1
|
Janik K, Jin LQ, Kyzy KZ, Kaminski R, Smith GM, Krynska B. Neural tube defects induce abnormal astrocyte development by activation and epigenetic permissiveness of STAT3. Exp Neurol 2025; 389:115231. [PMID: 40169106 DOI: 10.1016/j.expneurol.2025.115231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
The open neural tube defect, myelomeningocele (MMC), is a debilitating congenital defect of the central nervous system, characterized by impaired spinal cord development. The pathological development of MMC spinal cord involves enhanced astrogenesis. However, the mechanisms underlying the abnormal generation of astrocytes in MMC spinal cord are poorly understood. Using a fetal rat model of this defect, we discovered that neural progenitor cells (NPCs) in the developing spinal cord undergo the accelerated acquisition of astrocytic competency and the abnormal induction of GFAP expression, resulting in the enhanced generation of astrocytes. We identified that the activation of signal transducer and activator of transcription 3 (STAT3) in NPCs, accompanied by the early epigenetic modifications at the consensus STAT3 binding site within the Gfap promoter, induces this pathological process. Furthermore, we demonstrated that the amniotic fluid exposure is the stimulator of STAT3 activation in MMC spinal cord NPCs, promoting GFAP expression and differentiation of NPCs into astrocytes. To validate this mechanism, we showed that elimination of Stat3 expression from NPCs using CRISPR/Cas9 inhibited GFAP expression and the emergence of astrocytes. Thus, our study provides a novel mechanism that drives abnormal astrogenesis in the developing MMC spinal cord.
Collapse
Affiliation(s)
- Karolina Janik
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA; Center for Neural Development and Repair, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Li-Qing Jin
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Kuralai Zholdosh Kyzy
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Rafal Kaminski
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - George M Smith
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA; Center for Neural Development and Repair, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Barbara Krynska
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA; Center for Neural Development and Repair, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Nakagawa T, Hata K, Izumi Y, Nakashima H, Katada S, Matsuda T, Bamba T, Nakashima K. E3 ubiquitin ligase RMND5A maintains the self-renewal state of human neural stem/precursor cells by regulating Wnt and mTOR signaling pathways. FEBS Lett 2025. [PMID: 40377017 DOI: 10.1002/1873-3468.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 05/18/2025]
Abstract
During cortical development, neural stem/precursor cells (NS/PCs) sequentially produce neurons, astrocytes, and oligodendrocytes. Before producing these cells, human (h) NS/PCs undergo prolonged self-renewal to form a larger cortex than other mammals, although the mechanisms are mostly unknown. Here, we performed a gene knockout screen using the CRISPR/Cas9 system to search for genes involved in hNS/PC self-renewal. We identified RMND5A, encoding an E3 ubiquitin ligase, among the candidate genes. We further demonstrated that knockdown of RMND5A decreased proliferation and promoted neuronal differentiation of hNS/PCs through the activation and suppression of the Wnt and mTOR signaling pathways, respectively. Taken together, our findings suggest that RMND5A participates in the maintenance of hNS/PC self-renewal by modulating the Wnt and mTOR signaling pathways. Impact statement During cortical development, human neural stem/precursor cells (hNS/PCs) undergo prolonged self-renewal to form a larger cortex than other mammals, although the mechanisms are mostly unknown. We identified RMND5A, an E3 ubiquitin ligase, as essential for maintaining self-renewal of hNS/PCs, providing valuable insights into the evolutionary expansion of the human brain.
