potent MSK/PKA inhibitor. The induction of many immediate-early genes was independent of MSK activity. However, the induction of immediate-early genes attenuated with H89 also had reduced induction with the PKA inhibitor, Rp-cAMPS. Several EGF-induced genes, coding for transcriptional repressors, were further upregulated with H89 but not with Rp-cAMPS, suggesting a role for MSK in modulating the induction level of these genes.
Collapse
Affiliation(s)
- Kiran L Sharma
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Shuo Jia
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Ifeoluwa Adewumi
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Camila López
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Wayne Xu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada.
| |
Collapse
|
39
|
Payán-Bravo L, Fontalva S, Peñate X, Cases I, Guerrero-Martínez J, Pareja-Sánchez Y, Odriozola-Gil Y, Lara E, Jimeno-González S, Suñé C, Muñoz-Centeno M, Reyes J, Chávez S. Human prefoldin modulates co-transcriptional pre-mRNA splicing. Nucleic Acids Res 2021; 49:6267-6280. [PMID: 34096575 PMCID: PMC8216451 DOI: 10.1093/nar/gkab446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
Prefoldin is a heterohexameric complex conserved from archaea to humans that plays a cochaperone role during the co-translational folding of actin and tubulin monomers. Additional functions of prefoldin have been described, including a positive contribution to transcription elongation and chromatin dynamics in yeast. Here we show that prefoldin perturbations provoked transcriptional alterations across the human genome. Severe pre-mRNA splicing defects were also detected, particularly after serum stimulation. We found impairment of co-transcriptional splicing during transcription elongation, which explains why the induction of long genes with a high number of introns was affected the most. We detected genome-wide prefoldin binding to transcribed genes and found that it correlated with the negative impact of prefoldin depletion on gene expression. Lack of prefoldin caused global decrease in Ser2 and Ser5 phosphorylation of the RNA polymerase II carboxy-terminal domain. It also reduced the recruitment of the CTD kinase CDK9 to transcribed genes, and the association of splicing factors PRP19 and U2AF65 to chromatin, which is known to depend on CTD phosphorylation. Altogether the reported results indicate that human prefoldin is able to act locally on the genome to modulate gene expression by influencing phosphorylation of elongating RNA polymerase II, and thereby regulating co-transcriptional splicing.
Collapse
Affiliation(s)
- Laura Payán-Bravo
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Fontalva
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Xenia Peñate
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - José Antonio Guerrero-Martínez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Yerma Pareja-Sánchez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Yosu Odriozola-Gil
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Esther Lara
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Silvia Jimeno-González
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Carles Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine “López Neyra” IPBLN-CSIC, PTS, Granada, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - José C Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
40
|
Kim J, Ahn SY, Um SH. Bead-Immobilized Multimodal Molecular Beacon-Equipped DNA Machinery for Specific RNA Target Detection: A Prototypical Molecular Nanobiosensor. NANOMATERIALS 2021; 11:nano11061617. [PMID: 34203018 PMCID: PMC8235652 DOI: 10.3390/nano11061617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
A variety of nanostructured diagnostic tools have been developed for the precise detection of known genetic variants. Molecular beacon systems are very promising tools due to their specific selectivity coupled with relatively lower cost and time requirements than existing molecular detection tools such as next generation sequencing or real-time PCR (polymerase chain reaction). However, they are prone to errors induced by secondary structure responses to environmental fluctuations, such as temperature and pH. Herein, we report a temperature-insensitive, bead-immobilized, molecular beacon-equipped novel DNA nanostructure for detection of cancer miRNA variants with the consideration of thermodynamics. This system consists of three parts: a molecular beacon for cancer-specific RNA capture, a stem body as a core template, and a single bead for solid-support. This DNA system was selectively bound to nanosized beads using avidin-biotin chemistry. Synthetic DNA nanostructures, designed based on the principle of fluorescence-resonance enhanced transfer, were effectively applied for in vitro cancer-specific RNA detection. Several parameters were optimized for higher performance, with a focus on thermodynamic stability. Theoretical issues regarding the secondary structure of a single molecular beacon and its combinatory forms were also studied. This study provides design guidelines for new sensing systems of miRNA variation for next-generation biotechnological applications.
