1
|
Wang J, Lekić V, Schmerr NC, Gu YJ, Guo Y, Lin R. Mesozoic intraoceanic subduction shaped the lower mantle beneath the East Pacific Rise. SCIENCE ADVANCES 2024; 10:eado1219. [PMID: 39331711 PMCID: PMC11430487 DOI: 10.1126/sciadv.ado1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The Pacific large low-shear-velocity province (LLSVP), as revealed by cluster analysis of global tomographic models, hosts multiple internal anomalies, including a notable gap (~20° wide) between the central and eastern Pacific. The cause of the structural gap remains unconstrained. Directly above this structural gap, we identify an anomalously thick mantle transition zone east of the East Pacific Rise, the fastest-spreading ocean ridge in the world, using a dense set of SS precursors. The area of the thickened transition zone exhibits faster-than-average velocities according to recent tomographic images, suggesting perturbed postolivine phase boundaries shifting in response to lowered temperatures. We attribute this observation to episodes of Mesozoic-aged (250 to 120 million years ago) intraoceanic subduction beneath the present-day Nazca Plate. The eastern portion of the Pacific LLSVP was separated by downwelling because of this ancient oceanic slab. Our discovery provides a unique perspective on linking deep Earth structures with surface subduction.
Collapse
Affiliation(s)
- Jingchuan Wang
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| | - Vedran Lekić
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| | - Nicholas C Schmerr
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| | - Yu J Gu
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Yi Guo
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Rongzhi Lin
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
2
|
Deng Z, Schiller M, Jackson MG, Millet MA, Pan L, Nikolajsen K, Saji NS, Huang D, Bizzarro M. Earth's evolving geodynamic regime recorded by titanium isotopes. Nature 2023; 621:100-104. [PMID: 37495699 PMCID: PMC10482698 DOI: 10.1038/s41586-023-06304-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Abstract
Earth's mantle has a two-layered structure, with the upper and lower mantle domains separated by a seismic discontinuity at about 660 km (refs. 1,2). The extent of mass transfer between these mantle domains throughout Earth's history is, however, poorly understood. Continental crust extraction results in Ti-stable isotopic fractionation, producing isotopically light melting residues3-7. Mantle recycling of these components can impart Ti isotope variability that is trackable in deep time. We report ultrahigh-precision 49Ti/47Ti ratios for chondrites, ancient terrestrial mantle-derived lavas ranging from 3.8 to 2.0 billion years ago (Ga) and modern ocean island basalts (OIBs). Our new Ti bulk silicate Earth (BSE) estimate based on chondrites is 0.052 ± 0.006‰ heavier than the modern upper mantle sampled by normal mid-ocean ridge basalts (N-MORBs). The 49Ti/47Ti ratio of Earth's upper mantle was chondritic before 3.5 Ga and evolved to a N-MORB-like composition between approximately 3.5 and 2.7 Ga, establishing that more continental crust was extracted during this epoch. The +0.052 ± 0.006‰ offset between BSE and N-MORBs requires that <30% of Earth's mantle equilibrated with recycled crustal material, implying limited mass exchange between the upper and lower mantle and, therefore, preservation of a primordial lower-mantle reservoir for most of Earth's geologic history. Modern OIBs record variable 49Ti/47Ti ratios ranging from chondritic to N-MORBs compositions, indicating continuing disruption of Earth's primordial mantle. Thus, modern-style plate tectonics with high mass transfer between the upper and lower mantle only represents a recent feature of Earth's history.
Collapse
Affiliation(s)
- Zhengbin Deng
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Deep Space Exploration Laboratory/CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China.
| | - Martin Schiller
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matthew G Jackson
- Department of Earth Science, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Marc-Alban Millet
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
| | - Lu Pan
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Deep Space Exploration Laboratory/Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Katrine Nikolajsen
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nikitha S Saji
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dongyang Huang
- Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
| | - Martin Bizzarro
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institut de Physique du Globe de Paris, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
A thin mantle transition zone beneath the equatorial Mid-Atlantic Ridge. Nature 2021; 589:562-566. [PMID: 33505039 DOI: 10.1038/s41586-020-03139-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 11/03/2020] [Indexed: 01/30/2023]
Abstract
The location and degree of material transfer between the upper and lower mantle are key to the Earth's thermal and chemical evolution. Sinking slabs and rising plumes are generally accepted as locations of transfer1,2, whereas mid-ocean ridges are not typically assumed to have a role3. However, tight constraints from in situ measurements at ridges have proved to be challenging. Here we use receiver functions that reveal the conversion of primary to secondary seismic waves to image the discontinuities that bound the mantle transition zone, using ocean bottom seismic data from the equatorial Mid-Atlantic Ridge. Our images show that the seismic discontinuity at depths of about 660 kilometres is broadly uplifted by 10 ± 4 kilometres over a swath about 600 kilometres wide and that the 410-kilometre discontinuity is depressed by 5 ± 4 kilometres. This thinning of the mantle transition zone is coincident with slow shear-wave velocities in the mantle, from global seismic tomography4-7. In addition, seismic velocities in the mantle transition zone beneath the Mid-Atlantic Ridge are on average slower than those beneath older Atlantic Ocean seafloor. The observations imply material transfer from the lower to the upper mantle-either continuous or punctuated-that is linked to the Mid-Atlantic Ridge. Given the length and longevity of the mid-ocean ridge system, this implies that whole-mantle convection may be more prevalent than previously thought, with ridge upwellings having a role in counterbalancing slab downwellings.