Collapse
Affiliation(s)
- Takumi Nakagawa
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Hata
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideyuki Nakashima
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taito Matsuda
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Neural Regeneration and Brain Repair, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Xie B, Yu J, Chen C, Shen T. Protein Arginine Methyltransferases from Regulatory Function to Clinical Implication in Central Nervous System. Cell Mol Neurobiol 2025; 45:41. [PMID: 40366461 PMCID: PMC12078925 DOI: 10.1007/s10571-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/16/2025] [Indexed: 05/15/2025]
Abstract
Arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is a regulatory key mechanism involved in various cellular processes such as gene expression, RNA processing, DNA damage repair. Increasing evidence highlights the crucial role of PRMTs in human diseases, including cancer, cardiovascular and metabolic diseases. Here, this review focuses on the latest findings regarding PRMTs in the central nervous system (CNS), emphasizing their regulatory roles in neural stem cells, neurons, and glial cells. Additionally, we examine the connection between PRMTs dysregulation and neurological diseases affecting the CNS, including brain tumors, neurodegenerative diseases, and neurodevelopmental disorders. Therefore, this review aims to deepen our understanding of PRMTs-mediated arginine methylation in CNS and open avenues for developing novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Bin Xie
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jing Yu
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chao Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ting Shen
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Montella A, Tirelli M, Lasorsa VA, Aievola V, Cerbone V, Manganiello R, Iolascon A, Capasso M. Regulatory non-coding somatic mutations as drivers of neuroblastoma. Br J Cancer 2025; 132:469-480. [PMID: 39843641 PMCID: PMC11876587 DOI: 10.1038/s41416-025-02939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/05/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Emerging evidence suggests that non-coding somatic single nucleotide variants (SNVs) in cis-regulatory elements (CREs) contribute to cancer by disrupting gene expression networks. However, the role of non-coding SNVs in cancer, particularly neuroblastoma, remains largely unclear. METHODS SNVs effect on CREs activity was evaluated by luciferase assays. Motif analysis and ChIP-qPCR experiments were employed to reveal the transcription factors (TFs) involved in these processes. We exploited CRISPR-Cas9 experiments to elucidate the role of these SNVs on the CREs target genes expression. Cell proliferation and invasion assays were performed to assess their role in neuroblastoma tumorigenesis. RESULTS Our findings demonstrate that non-coding SNVs modify the transcriptional activity of two CREs altering the binding of STAT3 and SIN3A. Therefore, these SNVs reduce the expression of CTTNBP2 and MCF2L. We demonstrate that these two genes act as tumor suppressor in neuroblastoma. These pathogenetic SNVs may serve as oncogenic drivers by impairing the transcriptional programs essential for neuronal development and differentiation in which both the investigated TFs and target genes are involved. CONCLUSION Overall, the understanding of the functional role of non-coding variants elucidates their impact on tumorigenesis and can uncover new potential targets of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Annalaura Montella
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Matilde Tirelli
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | | | - Vincenzo Aievola
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy
| | | | | | - Achille Iolascon
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Mario Capasso
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| |
Collapse
|
5
|
Carrel A, Napoli E, Hixson K, Carlsen J, Cruz Del Angel Y, Strode D, Busquet N, Kumar V, Wempe MF, Russek SJ, Brooks-Kayal AR. Ruxolitinib-dependent reduction of seizure load and duration is accompanied by spatial memory improvement in the rat pilocarpine model of temporal lobe epilepsy. Neurotherapeutics 2025; 22:e00506. [PMID: 39643584 PMCID: PMC12014301 DOI: 10.1016/j.neurot.2024.e00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024] Open
Abstract
Molecules with optimized pharmacokinetic properties selectively aimed at the inhibition of STAT3 phosphorylation in brain have recently emerged as potential disease modifying therapies for epilepsy. In the current study, pharmacological inhibition of JAK1/2 with the orally available, FDA-approved drug ruxolitinib, produced nearly complete inhibition of hippocampal STAT3 phosphorylation, and reduced the expression of its downstream target Cyclin D1, when administered to rats 30 min and 3 h after onset of pilocarpine-induced status epilepticus (SE). This effect was accompanied by significantly shorter seizure duration and lower overall seizure frequency throughout the 4 weeks of EEG recording, but did not completely prevent the development of epilepsy in ruxolitinib-treated male rats. Compared to DMSO-treated animals, administration of ruxolitinib also improved memory (Y maze) but did not impact motor function (open field) following SE. Taken together with our previous findings, the results of this study provide further evidence that inhibition of the JAK/STAT pathway may be a promising disease modifying strategy to reduce severity of acquired epilepsy after brain injury, but also point to the need to better understand and optimize inhibitors of this pathway.