Collapse
Affiliation(s)
- Jeonghun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Korea; (J.K.); (S.Y.A.)
| | - So Yeon Ahn
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Korea; (J.K.); (S.Y.A.)
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Korea; (J.K.); (S.Y.A.)
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Korea
- Correspondence:
| |
Collapse
|
41
|
Aldughaim MS, Al-Anazi MR, Bohol MFF, Colak D, Alothaid H, Wakil SM, Hagos ST, Ali D, Alarifi S, Rout S, Alkahtani S, Al-Ahdal MN, Al-Qahtani AA. Gene Expression and Transcriptome Profiling of Changes in a Cancer Cell Line Post-Exposure to Cadmium Telluride Quantum Dots: Possible Implications in Oncogenesis. Dose Response 2021; 19:15593258211019880. [PMID: 34177396 PMCID: PMC8202281 DOI: 10.1177/15593258211019880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022] Open
Abstract
Cadmium telluride quantum dots (CdTe-QDs) are acquiring great interest in terms of their applications in biomedical sciences. Despite earlier sporadic studies on possible oncogenic roles and anticancer properties of CdTe-QDs, there is limited information regarding the oncogenic potential of CdTe-QDs in cancer progression. Here, we investigated the oncogenic effects of CdTe-QDs on the gene expression profiles of Chang cancer cells. Chang cancer cells were treated with 2 different doses of CdTe-QDs (10 and 25 μg/ml) at different time intervals (6, 12, and 24 h). Functional annotations helped identify the gene expression profile in terms of its biological process, canonical pathways, and gene interaction networks activated. It was found that the gene expression profiles varied in a time and dose-dependent manner. Validation of transcriptional changes of several genes through quantitative PCR showed that several genes upregulated by CdTe-QD exposure were somewhat linked with oncogenesis. CdTe-QD-triggered functional pathways that appear to associate with gene expression, cell proliferation, migration, adhesion, cell-cycle progression, signal transduction, and metabolism. Overall, CdTe-QD exposure led to changes in the gene expression profiles of the Chang cancer cells, highlighting that this nanoparticle can further drive oncogenesis and cancer progression, a finding that indicates the merit of immediate in vivo investigation.
Collapse
Affiliation(s)
| | - Mashael R Al-Anazi
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Marie Fe F Bohol
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Salma Majid Wakil
- Genotyping Core Facility, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Samya T Hagos
- Genotyping Core Facility, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sashmita Rout
- Advanced Centre for Treatment, Research, and Education in Cancer, Tata memorial Hospital, Mumbai, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University, School of Medicine, Riyadh, Saudi Arabia
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University, School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Targeting epigenetic modulation of cholesterol synthesis as a therapeutic strategy for head and neck squamous cell carcinoma. Cell Death Dis 2021; 12:482. [PMID: 33986254 PMCID: PMC8119982 DOI: 10.1038/s41419-021-03760-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
The histone methyltransferase EZH2 silences gene expression via H3 lysine 27 trimethylation and has been recognized as an important antitumour therapeutic target. However, the clinical application of existing EZH2 inhibitors is not satisfactory for the treatment of solid tumours. To discover novel strategies against head and neck squamous cell carcinoma (HNSCC), we performed genomics, metabolomics and RNA omics studies in HNSCC cells treated with EZH2 inhibitors. It was found that EZH2 inhibitors strongly induced the expression of genes in cholesterol synthesis. Through extensive drug screening we found that inhibition of squalene epoxidase (a key enzyme of endogenous cholesterol synthesis) synergistically increased the squalene content and enhanced the sensitivity of HNSCC cells to EZH2 inhibitors. Our findings provide an experimental and theoretical basis for the development of new combinations of EZH2 inhibitors to treat HNSCC.