Collapse
|
4
|
Marusiak AG, Schmerr NC, Banks ME, Daubar IJ. Terrestrial Single-Station Analog for Constraining the Martian Core and Deep Interior: Implications for InSight. ICARUS 2020; 335:113396. [PMID: 31534268 PMCID: PMC6750223 DOI: 10.1016/j.icarus.2019.113396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We used a terrestrial single-station seismometer to quantify the uncertainty of InSight (INterior explorations using Seismic Investigations, Geodesy and Heat Transport) data for determining Martian core size. To mimic Martian seismicity, we formed a catalog using 917 terrestrial earthquakes, from which we randomly selected events. We stacked ScS amplitudes on modeled arrival times and searched for where ScS produced coherent seismic amplitudes. A core detection was defined by a coherent peak with small offset between predicted and user-selected arrival times. Iterating the detection algorithm with varying signal-to-noise (SNR) ranges and quantity of events determined the selection frequency of each model and quantified core depth uncertainty. Increasing the quantity of events reduced core depth uncertainty while increasing the recovery rate, while increasing event SNR had little effect. Including ScS2 multiples increased the recovery rate and reduced core depth uncertainty when we used low quantities of events. The most-frequent core depths varied by back azimuth, suggesting our method is sensitive to the presence of mantle heterogeneities. When we added 1° in source distance errors, core depth uncertainty increased by up to 11 km and recovery rates decreased by <5%. Altering epicentral distances by 25% added ~35 km of uncertainty and reduced recovery rates to <50% in some cases. From these experiments, we estimate that if InSight can detect five events with high location precision (<10 % epicentral distance errors), that there is at least an 88% chance of core depth recovery using ScS alone with uncertainty in core depth approaching 18 km and decreasing as more events are located.
Collapse
Affiliation(s)
- Angela G. Marusiak
- University of Maryland, College Park, 8000 Regents Drive, College Park, MD 20742 USA
| | - Nicholas C. Schmerr
- University of Maryland, College Park, 8000 Regents Drive, College Park, MD 20742 USA
| | - Maria E. Banks
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771 USA
- Planetary Science Institute, Tucson AZ, 85719 USA
| | - Ingrid J. Daubar
- Jet Propulsion Laboratory, California Institute of Technology, M/S 183-301, 4800 Oak Grove Drive Pasadena, CA 91109 USA
| |
Collapse
|
5
|
Imaging the Galápagos mantle plume with an unconventional application of floating seismometers. Sci Rep 2019; 9:1326. [PMID: 30718618 PMCID: PMC6362208 DOI: 10.1038/s41598-018-36835-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022] Open
Abstract
We launched an array of nine freely floating submarine seismometers near the Galápagos islands, which remained operational for about two years. P and PKP waves from regional and teleseismic earthquakes were observed for a range of magnitudes. The signal-to-noise ratio is strongly influenced by the weather conditions and this determines the lowest magnitudes that can be observed. Waves from deep earthquakes are easier to pick, but the S/N ratio can be enhanced through filtering and the data cover earthquakes from all depths. We measured 580 arrival times for different raypaths. We show that even such a limited number of data gives a significant increase in resolution for the oceanic upper mantle. This is the first time an array of floating seismometers is used in seismic tomography to improve the resolution significantly where otherwise no seismic information is available. We show that the Galápagos Archipelago is underlain by a deep (about 1900 km) 200–300 km wide plume of high temperature, with a heat flux very much larger than predicted from its swell bathymetry. The decrease of the plume temperature anomaly towards the surface indicates that the Earth’s mantle has a subadiabatic temperature gradient.
Collapse
|
6
|
Tidal tomography constrains Earth's deep-mantle buoyancy. Nature 2018; 551:321-326. [PMID: 29144451 DOI: 10.1038/nature24452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/22/2017] [Indexed: 11/09/2022]
Abstract
Earth's body tide-also known as the solid Earth tide, the displacement of the solid Earth's surface caused by gravitational forces from the Moon and the Sun-is sensitive to the density of the two Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific. These massive regions extend approximately 1,000 kilometres upward from the base of the mantle and their buoyancy remains actively debated within the geophysical community. Here we use tidal tomography to constrain Earth's deep-mantle buoyancy derived from Global Positioning System (GPS)-based measurements of semi-diurnal body tide deformation. Using a probabilistic approach, we show that across the bottom two-thirds of the two LLSVPs the mean density is about 0.5 per cent higher than the average mantle density across this depth range (that is, its mean buoyancy is minus 0.5 per cent), although this anomaly may be concentrated towards the very base of the mantle. We conclude that the buoyancy of these structures is dominated by the enrichment of high-density chemical components, probably related to subducted oceanic plates or primordial material associated with Earth's formation. Because the dynamics of the mantle is driven by density variations, our result has important dynamical implications for the stability of the LLSVPs and the long-term evolution of the Earth system.
Collapse
|
7
|
Affiliation(s)
- Maxwell L Rudolph
- Department of Geology, Portland State University, Post Office Box 751, Portland, OR 97207, USA.
| | - Vedran Lekić
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
8
|
Elasticity of Ferropericlase across the Spin Crossover in the Earth's Lower Mantle. Sci Rep 2015; 5:17188. [PMID: 26621579 PMCID: PMC4664863 DOI: 10.1038/srep17188] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
Knowing the elasticity of ferropericlase across the spin transition can help explain seismic and mineralogical models of the lower-mantle including the origin of seismic heterogeneities in the middle to lowermost parts of the lower mantle1234. However, the effects of spin transition on full elastic constants of ferropericlase remain experimentally controversial due to technical challenges in directly measuring sound velocities under lower-mantle conditions12345. Here we have reliably measured both VP and VS of a single-crystal ferropericlase ((Mg0.92,Fe0.08)O) using complementary Brillouin Light Scattering and Impulsive Stimulated Light Scattering coupled with a diamond anvil cell up to 96 GPa. The derived elastic constants show drastically softened C11 and C12 within the spin transition at 40–60 GPa while C44 is not affected. The spin transition is associated with a significant reduction of the aggregate VP/VS via the aggregate VP softening because VS softening does not visibly occur within the transition. Based on thermoelastic modelling along an expected geotherm, the spin crossover in ferropericlase can contribute to 2% reduction in VP/VS in a pyrolite mineralogical model in mid lower-mantle. Our results imply that the middle to lowermost parts of the lower-mantle would exhibit enhanced seismic heterogeneities due to the occurrence of the mixed-spin and low-spin ferropericlase.