Collapse
Affiliation(s)
- Andrew Carrel
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Eleonora Napoli
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kathryn Hixson
- Graduate Program for Neuroscience, Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jessica Carlsen
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yasmin Cruz Del Angel
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dana Strode
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicolas Busquet
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA; Department of Chemistry, Kentucky State University, Frankfort, KY, USA
| | - Shelley J Russek
- Graduate Program for Neuroscience, Center for Systems Neuroscience, Boston University, Boston, MA, USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Amy R Brooks-Kayal
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
6
|
Huang T, Fakurazi S, Cheah PS, Ling KH. Dysregulation of REST and its target genes impacts the fate of neural progenitor cells in down syndrome. Sci Rep 2025; 15:2818. [PMID: 39843579 PMCID: PMC11754635 DOI: 10.1038/s41598-025-87314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Increasing shreds of evidence suggest that neurogenic-to-gliogenic shift may be critical to the abnormal neurodevelopment observed in individuals with Down syndrome (DS). REST, the Repressor Element-1 Silencing Transcription factor, regulates the differentiation and development of neural cells. Downregulation of REST may lead to defects in post-differentiation neuronal morphology in the brain of the DS fetal. This study aims to elucidate the role of REST in DS-derived NPCs using bioinformatics analyses and laboratory validations. We identified and validated vital REST-targeted DEGs: CD44, TGFB1, FN1, ITGB1, and COL1A1. Interestingly, these genes are involved in neurogenesis and gliogenesis in DS-derived NPCs. Furthermore, we identified nuclear REST loss and the neuroblast marker, DCX, was downregulated in DS human trisomic induced pluripotent stem cells (hiPSCs)-derived NPCs, whereas the glioblast marker, NFIA, was upregulated. Our findings indicate that the loss of REST is critical in the neurogenic-to-gliogenic shift observed in DS-derived NPCs. REST and its target genes may collectively regulate the NPC phenotype.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
7
|
Gong L, Xu D, Ni K, Li J, Mao W, Zhang B, Pu Z, Fang X, Yin Y, Ji L, Wang J, Hu Y, Meng J, Zhang R, Jiao J, Zou J. Smad1 Promotes Tumorigenicity and Chemoresistance of Glioblastoma by Sequestering p300 From p53. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402258. [PMID: 39629919 PMCID: PMC11789598 DOI: 10.1002/advs.202402258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Indexed: 01/30/2025]
Abstract
Acetylation is critically required for p53 activation, though it remains poorly understood how p53 acetylation is regulated in glioblastoma (GBM). This study reveals that p53 acetylation is a favorable prognostic marker for GBM, regardless of p53 status, and that Smad1, a key negative regulator of p53 acetylation, is involved in this process. Smad1 forms a complex with p53 and p300, inhibiting p300's interaction with p53 and leading to reduced p53 acetylation and increased Smad1 acetylation in GBM. This results in enhanced tumor growth and resistance to chemotherapy, particularly in tumors with missense mutant p53. Acetylation of K373 is found to be essential for Smad1's oncogenic function but does not confer chemoresistance in the absence of p53. Through molecular docking, it is discovered that Smad1 and p53 both interact with the acetyltransferase domain of p300, but at different amino acid sites. Disturbing the interface of Smad1 through amino acid mutations abolishes the Smad1-p300 complex and promotes p53 acetylation. Therefore, a small molecule is identified through virtual screening that specifically disrupts the Smad1-p300 interaction, offering a promising strategy for inhibiting GBM and increasing chemosensitivity by inhibiting Smad1 acetylation and restoring p53 acetylation.