Collapse
|
43
|
Nguyen VK, Somfai T, Salamone D, Thu Huong VT, Le Thi Nguyen H, Huu QX, Hoang AT, Phan HT, Thi Pham YK, Pham LD. Optimization of donor cell cycle synchrony, maturation media and embryo culture system for somatic cell nuclear transfer in the critically endangered Vietnamese Ỉ pig. Theriogenology 2021; 166:21-28. [PMID: 33667861 DOI: 10.1016/j.theriogenology.2021.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Our aim was to establish an efficient culture system to produce embryos by SCNT of the endangered Vietnamese Ỉ pig. Reducing the serum concentration from 10.0% to 0.2% during culture efficiently synchronized Ỉ pig fibroblasts used as donor cells at the G0/G1 stage. Oocyte maturation in a defined porcine oocyte medium (POM) supplemented with EGF and gonadotrophins resulted in higher cleavage and blastocyst rates compared with a non-defined POM containing pig follicular fluid (but without EGF) and both the defined and non-defined variants of NCSU-37. For embryo culture PZM3 and PZM5 media were superior to NCSU-37, in terms of the percentage of cleaved embryos. Addition of serum to PZM3 medium on Day 5 of culture (Day 0 = SCNT) improved blastocyst development. When SCNT embryos were transferred at the blastocyst stage, 7 of 11 recipients became pregnant. However, live offspring were not obtained. In conclusion, we established a system for the production of Ỉ pig embryos by SCNT and achieved blastocyst production rate at 26.4% by improving culture systems for donor cells, oocytes and embryos culture. Transfer of embryos resulted in pregnancies; however, live offspring were not obtained.
Collapse
Affiliation(s)
- Van Khanh Nguyen
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Tamas Somfai
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan
| | - Daniel Salamone
- Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Vu Thi Thu Huong
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Huong Le Thi Nguyen
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Quan Xuan Huu
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Au Thi Hoang
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Hieu Trung Phan
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Yen Kim Thi Pham
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Viet Nam
| | - Lan Doan Pham
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Viet Nam.
| |
Collapse
|
44
|
Park JW, Kim KH, Choi JK, Park TS, Song KD, Cho BW. Regulation of Toll-like receptors Expression in Muscle cells by Exercise-induced Stress. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 34:1590-1599. [PMID: 33332945 PMCID: PMC8495349 DOI: 10.5713/ab.20.0484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
Objective This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyung-Hwan Kim
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National Univ., City of Cheong-Ju, Republic of Korea
| | - Tae Sub Park
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.,Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
45
|
Parraga-Alava J, Inostroza-Ponta M. Influence of the go-based semantic similarity measures in multi-objective gene clustering algorithm performance. J Bioinform Comput Biol 2020; 18:2050038. [PMID: 33148094 DOI: 10.1142/s0219720020500389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using a prior biological knowledge of relationships and genetic functions for gene similarity, from repository such as the Gene Ontology (GO), has shown good results in multi-objective gene clustering algorithms. In this scenario and to obtain useful clustering results, it would be helpful to know which measure of biological similarity between genes should be employed to yield meaningful clusters that have both similar expression patterns (co-expression) and biological homogeneity. In this paper, we studied the influence of the four most used GO-based semantic similarity measures in the performance of a multi-objective gene clustering algorithm. We used four publicly available datasets and carried out comparative studies based on performance metrics for the multi-objective optimization field and clustering performance indexes. In most of the cases, using Jiang-Conrath and Wang similarities stand in terms of multi-objective metrics. In clustering properties, Resnik similarity allows to achieve the best values of compactness and separation and therefore of co-expression of groups of genes. Meanwhile, in biological homogeneity, the Wang similarity reports greater number of significant GO terms. However, statistical, visual, and biological significance tests showed that none of the GO-based semantic similarity measures stand out above the rest in order to significantly improve the performance of the multi-objective gene clustering algorithm.