Collapse
|
9
|
Ballmer MD, Schmerr NC, Nakagawa T, Ritsema J. Compositional mantle layering revealed by slab stagnation at ~1000-km depth. SCIENCE ADVANCES 2015; 1:e1500815. [PMID: 26824060 PMCID: PMC4730845 DOI: 10.1126/sciadv.1500815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/21/2015] [Indexed: 06/02/2023]
Abstract
Improved constraints on lower-mantle composition are fundamental to understand the accretion, differentiation, and thermochemical evolution of our planet. Cosmochemical arguments indicate that lower-mantle rocks may be enriched in Si relative to upper-mantle pyrolite, whereas seismic tomography images suggest whole-mantle convection and hence appear to imply efficient mantle mixing. This study reconciles cosmochemical and geophysical constraints using the stagnation of some slab segments at ~1000-km depth as the key observation. Through numerical modeling of subduction, we show that lower-mantle enrichment in intrinsically dense basaltic lithologies can render slabs neutrally buoyant in the uppermost lower mantle. Slab stagnation (at depths of ~660 and ~1000 km) and unimpeded slab sinking to great depths can coexist if the basalt fraction is ~8% higher in the lower mantle than in the upper mantle, equivalent to a lower-mantle Mg/Si of ~1.18. Global-scale geodynamic models demonstrate that such a moderate compositional gradient across the mantle can persist can in the presence of whole-mantle convection.
Collapse
Affiliation(s)
- Maxim D. Ballmer
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
- School of Ocean and Earth Sciences and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | - Takashi Nakagawa
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
| | - Jeroen Ritsema
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Williams CD, Li M, McNamara AK, Garnero EJ, van Soest MC. Episodic entrainment of deep primordial mantle material into ocean island basalts. Nat Commun 2015; 6:8937. [PMID: 26596781 PMCID: PMC4673794 DOI: 10.1038/ncomms9937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022] Open
Abstract
Chemical differences between mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) provide critical evidence that the Earth's mantle is compositionally heterogeneous. MORBs generally exhibit a relatively low and narrow range of (3)He/(4)He ratios on a global scale, whereas OIBs display larger variability in both time and space. The primordial origin of (3)He in OIBs has motivated hypotheses that high (3)He/(4)He ratios are the product of mantle plumes sampling chemically distinct material, but do not account for lower MORB-like (3)He/(4)He ratios in OIBs, nor their observed spatial and temporal variability. Here we perform thermochemical convection calculations which show the variable (3)He/(4)He signature of OIBs can be reproduced by deep isolated mantle reservoirs of primordial material that are viscously entrained by thermal plumes. Entrainment is highly time-dependent, producing a wide range of (3)He/(4)He ratios similar to that observed in OIBs worldwide and indicate MORB-like (3)He/(4)He ratios in OIBs cannot be used to preclude deep mantle-sourced hotspots.
Collapse
Affiliation(s)
- Curtis D Williams
- Department of Earth and Planetary Sciences, University of California at Davis, One Shields Avenue, Davis, California 95616, USA.,Arizona State University, School of Earth and Space Exploration, PO Box 876004, Tempe, Arizona 85287-6004, USA
| | - Mingming Li
- Arizona State University, School of Earth and Space Exploration, PO Box 876004, Tempe, Arizona 85287-6004, USA
| | - Allen K McNamara
- Arizona State University, School of Earth and Space Exploration, PO Box 876004, Tempe, Arizona 85287-6004, USA
| | - Edward J Garnero
- Arizona State University, School of Earth and Space Exploration, PO Box 876004, Tempe, Arizona 85287-6004, USA
| | - Matthijs C van Soest
- Arizona State University, School of Earth and Space Exploration, PO Box 876004, Tempe, Arizona 85287-6004, USA
| |
Collapse
|
11
|
Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc Natl Acad Sci U S A 2014; 111:10468-72. [PMID: 25002507 DOI: 10.1073/pnas.1322427111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron in ferropericlase (Fp), the second most abundant phase in the lower mantle, introduces unfamiliar effects on seismic velocities. First-principles calculations indicate that anticorrelation between shear velocity (VS) and bulk sound velocity (Vφ) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in longitudinal velocity (VP) at certain depths but not in VS. This effect is observed in tomography models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RS/P (∂ ln VS/∂ ln VP) heterogeneity ratio might be a useful fingerprint to detect the presence of Fp in the lower mantle.