Collapse
Affiliation(s)
- Lingli Gong
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Daxing Xu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Kaixiang Ni
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jie Li
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Wei Mao
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Bo Zhang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Zhening Pu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xiangming Fang
- Department of RadiologyThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Ying Yin
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Li Ji
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jingjing Wang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Yaling Hu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jiao Meng
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Rui Zhang
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jiantong Jiao
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jian Zou
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
8
|
Nandagopal S, Terrio A, Vicente FZ, Megason SG, Jambhekar A, Lahav G. Activation-derepression synergy enables a bHLH network to coordinate a signal-specific fate response. Cell Rep 2024; 43:115077. [PMID: 39671287 PMCID: PMC11774475 DOI: 10.1016/j.celrep.2024.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024] Open
Abstract
Stem cells integrate multiple environmental signals to activate appropriate fate programs. To ensure coherent responses, alternative fates must be concomitantly inactivated. However, mechanisms that coordinate fates in a signal-specific manner are not fully understood. Here, we investigate the role of a network of basic-helix-loop-helix (bHLH) transcription factors in neural stem cells, which integrate leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP) signaling to synergistically induce glial fibrillary acidic protein (GFAP), a key astrocyte-fate determinant. Using quantitative RNA-fluorescence in situ hybridization (FISH) and ectopic expression, we find that multiple bHLHs that promote alternative fates also repress GFAP but are all suppressed by BMP and, to a lesser extent, LIF. Mathematical modeling shows that synergy arises from this coordinated derepression of GFAP combined with its activation by LIF signaling. Finally, we determine how coordinated and tunable derepression results from extensive cross-regulation among bHLHs. Activation-derepression synergy could be broadly utilized to couple signaling and fate, particularly across the numerous developmental systems regulated by bHLH factors.
Collapse
Affiliation(s)
- Sandy Nandagopal
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| | - Alexsandra Terrio
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Fernando Z Vicente
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Sean G Megason
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Saleem M, Aden LA, Mutchler AL, Basu C, Ertuglu LA, Sheng Q, Penner N, Hemnes AR, Park JH, Ishimwe JA, Laffer CL, Elijovich F, Wanjalla CN, de la Visitacion N, Kastner PD, Albritton CF, Ahmad T, Haynes AP, Yu J, Graber MK, Yasmin S, Wagner KU, Sayeski PP, Hatzopoulos AK, Gamazon ER, Bick AG, Kleyman TR, Kirabo A. Myeloid-Specific JAK2 Contributes to Inflammation and Salt Sensitivity of Blood Pressure. Circ Res 2024; 135:890-909. [PMID: 39263750 PMCID: PMC11466692 DOI: 10.1161/circresaha.124.323595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Salt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP. METHODS We performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function. RESULTS We found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha). CONCLUSIONS Our findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Luul A Aden
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Ashley L Mutchler
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Chitra Basu
- Department of Medicine, Division of Genetic Medicine (C.B., E.R.G.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Cardiovascular Medicine (C.B., A.K.H.), Vanderbilt University Medical Center, Nashville, TN
| | - Lale A Ertuglu
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Quanhu Sheng
- Department of Biostatistics (Q.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Niki Penner
- Division of Allergy, Pulmonary, and Critical Care Medicine (N.P., A.R.H.)
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine (N.P., A.R.H.)
| | - Jennifer H Park
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Cheryl L Laffer
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | | | - Celestine N Wanjalla
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Nestor de la Visitacion
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Paul D Kastner
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Claude F Albritton
- School of Graduate Studies, Meharry Medical College, Nashville, TN (C.F.A.)
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Punjab, Pakistan (T.A.)
| | - Alexandria P Haynes
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Justin Yu
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Meghan K Graber
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Sharia Yasmin
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Kay-Uwe Wagner
- Wayne State University, Department of Oncology and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI (K.-U.W.)
| | - Peter P Sayeski
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville (P.P.S.)
| | - Antonis K Hatzopoulos
- Department of Medicine, Division of Cardiovascular Medicine (C.B., A.K.H.), Vanderbilt University Medical Center, Nashville, TN
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine (C.B., E.R.G.), Vanderbilt University Medical Center, Nashville, TN
| | - Alexander G Bick
- Division of Genetic Medicine (A.G.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, PA (T.R.K.)
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology and Inflammation (A.K.)