Collapse
Affiliation(s)
- Jorge Parraga-Alava
- Facultad de Ciencias Informáticas, Universidad Técnica de Manabí, Avenida José María Urbina, Portoviejo 130105, Ecuador
| | - Mario Inostroza-Ponta
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Avenida Libertador General Bernardo O'Higgins, Santiago 9170020, Chile
| |
Collapse
|
46
|
Proteomic Profiling of Fibroblasts Isolated from Chronic Wounds Identifies Disease-Relevant Signaling Pathways. J Invest Dermatol 2020; 140:2280-2290.e4. [DOI: 10.1016/j.jid.2020.02.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
|
47
|
Onuh JO, Qiu H. Serum response factor-cofactor interactions and their implications in disease. FEBS J 2020; 288:3120-3134. [PMID: 32885587 PMCID: PMC7925694 DOI: 10.1111/febs.15544] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Serum response factor (SRF), a member of the Mcm1, Agamous, Deficiens, and SRF (MADS) box transcription factor, is widely expressed in all cell types and plays a crucial role in the physiological function and development of diseases. SRF regulates its downstream genes by binding to their CArG DNA box by interacting with various cofactors. However, the underlying mechanisms are not fully understood, therefore attracting increasing research attention due to the importance of this topic. This review's objective is to discuss the new progress in the studies of the molecular mechanisms involved in the activation of SRF and its impacts in physiological and pathological conditions. Notably, we summarized the recent studies on the interaction of SRF with its two main types of cofactors belonging to the myocardin families of transcription factors and the members of the ternary complex factors. The knowledge of these mechanisms will create new opportunities for understanding the dynamics of many traits and disease pathogenesis especially, cardiovascular diseases and cancer that could serve as targets for pharmacological control and treatment of these diseases.
Collapse
Affiliation(s)
- John Oloche Onuh
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
48
|
Chieosilapatham P, Yue H, Ikeda S, Ogawa H, Niyonsaba F. Involvement of the lipoprotein receptor LRP1 in AMP-IBP5-mediated migration and proliferation of human keratinocytes and fibroblasts. J Dermatol Sci 2020; 99:158-167. [DOI: 10.1016/j.jdermsci.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
|
49
|
Application of Systems Engineering Principles and Techniques in Biological Big Data Analytics: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8080951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the past few decades, we have witnessed tremendous advancements in biology, life sciences and healthcare. These advancements are due in no small part to the big data made available by various high-throughput technologies, the ever-advancing computing power, and the algorithmic advancements in machine learning. Specifically, big data analytics such as statistical and machine learning has become an essential tool in these rapidly developing fields. As a result, the subject has drawn increased attention and many review papers have been published in just the past few years on the subject. Different from all existing reviews, this work focuses on the application of systems, engineering principles and techniques in addressing some of the common challenges in big data analytics for biological, biomedical and healthcare applications. Specifically, this review focuses on the following three key areas in biological big data analytics where systems engineering principles and techniques have been playing important roles: the principle of parsimony in addressing overfitting, the dynamic analysis of biological data, and the role of domain knowledge in biological data analytics.
Collapse
|
50
|
Abdelhakim M, Lin X, Ogawa R. The Japanese Experience with Basic Fibroblast Growth Factor in Cutaneous Wound Management and Scar Prevention: A Systematic Review of Clinical and Biological Aspects. Dermatol Ther (Heidelb) 2020; 10:569-587. [PMID: 32506250 PMCID: PMC7367968 DOI: 10.1007/s13555-020-00407-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Basic fibroblast growth factor (bFGF) plays several key roles in wound healing. Over the last 2 decades, clinical and basic research on bFGF has been actively conducted in Japan with reports on its potent efficacy in accelerating the healing of chronic ulcers and burn wounds by stimulating key cellular players in the skin. However, its efficacy remains unrecognized internationally. Thus, this study reviews current knowledge about the therapeutic value of bFGF in wound management and scar prevention accumulated in Japan over the last 2 decades. METHODS We review the Japanese literature that demonstrates the anti-scarring effects of bFGF and exhaustively assess how these effects are exerted. Using the search terms "bFGF OR growth factors AND wound healing in Japan" and "bFGF AND scar prevention in Japan," we conducted a search of the PubMed database for publications on the role of bFGF in wound and scar management in Japan. All eligible papers published between 1988 and December 2019 were retrieved and reviewed. RESULTS Our search yielded 208 articles; 82 were related to the application of bFGF for dermal wound healing in Japan. Of these, 27 fulfilled all inclusion criteria; 11 were laboratory studies, 7 were case reports, 4 were clinical studies, and 5 were randomized controlled trials. CONCLUSION Further research, with recognition of the therapeutic value of bFGF in wound and scar management and its clinical applications, is needed to provide additional clinical advantages while improving wound healing and reducing the risk of post-surgical scar formation.
Collapse
Affiliation(s)
- Mohamed Abdelhakim
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | - Xunxun Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| |
Collapse
|