Collapse
|
12
|
Mosca I, Cobden L, Deuss A, Ritsema J, Trampert J. Seismic and mineralogical structures of the lower mantle from probabilistic tomography. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jb008851] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Fiquet G, Auzende AL, Siebert J, Corgne A, Bureau H, Ozawa H, Garbarino G. Melting of peridotite to 140 gigapascals. Science 2010; 329:1516-8. [PMID: 20847269 DOI: 10.1126/science.1192448] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Interrogating physical processes that occur within the lowermost mantle is a key to understanding Earth's evolution and present-day inner composition. Among such processes, partial melting has been proposed to explain mantle regions with ultralow seismic velocities near the core-mantle boundary, but experimental validation at the appropriate temperature and pressure regimes remains challenging. Using laser-heated diamond anvil cells, we constructed the solidus curve of a natural fertile peridotite between 36 and 140 gigapascals. Melting at core-mantle boundary pressures occurs at 4180 ± 150 kelvin, which is a value that matches estimated mantle geotherms. Molten regions may therefore exist at the base of the present-day mantle. Melting phase relations and element partitioning data also show that these liquids could host many incompatible elements at the base of the mantle.
Collapse
Affiliation(s)
- G Fiquet
- Institut de Minéralogie et de Physique des Milieux Condensés, Institut de Physique du Globe de Paris, Université Pierre et Marie Curie, UMR CNRS 7590, Université Paris Diderot, 140 rue de Lourmel, 75015 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Brown MT, Ulgiati S. Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline. Ecol Modell 2010. [DOI: 10.1016/j.ecolmodel.2010.06.027] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Zhang N, Zhong S, Leng W, Li ZX. A model for the evolution of the Earth's mantle structure since the Early Paleozoic. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jb006896] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Upside-down differentiation and generation of a 'primordial' lower mantle. Nature 2010; 463:930-3. [PMID: 20164926 DOI: 10.1038/nature08824] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 01/07/2010] [Indexed: 11/08/2022]
Abstract
Except for the first 50-100 million years or so of the Earth's history, when most of the mantle may have been subjected to melting, the differentiation of Earth's silicate mantle has been controlled by solid-state convection. As the mantle upwells and decompresses across its solidus, it partially melts. These low-density melts rise to the surface and form the continental and oceanic crusts, driving the differentiation of the silicate part of the Earth. Because many trace elements, such as heat-producing U, Th and K, as well as the noble gases, preferentially partition into melts (here referred to as incompatible elements), melt extraction concentrates these elements into the crust (or atmosphere in the case of noble gases), where nearly half of the Earth's budget of these elements now resides. In contrast, the upper mantle, as sampled by mid-ocean ridge basalts, is highly depleted in incompatible elements, suggesting a complementary relationship with the crust. Mass balance arguments require that the other half of these incompatible elements be hidden in the Earth's interior. Hypotheses abound for the origin of this hidden reservoir. The most widely held view has been that this hidden reservoir represents primordial material never processed by melting or degassing. Here, we suggest that a necessary by-product of whole-mantle convection during the Earth's first billion years is deep and hot melting, resulting in the generation of dense liquids that crystallized and sank into the lower mantle. These sunken lithologies would have 'primordial' chemical signatures despite a non-primordial origin.
Collapse
|
17
|
Affiliation(s)
- Kei Hirose
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|
18
|
Cobden L, Goes S, Ravenna M, Styles E, Cammarano F, Gallagher K, Connolly JAD. Thermochemical interpretation of 1-D seismic data for the lower mantle: The significance of nonadiabatic thermal gradients and compositional heterogeneity. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jb006262] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laura Cobden
- Department of Earth Science and Engineering; Imperial College London; London UK
| | - Saskia Goes
- Department of Earth Science and Engineering; Imperial College London; London UK
| | - Matteo Ravenna
- Department of Earth Science and Engineering; Imperial College London; London UK
| | - Elinor Styles
- Department of Earth Science and Engineering; Imperial College London; London UK
| | | | | | | |
Collapse
|
19
|
Abstract
Abstract
Our knowledge of the structure of the Earth´s interior has been obtained by analysing seismic waves that travel in the Earth, and the reference Earth global models used by geophysicists are essentially seismological. Depth profiles of the seismic waves velocities reveal that the deep Earth is divided in several shells, separated by velocity and density discontinuities. The main discontinuity located at a depth of 2900 km corresponds to the transition between the mantle and the core. The Earth´s mantle can be further divided into the upper mantle and the lower mantle, with a transition zone characterised by two prominent increases in velocities observed at 410- and 660-km depths. This article will be focused on the mineral phases of the Earth´s mantle. The interpretation of seismological models in terms of chemical composition and temperature relies on the knowledge of the nature, structure and elastic properties of the candidate materials. We will describe to what extent recent advances in experimental mineral physics and X-ray diffraction have yielded essential knowledge on the structure and high-pressure high-temperature behaviour of pertinent materials, and major improvements in our understanding of the chemical and mineralogical composition of the Earth´s mantle.