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN (A.K.)
| |
Collapse
|
10
|
Lendemeijer B, Unkel M, Smeenk H, Mossink B, Hijazi S, Gordillo-Sampedro S, Shpak G, Slump DE, van den Hout MCGN, van IJcken WFJ, Bindels EMJ, Hoogendijk WJG, Nadif Kasri N, de Vrij FMS, Kushner SA. Human Pluripotent Stem Cell-Derived Astrocyte Functionality Compares Favorably with Primary Rat Astrocytes. eNeuro 2024; 11:ENEURO.0148-24.2024. [PMID: 39227152 PMCID: PMC11404293 DOI: 10.1523/eneuro.0148-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Astrocytes are essential for the formation and maintenance of neural networks. However, a major technical challenge for investigating astrocyte function and disease-related pathophysiology has been the limited ability to obtain functional human astrocytes. Despite recent advances in human pluripotent stem cell (hPSC) techniques, primary rodent astrocytes remain the gold standard in coculture with human neurons. We demonstrate that a combination of leukemia inhibitory factor (LIF) and bone morphogenetic protein-4 (BMP4) directs hPSC-derived neural precursor cells to a highly pure population of astroglia in 28 d. Using single-cell RNA sequencing, we confirm the astroglial identity of these cells and highlight profound transcriptional adaptations in cocultured hPSC-derived astrocytes and neurons, consistent with their further maturation. In coculture with human neurons, multielectrode array recordings revealed robust network activity of human neurons in a coculture with hPSC-derived or rat astrocytes [3.63 ± 0.44 min-1 (hPSC-derived), 2.86 ± 0.64 min-1 (rat); p = 0.19]. In comparison, we found increased spike frequency within network bursts of human neurons cocultured with hPSC-derived astrocytes [56.31 ± 8.56 Hz (hPSC-derived), 24.77 ± 4.04 Hz (rat); p < 0.01], and whole-cell patch-clamp recordings revealed an increase of postsynaptic currents [2.76 ± 0.39 Hz (hPSC-derived), 1.07 ± 0.14 Hz (rat); p < 0.001], consistent with a corresponding increase in synapse density [14.90 ± 1.27/100 μm2 (hPSC-derived), 8.39 ± 0.63/100 μm2 (rat); p < 0.001]. Taken together, we show that hPSC-derived astrocytes compare favorably with rat astrocytes in supporting human neural network activity and maturation, providing a fully human platform for investigating astrocyte function and neuronal-glial interactions.
Collapse
Affiliation(s)
- Bas Lendemeijer
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10027
- Stavros Niarchos Foundation (SNF) Center for Precision Psychiatry & Mental Health, Columbia University, New York, New York 10027
| | - Maurits Unkel
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Hilde Smeenk
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Britt Mossink
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Sara Hijazi
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Sara Gordillo-Sampedro
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Guy Shpak
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Denise E Slump
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Center for Biomics, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Center for Biomics, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Witte J G Hoogendijk
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10027
- Stavros Niarchos Foundation (SNF) Center for Precision Psychiatry & Mental Health, Columbia University, New York, New York 10027
| |
Collapse
|
11
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
12
|
Sampei C, Kato K, Arasaki Y, Kimura Y, Konno T, Otsuka K, Kohara Y, Noda M, Ezura Y, Hayata T. Gprc5a is a novel parathyroid hormone-inducible gene and negatively regulates osteoblast proliferation and differentiation. J Cell Physiol 2024; 239:e31297. [PMID: 38769895 DOI: 10.1002/jcp.31297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Teriparatide is a peptide derived from a parathyroid hormone (PTH) and an osteoporosis therapeutic drug with potent bone formation-promoting activity. To identify novel druggable genes that act downstream of PTH signaling and are potentially involved in bone formation, we screened PTH target genes in mouse osteoblast-like MC3T3-E1 cells. Here we show that Gprc5a, encoding an orphan G protein-coupled receptor, is a novel PTH-inducible gene and negatively regulates osteoblast proliferation and differentiation. PTH treatment induced Gprc5a expression in MC3T3-E1 cells, rat osteosarcoma ROS17/2.8 cells, and mouse femurs. Induction of Gprc5a expression by PTH occurred in the absence of protein synthesis and was mediated primarily via the cAMP pathway, suggesting that Gprc5a is a direct target of PTH signaling. Interestingly, Gprc5a expression was induced additively by co-treatment with PTH and 1α, 25-dihydroxyvitamin D3 (calcitriol), or retinoic acid in MC3T3-E1 cells. Reporter analysis of a 1 kb fragment of human GPRC5A promoter revealed that the promoter fragment showed responsiveness to PTH via the cAMP response element, suggesting that GPRC5A is also a PTH-inducible gene in humans. Gprc5a knockdown promoted cell viability and proliferation, as demonstrated by MTT and BrdU assays. Gprc5a knockdown also promoted osteoblast differentiation, as indicated by gene expression analysis and mineralization assay. Mechanistic studies showed that Gprc5a interacted with BMPR1A and suppressed BMP signaling induced by BMP-2 and constitutively active BMP receptors, ALK2 (ACVR1) Q207D and ALK3 (BMPR1A) Q233D. Thus, our results suggest that Gprc5a is a novel gene induced by PTH that acts in an inhibitory manner on both cell proliferation and osteoblast differentiation and is a candidate for drug targets for osteoporosis.