Collapse
|
20
|
Reddy SM, Evans DAD. Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere. ACTA ACUST UNITED AC 2009. [DOI: 10.1144/sp323.1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe Palaeoproterozoic era was a time of profound change in Earth evolution and represented perhaps the first supercontinent cycle, from the amalgamation and dispersal of a possible Neoarchaean supercontinent to the formation of the 1.9–1.8 Ga supercontinent Nuna. This supercontinent cycle, although currently lacking in palaeogeographic detail, can in principle provide a contextual framework to investigate the relationships between deep-Earth and surface processes. In this article, we graphically summarize secular evolution from the Earth's core to its atmosphere, from the Neoarchaean to the Mesoproterozoic eras (specifically 3.0–1.2 Ga), to reveal intriguing temporal relationships across the various ‘spheres’ of the Earth system. At the broadest level our compilation confirms an important deep-Earth event at c. 2.7 Ga that is manifested in an abrupt increase in geodynamo palaeointensity, a peak in the global record of large igneous provinces, and a broad maximum in several mantle-depletion proxies. Temporal coincidence with juvenile continental crust production and orogenic gold, massive-sulphide and porphyry copper deposits, indicate enhanced mantle convection linked to a series of mantle plumes and/or slab avalanches. The subsequent stabilization of cratonic lithosphere, the possible development of Earth's first supercontinent and the emergence of the continents led to a changing surface environment in which voluminous banded iron-formations could accumulate on the continental margins and photosynthetic life could flourish. This in turn led to irreversible atmospheric oxidation at 2.4–2.3 Ga, extreme events in global carbon cycling, and the possible dissipation of a former methane greenhouse atmosphere that resulted in extensive Palaeoproterozoic ice ages. Following the great oxidation event, shallow marine sulphate levels rose, sediment-hosted and iron-oxide-rich metal deposits became abundant, and the transition to sulphide-stratified oceans provided the environment for early eukaryotic evolution. Recent advances in the geochronology of the global stratigraphic record have made these inferences possible. Frontiers for future research include more refined modelling of Earth's thermal and geodynamic evolution, palaeomagnetic studies of geodynamo intensity and continental motions, further geochronology and tectonic syntheses at regional levels, development of new isotopic systems to constrain geochemical cycles, and continued innovation in the search for records of early life in relation to changing palaeoenvironments.
Collapse
Affiliation(s)
- S. M. Reddy
- The Institute for Geoscience Research, Department of Applied Geology, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845, Australia
| | - D. A. D. Evans
- Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA
| |
Collapse
|
21
|
Sun D, Helmberger D, Ni S, Bower D. Direct measures of lateral velocity variation in the deep Earth. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jb005873] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Anomalous compressibility of ferropericlase throughout the iron spin cross-over. Proc Natl Acad Sci U S A 2009; 106:8447-52. [PMID: 19439661 DOI: 10.1073/pnas.0812150106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thermoelastic properties of ferropericlase Mg(1-x)Fe(x)O (x = 0.1875) throughout the iron high-to-low spin cross-over have been investigated by first principles at Earth's lower mantle conditions. This cross-over has important consequences for elasticity such as an anomalous bulk modulus (K(S)) reduction. At room temperature the anomaly is somewhat sharp in pressure but broadens with increasing temperature. Along a typical geotherm it occurs across most of the lower mantle with a more significant K(S) reduction at approximately 1,400-1,600 km depth. This anomaly might also cause a reduction in the effective activation energy for diffusion creep and lead to a viscosity minimum in the mid-lower mantle, in apparent agreement with results from inversion of data related with mantle convection and postglacial rebound.
Collapse
|
23
|
Elliott T. Restoration of the noble gases. Nature 2009; 459:520-1. [DOI: 10.1038/459520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Carlson RW, Boyet M. Composition of the Earth's interior: the importance of early events. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4077-4103. [PMID: 18826922 DOI: 10.1098/rsta.2008.0166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The detection of excess 142Nd caused by the decay of 103Ma half-life 146Sm in all terrestrial rocks compared with chondrites shows that the chondrite analogue compositional model cannot be strictly correct, at least for the accessible portion of the Earth. Both the continental crust (CC) and the mantle source of mid-ocean ridge basalts (MORB) originate from the material characterized by superchondritic 142Nd/144Nd. Thus, the mass balance of CC plus mantle depleted by crust extraction (the MORB-source mantle) does not sum back to chondritic compositions, but instead to a composition with Sm/Nd ratio sufficiently high to explain the superchondritic 142Nd/144Nd. This requires that the mass of mantle depleted by CC extraction expand to 75-100 per cent of the mantle depending on the composition assumed for average CC. If the bulk silicate Earth has chondritic relative abundances of the refractory lithophile elements, then there must exist within the Earth's interior an incompatible-element-enriched reservoir that contains roughly 40 per cent of the Earth's 40Ar and heat-producing radioactive elements. The existence of this enriched reservoir is demonstrated by time-varying 142Nd/144Nd in Archaean crustal rocks. Calculations of the mass of the enriched reservoir along with seismically determined properties of the D'' layer at the base of the mantle allow the speculation that this enriched reservoir formed by the sinking of dense melts deep in a terrestrial magma ocean. The enriched reservoir may now be confined to the base of the mantle owing to a combination of compositionally induced high density and low viscosity, both of which allow only minimal entrainment into the overlying convecting mantle.
Collapse
Affiliation(s)
- Richard W Carlson
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA.
| | | |
Collapse
|
25
|
O'Neill HSC, Palme H. Collisional erosion and the non-chondritic composition of the terrestrial planets. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4205-4238. [PMID: 18826927 DOI: 10.1098/rsta.2008.0111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The compositional variations among the chondrites inform us about cosmochemical fractionation processes during condensation and aggregation of solid matter from the solar nebula. These fractionations include: (i) variable Mg-Si-RLE ratios (RLE: refractory lithophile element), (ii) depletions in elements more volatile than Mg, (iii) a cosmochemical metal-silicate fractionation, and (iv) variations in oxidation state. Moon- to Mars-sized planetary bodies, formed by rapid accretion of chondrite-like planetesimals in local feeding zones within 106 years, may exhibit some of these chemical variations. However, the next stage of planetary accretion is the growth of the terrestrial planets from approximately 102 embryos sourced across wide heliocentric distances, involving energetic collisions, in which material may be lost from a growing planet as well as gained. While this may result in averaging out of the 'chondritic' fractionations, it introduces two non-chondritic chemical fractionation processes: post-nebular volatilization and preferential collisional erosion. In the latter, geochemically enriched crust formed previously is preferentially lost. That post-nebular volatilization was widespread is demonstrated by the non-chondritic Mn/Na ratio in all the small, differentiated, rocky bodies for which we have basaltic samples, including the Moon and Mars. The bulk silicate Earth (BSE) has chondritic Mn/Na, but shows several other compositional features in its pattern of depletion of volatile elements suggestive of non-chondritic fractionation. The whole-Earth Fe/Mg ratio is 2.1+/-0.1, significantly greater than the solar ratio of 1.9+/-0.1, implying net collisional erosion of approximately 10 per cent silicate relative to metal during the Earth's accretion. If this collisional erosion preferentially removed differentiated crust, the assumption of chondritic ratios among all RLEs in the BSE would not be valid, with the BSE depleted in elements according to their geochemical incompatibility. In the extreme case, the Earth would only have half the chondritic abundances of the highly incompatible, heat-producing elements Th, U and K. Such an Earth model resolves several geochemical paradoxes: the depleted mantle occupies the whole mantle, is completely outgassed in (40)Ar and produces the observed (4)He flux through the ocean basins. But the lower radiogenic heat production exacerbates the discrepancy with heat loss.