Collapse
Affiliation(s)
- Chisato Sampei
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Kosuke Kato
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasuhiro Arasaki
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yuta Kimura
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Takuto Konno
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Kanon Otsuka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yukihiro Kohara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Occupational Therapy, Faculty of Health and Medical Science, Teikyo Heisei University, Toshima-ku, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
13
|
Jiang Y, Chen Y, Fu J, Zhao R, Xu J, Liu Y. Bone morphogenetic protein 4 alleviates pulmonary fibrosis by regulating macrophages. Int Immunopharmacol 2024; 139:112530. [PMID: 39053231 DOI: 10.1016/j.intimp.2024.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Fibrosis is a pathological change mainly characterized by an increase of fibrous connective tissue and decrease of parenchymal cells. Its continuous progress may lead to the destruction of organ structure and function decline. An excess of alternatively activated M2 macrophages have been considered crucial candidates in the progression of fibrosis. Bone morphogenetic proteins (BMPs), a group of multifunctional growth factors, are essential for organ development and pathophysiological process, however, the roles that BMPs play in innate immune homeostasis in the development of fibrosis and the downstream signals have not been fully explored. In the current study, we firstly found that the expression of BMP4 was significantly down-regulated in human and mouse fibrosis samples. Then we investigated the effects of BMP4 on macrophage polarization in IL-4 environment and related molecular mechanisms, and found that BMP4 caused a decrease in polarized response towards M2, reflected in the expression of the markers Fizz1, Ym1 and Arg1, together with an inhibition in Stat6 phosphorylation. This relied on the Smad1/5/8 signaling, which had a crosstalk with Stat6. Moreover, the in vivo study showed that BMP4 treatment can reduce collagen deposition and delay the development of experimental pulmonary fibrosis in mice by inhibiting M2 macrophages through adoptive transfer experiment. These findings revealed a novel role of BMP4 in regulating macrophages, offering potential strategies for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Rui Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
14
|
Haq IU, Mehmood Z, Tahir M, Ahmad Zakki S, Siddiq K, Xu J, Wang S. Risk Factors of Wasting-Based Malnutrition in the Flood-Affected Areas of Pakistan: A Cross-Sectional Study. Ecol Food Nutr 2024; 63:343-354. [PMID: 38833628 DOI: 10.1080/03670244.2024.2361250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The current study aimed to find the risk factors of wasting in flood-affected areas of Khyber Pakhtunkhwa, Pakistan. Sociodemographic and anthropometric data was collected. Children living in large family are 2.59 times more likely to be wasted (AOR = 2.59, 95% confidence interval (CI): 1.10, 6.10; p value = .029) and children living in medium size family are 2.23 times more likely to be wasted (AOR = 2.23, 95% CI: 1.03, 4.80; p value = .04) as compared to children in small family size. The study underscores the need for targeted interventions to address the identified risk factors and mitigate the impact of flooding on child nutrition.