Collapse
Affiliation(s)
- Hugh St C O'Neill
- Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
26
|
Ballentine CJ, Holland G. What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4183-4203. [PMID: 18826923 DOI: 10.1098/rsta.2008.0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Study of commercially produced volcanic CO2 gas associated with the Colorado Plateau, USA, has revealed substantial new information about the noble gas isotopic composition and elemental abundance pattern of the mantle. Combined with published data from mid-ocean ridge basalts, it is now clear that the convecting mantle has a maximum (20)Ne/(22)Ne isotopic composition, indistinguishable from that attributed to solar wind-implanted (SWI) neon in meteorites. This is distinct from the higher (20)Ne/(22)Ne isotopic value expected for solar nebula gases. The non-radiogenic xenon isotopic composition of the well gases shows that 20 per cent of the mantle Xe is 'solar-like' in origin, but cannot resolve the small isotopic difference between the trapped meteorite 'Q'-component and solar Xe. The mantle primordial (20)Ne/(132)Xe is approximately 1400 and is comparable with the upper end of that observed in meteorites. Previous work using the terrestrial (129)I - (129)Xe mass balance demands that almost 99 per cent of the Xe (and therefore other noble gases) has been lost from the accreting solids and that Pu-I closure age models have shown this to have occurred in the first ca 100Ma of the Earth's history. The highest concentrations of Q-Xe and solar wind-implanted (SWI)-Ne measured in meteorites allow for this loss and these high-abundance samples have a Ne/Xe ratio range compatible with the 'recycled-air-corrected' terrestrial mantle. These observations do not support models in which the terrestrial mantle acquired its volatiles from the primary capture of solar nebula gases and, in turn, strongly suggest that the primary terrestrial atmosphere, before isotopic fractionation, is most probably derived from degassed trapped volatiles in accreting material.By contrast, the non-radiogenic argon, krypton and 80 per cent of the xenon in the convecting mantle have the same isotopic composition and elemental abundance pattern as that found in seawater with a small sedimentary Kr and Xe admix. These mantle heavy noble gases are dominated by recycling of air dissolved in seawater back into the mantle. Numerical simulations suggest that plumes sampling the core-mantle boundary would be enriched in seawater-derived noble gases compared with the convecting mantle, and therefore have substantially lower (40)Ar/(36)Ar. This is compatible with observation. The subduction process is not a complete barrier to volatile return to the mantle.
Collapse
Affiliation(s)
- Chris J Ballentine
- School of Earth, Environmental and Atmospheric Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | | |
Collapse
|
27
|
Duffy TS. Some recent advances in understanding the mineralogy of Earth's deep mantle. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4273-4293. [PMID: 18826921 DOI: 10.1098/rsta.2008.0172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure-temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO3 in the CaIrO3-type (post-perovskite) structure yield insights into the nature of the core-mantle boundary region. Theoretical studies of the behaviour of MgSiO3 liquids under high pressure-temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones).
Collapse
Affiliation(s)
- Thomas S Duffy
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
28
|
Khan A, Connolly JAD, Taylor SR. Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth's mantle. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jb005239] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Solomatov VS, Reese CC. Grain size variations in the Earth's mantle and the evolution of primordial chemical heterogeneities. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jb005319] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Steinberger B, Holme R. Mantle flow models with core-mantle boundary constraints and chemical heterogeneities in the lowermost mantle. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jb005080] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Lin JF, Vankó G, Jacobsen SD, Iota V, Struzhkin VV, Prakapenka VB, Kuznetsov A, Yoo CS. Spin Transition Zone in Earth's Lower Mantle. Science 2007; 317:1740-3. [PMID: 17885134 DOI: 10.1126/science.1144997] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mineral properties in Earth's lower mantle are affected by iron electronic states, but representative pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extending from about 1000 kilometers in depth and 1900 kelvin to 2200 kilometers and 2300 kelvin in the lower mantle. Because low-spin ferropericlase exhibits higher density and faster sound velocities relative to the high-spin ferropericlase, the observed increase in low-spin (Mg,Fe)O at mid-lower mantle conditions would manifest seismically as a lower-mantle spin transition zone characterized by a steeper-than-normal density gradient.
Collapse
Affiliation(s)
- Jung-Fu Lin
- Lawrence Livermore National Laboratory (LLNL), 7000 East Avenue, Livermore, CA 94550, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Loyd SJ, Becker TW, Conrad CP, Lithgow-Bertelloni C, Corsetti FA. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution. Proc Natl Acad Sci U S A 2007; 104:14266-71. [PMID: 17720806 PMCID: PMC1964844 DOI: 10.1073/pnas.0706667104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.
Collapse
Affiliation(s)
- S. J. Loyd
- *Department of Earth Sciences, 3651 Trousdale Parkway, University of Southern California, MC0740, Los Angeles, CA 90089
| | - T. W. Becker
- *Department of Earth Sciences, 3651 Trousdale Parkway, University of Southern California, MC0740, Los Angeles, CA 90089
- To whom correspondence should be addressed. E-mail:
| | - C. P. Conrad
- Department of Earth and Planetary Sciences, John Hopkins University, Baltimore, MD 21218; and
| | | | - F. A. Corsetti
- *Department of Earth Sciences, 3651 Trousdale Parkway, University of Southern California, MC0740, Los Angeles, CA 90089
| |
Collapse
|
33
|
Tan E, Gurnis M. Compressible thermochemical convection and application to lower mantle structures. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jb004505] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Brandenburg JP, van Keken PE. Deep storage of oceanic crust in a vigorously convecting mantle. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jb004813] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Ogawa M. Superplumes, plates, and mantle magmatism in two-dimensional numerical models. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jb004533] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Lyubetskaya T, Korenaga J. Chemical composition of Earth's primitive mantle and its variance: 2. Implications for global geodynamics. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2005jb004224] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Ritsema J, McNamara AK, Bull AL. Tomographic filtering of geodynamic models: Implications for model interpretation and large-scale mantle structure. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jb004566] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Sun X, Song X, Zheng S, Helmberger DV. Evidence for a chemical-thermal structure at base of mantle from sharp lateral P-wave variations beneath Central America. Proc Natl Acad Sci U S A 2007; 104:26-30. [PMID: 17182740 PMCID: PMC1765446 DOI: 10.1073/pnas.0609143103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Indexed: 11/18/2022] Open
Abstract
Compressional waves that sample the lowermost mantle west of Central America show a rapid change in travel times of up to 4 s over a sampling distance of 300 km and a change in waveforms. The differential travel times of the PKP waves (which traverse Earth's core) correlate remarkably well with predictions for S-wave tomography. Our modeling suggests a sharp transition in the lowermost mantle from a broad slow region to a broad fast region with a narrow zone of slowest anomaly next to the boundary beneath the Cocos Plate and the Caribbean Plate. The structure may be the result of ponding of ancient subducted Farallon slabs situated near the edge of a thermal and chemical upwelling.
Collapse
Affiliation(s)
- Xinlei Sun
- *Department of Geology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Xiaodong Song
- *Department of Geology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China; and
| | - Sihua Zheng
- Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China; and
| | - Don V. Helmberger
- Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
39
|
Electronic transitions and spin states in the lower mantle. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/174gm06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
|
41
|
Rankenburg K, Brandon AD, Neal CR. Neodymium isotope evidence for a chondritic composition of the Moon. Science 2006; 312:1369-72. [PMID: 16741118 DOI: 10.1126/science.1126114] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle.
Collapse
Affiliation(s)
- K Rankenburg
- NASA Johnson Space Center, Mail Code KR, Houston, TX 77058, USA.
| | | | | |
Collapse
|
42
|
Goncharov AF, Struzhkin VV, Jacobsen SD. Reduced Radiative Conductivity of Low-Spin (Mg,Fe)O in the Lower Mantle. Science 2006; 312:1205-8. [PMID: 16728639 DOI: 10.1126/science.1125622] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Optical absorption spectra have been measured at pressures up to 80 gigapascals (GPa) for the lower-mantle oxide magnesiowüstite (Mg,Fe)O. Upon reaching the high-spin to low-spin transition of Fe2+ at about 60 GPa, we observed enhanced absorption in the mid- and near-infrared spectral range, whereas absorption in the visible-ultraviolet was reduced. The observed changes in absorption are in contrast to prediction and are attributed to d-d orbital charge transfer in the Fe2+ ion. The results indicate that low-spin (Mg,Fe)O will exhibit lower radiative thermal conductivity than high-spin (Mg,Fe)O, which needs to be considered in future geodynamic models of convection and plume stabilization in the lower mantle.
Collapse
Affiliation(s)
- Alexander F Goncharov
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC 20015, USA.
| | | | | |
Collapse
|
43
|
Korenaga J. Archean geodynamics and the thermal evolution of Earth. ARCHEAN GEODYNAMICS AND ENVIRONMENTS 2006. [DOI: 10.1029/164gm03] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Continental growth and the archean paradox. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/164gm04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Zhong S. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jb003972] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Bovolo CI. The physical and chemical composition of the lower mantle. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2005; 363:2811-35. [PMID: 16286292 DOI: 10.1098/rsta.2005.1675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This article reviews some of the recent advances made within the field of mineral physics. In order to link the observed seismic and density structures of the lower mantle with a particular mineral composition, knowledge of the thermodynamic properties of the candidate materials is required. Determining which compositional model best matches the observed data is difficult because of the wide variety of possible mineral structures and compositions. State-of-the-art experimental and analytical techniques have pushed forward our knowledge of mineral physics, yet certain properties, such as the elastic properties of lower mantle minerals at high pressures and temperatures, are difficult to determine experimentally and remain elusive. Fortunately, computational techniques are now sufficiently advanced to enable the prediction of these properties in a self-consistent manner, but more results are required.A fundamental question is whether or not the upper and lower mantles are mixing. Traditional models that involve chemically separate upper and lower mantles cannot yet be ruled out despite recent conflicting seismological evidence showing that subducting slabs penetrate deep into the lower mantle and that chemically distinct layers are, therefore, unlikely.Recent seismic tomography studies giving three-dimensional models of the seismic wave velocities in the Earth also base their interpretations on the thermodynamic properties of minerals. These studies reveal heterogeneous velocity and density anomalies in the lower mantle, which are difficult to reconcile with mineral physics data.