Collapse
Affiliation(s)
- Ijaz Ul Haq
- Department of Nursing, Children's Hospital of Fudan University, Shanghai, China
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Zafar Mehmood
- Department of Math's, Stats & Computer Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Majid Tahir
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Shahbaz Ahmad Zakki
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Kalsoom Siddiq
- Department of Human Nutrition & Dietetics, Women University Mardan, Mardan, Pakistan
| | - Jielian Xu
- Department of Clinical Nutrition, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengru Wang
- Department of Clinical Nutrition, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Morgan HJ, Olivero C, Shorning BY, Gibbs A, Phillips AL, Ananthan L, Lim AXH, Martuscelli L, Borgogna C, De Andrea M, Hufbauer M, Goodwin R, Akgül B, Gariglio M, Patel GK. HPV8-induced STAT3 activation led keratinocyte stem cell expansion in human actinic keratoses. JCI Insight 2024; 9:e177898. [PMID: 38916963 PMCID: PMC11383611 DOI: 10.1172/jci.insight.177898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Despite epidermal turnover, the skin is host to a complex array of microbes, including viruses, such as HPV, which must infect and manipulate skin keratinocyte stem cells (KSCs) to survive. This crosstalk between the virome and KSC populations remains largely unknown. Here, we investigated the effect of HPV8 on KSCs using various mouse models. We observed that the HPV8 early region gene E6 specifically caused Lrig1+ hair follicle junctional zone KSC proliferation and expansion, which would facilitate viral transmission. Within Lrig1+ KSCs specifically, HPV8 E6 bound intracellular p300 to phosphorylate the STAT3 transcriptional regulatory node. This induced ΔNp63 expression, resulting in KSC expansion into the overlying epidermis. HPV8 was associated with 70% of human actinic keratoses. Together, these results define the "hit-and-run" mechanism for HPV8 in human actinic keratosis as an expansion of KSCs, which lack melanosome protection and are thus susceptible to sun light-induced malignant transformation.
Collapse
Affiliation(s)
- Huw J Morgan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Boris Y Shorning
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alexandra L Phillips
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lokapriya Ananthan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Annabelle Xiao Hui Lim
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Licia Martuscelli
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Cinzia Borgogna
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin Medical School, Turin, Italy
- Intrinsic Immunity Unit, Translational Research Centre for Autoimmune and Allergic Diseases, University of Eastern Piedmont, Novara, Italy
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Richard Goodwin
- Department of Dermatology, Aneurin Bevan University Health Board, Royal Gwent Hospital, Newport, United Kingdom
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Marisa Gariglio
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
16
|
Kunoh S, Nakashima H, Nakashima K. Epigenetic Regulation of Neural Stem Cells in Developmental and Adult Stages. EPIGENOMES 2024; 8:22. [PMID: 38920623 PMCID: PMC11203245 DOI: 10.3390/epigenomes8020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The development of the nervous system is regulated by numerous intracellular molecules and cellular signals that interact temporally and spatially with the extracellular microenvironment. The three major cell types in the brain, i.e., neurons and two types of glial cells (astrocytes and oligodendrocytes), are generated from common multipotent neural stem cells (NSCs) throughout life. However, NSCs do not have this multipotentiality from the beginning. During cortical development, NSCs sequentially obtain abilities to differentiate into neurons and glial cells in response to combinations of spatiotemporally modulated cell-intrinsic epigenetic alterations and extrinsic factors. After the completion of brain development, a limited population of NSCs remains in the adult brain and continues to produce neurons (adult neurogenesis), thus contributing to learning and memory. Many biological aspects of brain development and adult neurogenesis are regulated by epigenetic changes via behavioral control of NSCs. Epigenetic dysregulation has also been implicated in the pathogenesis of various brain diseases. Here, we present recent advances in the epigenetic regulation of NSC behavior and its dysregulation in brain disorders.