Collapse
Affiliation(s)
- C Isabella Bovolo
- University of Newcastle upon Tyne School of Civil Engineering & Geosciences Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
47
|
McNamara AK, Zhong S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 2005; 437:1136-9. [PMID: 16237440 DOI: 10.1038/nature04066] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 07/21/2005] [Indexed: 11/08/2022]
Abstract
Large low-velocity seismic anomalies have been detected in the Earth's lower mantle beneath Africa and the Pacific Ocean that are not easily explained by temperature variations alone. The African anomaly has been interpreted to be a northwest-southeast-trending structure with a sharp-edged linear, ridge-like morphology. The Pacific anomaly, on the other hand, appears to be more rounded in shape. Mantle models with heterogeneous composition have related these structures to dense thermochemical piles or superplumes. It has not been shown, however, that such models can lead to thermochemical structures that satisfy the geometrical constraints, as inferred from seismological observations. Here we present numerical models of thermochemical convection in a three-dimensional spherical geometry using plate velocities inferred for the past 119 million years. We show that Earth's subduction history can lead to thermochemical structures similar in shape to the observed large, lower-mantle velocity anomalies. We find that subduction history tends to focus dense material into a ridge-like pile beneath Africa and a relatively more-rounded pile under the Pacific Ocean, consistent with seismic observations.
Collapse
Affiliation(s)
- Allen K McNamara
- Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA.
| | | |
Collapse
|
48
|
Lin JF, Struzhkin VV, Jacobsen SD, Hu MY, Chow P, Kung J, Liu H, Mao HK, Hemley RJ. Spin transition of iron in magnesiowüstite in the Earth's lower mantle. Nature 2005; 436:377-80. [PMID: 16034415 DOI: 10.1038/nature03825] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 05/13/2005] [Indexed: 11/09/2022]
Abstract
Iron is the most abundant transition-metal element in the mantle and therefore plays an important role in the geochemistry and geodynamics of the Earth's interior. Pressure-induced electronic spin transitions of iron occur in magnesiowüstite, silicate perovskite and post-perovskite. Here we have studied the spin states of iron in magnesiowüstite and the isolated effects of the electronic transitions on the elasticity of magnesiowüstite with in situ X-ray emission spectroscopy and X-ray diffraction to pressures of the lowermost mantle. An observed high-spin to low-spin transition of iron in magnesiowüstite results in an abnormal compressional behaviour between the high-spin and the low-spin states. The high-pressure, low-spin state exhibits a much higher bulk modulus and bulk sound velocity than the low-pressure, high-spin state; the bulk modulus jumps by approximately 35 percent and bulk sound velocity increases by approximately 15 percent across the transition in (Mg0.83,Fe0.17)O. Although no significant density change is observed across the electronic transition, the jump in the sound velocities and the bulk modulus across the transition provides an additional explanation for the seismic wave heterogeneity in the lowermost mantle. The transition also affects current interpretations of the geophysical and geochemical models using extrapolated or calculated thermal equation-of-state data without considering the effects of the electronic transition.
Collapse
Affiliation(s)
- Jung-Fu Lin
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Boyet M, Carlson RW. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 2005; 309:576-81. [PMID: 15961629 DOI: 10.1126/science.1113634] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
New high-precision samarium-neodymium isotopic data for chondritic meteorites show that their 142Nd/144Nd ratio is 20 parts per million lower than that of most terrestrial rocks. This difference indicates that most (70 to 95%) of Earth's mantle is compositionally similar to the incompatible element-depleted source of mid-ocean ridge basalts, possibly as a result of a global differentiation 4.53 billion years ago (Ga), within 30 million years of Earth's formation. The complementary enriched reservoir has never been sampled and is probably located at the base of the mantle. These data influence models of Earth's compositional structure and require revision of the timing of global differentiation on Earth's Moon and Mars.
Collapse
Affiliation(s)
- M Boyet
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W., Washington, DC 20015, USA.
| | | |
Collapse
|
50
|
Abouchami W, Hofmann AW, Galer SJG, Frey FA, Eisele J, Feigenson M. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 2005; 434:851-6. [PMID: 15829954 DOI: 10.1038/nature03402] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 01/16/2005] [Indexed: 11/09/2022]
Abstract
The two parallel chains of Hawaiian volcanoes ('Loa' and 'Kea') are known to have statistically different but overlapping radiogenic isotope characteristics. This has been explained by a model of a concentrically zoned mantle plume, where the Kea chain preferentially samples a more peripheral portion of the plume. Using high-precision lead isotope data for both centrally and peripherally located volcanoes, we show here that the two trends have very little compositional overlap and instead reveal bilateral, non-concentric plume zones, probably derived from the plume source in the mantle. On a smaller scale, along the Kea chain, there are isotopic differences between the youngest lavas from the Mauna Kea and Kilauea volcanoes, but the 550-thousand-year-old Mauna Kea lavas are isotopically identical to Kilauea lavas, consistent with Mauna Kea's position relative to the plume, which was then similar to that of present-day Kilauea. We therefore conclude that narrow (less than 50 kilometres wide) compositional streaks, as well as the larger-scale bilateral zonation, are vertically continuous over tens to hundreds of kilometres within the plume.
Collapse
Affiliation(s)
- W Abouchami
- Max-Planck-Institut für Chemie, Postfach 3060, 55020 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|