Collapse
Affiliation(s)
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
17
|
Jovanovic VM, Mesch KT, Tristan CA. hPSC-Derived Astrocytes at the Forefront of Translational Applications in Neurological Disorders. Cells 2024; 13:903. [PMID: 38891034 PMCID: PMC11172187 DOI: 10.3390/cells13110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Astrocytes, the most abundant glial cell type in the brain, play crucial roles in maintaining homeostasis within the central nervous system (CNS). Impairment or abnormalities of typical astrocyte functions in the CNS serve as a causative or contributing factor in numerous neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Currently, disease-modeling and drug-screening approaches, primarily focused on human astrocytes, rely on human pluripotent stem cell (hPSC)-derived astrocytes. However, it is important to acknowledge that these hPSC-derived astrocytes exhibit notable differences across studies and when compared to their in vivo counterparts. These differences may potentially compromise translational outcomes if not carefully accounted for. This review aims to explore state-of-the-art in vitro models of human astrocyte development, focusing on the developmental processes, functional maturity, and technical aspects of various hPSC-derived astrocyte differentiation protocols. Additionally, it summarizes their successful application in modeling neurological disorders. The discussion extends to recent advancements in the large-scale production of human astrocytes and their application in developing high-throughput assays conducive to therapeutic drug discovery.
Collapse
Affiliation(s)
- Vukasin M. Jovanovic
- Stem Cell Translation Laboratory (SCTL), Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA (C.A.T.)
| | | | | |
Collapse
|
18
|
Umeyama T, Matsuda T, Nakashima K. Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming. Cells 2024; 13:707. [PMID: 38667322 PMCID: PMC11049106 DOI: 10.3390/cells13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
19
|
Ohtsu N, Katayama S. A more efficient method for generating glioblastoma-multiforme model in mice using genome editing technology. Biochem Biophys Res Commun 2024; 702:149657. [PMID: 38350413 DOI: 10.1016/j.bbrc.2024.149657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
The elucidation of the properties of malignant glioma and development of therapeutic methods require glioblastoma-multiforme mice model with characteristics such as invasiveness, multinuclearity, and ability for mitosis. A previous study has shown that overexpression of active HRas (HRasL61) in neural stem/progenitor cells (NSCs) isolated from p53 knockout (KO) mice could induce glioma-initiating cells (GICs). The orthotopically transplantation of 10 cells into the forebrain of immunodeficient mice resulted in the development of glioblastoma multiforme-like malignant brain tumors. In this study, we successfully induced GICs from wild-type fetal NSCs. Using CRISPR/Cas9, we obtained p53 KO NSCs. HRasL61 was additionally overexpressed in p53 KO NSCs. p53-/HRasL61+ cells were cloned and then transplanted into immunodeficient mice. p53-/HRasL61+ cells formed glioblastoma multiforme-like tumors. Further, GIC markers were strongly expressed in p53-/HRasL61+ cells. Therefore, p53-/HRasL61+ cell is an induced GIC. A CRISPR/Cas9-based method for inducing GIC is much more efficient than a KO mice-based method. This study provides a promising framework for easily creating glioblastoma model in mice.
Collapse
Affiliation(s)
- Naoki Ohtsu
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Japan; Celaid Therapeutics Co., LTD, Japan.
| | - Shota Katayama
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Japan; Genome Editing Innovation Center, Hiroshima University, Japan.
| |
Collapse
|
20
|
Berthelot C, Huchedé P, Bertrand-Chapel A, Beuriat PA, Leblond P, Castets M. Bone Morphogenic Proteins in Pediatric Diffuse Midline Gliomas: How to Make New Out of Old? Int J Mol Sci 2024; 25:3361. [PMID: 38542334 PMCID: PMC10969837 DOI: 10.3390/ijms25063361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
The BMP pathway is one of the major signaling pathways in embryonic development, ontogeny and homeostasis, identified many years ago by pioneers in developmental biology. Evidence of the deregulation of its activity has also emerged in many cancers, with complex and sometimes opposing effects. Recently, its role has been suspected in Diffuse Midline Gliomas (DMG), among which Diffuse Intrinsic Pontine Gliomas (DIPG) are one of the most complex challenges in pediatric oncology. Genomic sequencing has led to understanding part of their molecular etiology, with the identification of histone H3 mutations in a large proportion of patients. The epigenetic remodeling associated with these genetic alterations has also been precisely described, creating a permissive context for oncogenic transcriptional program activation. This review aims to describe the new findings about the involvement of BMP pathway activation in these tumors, placing their appearance in a developmental context. Targeting the oncogenic synergy resulting from this pathway activation in an H3K27M context could offer new therapeutic perspectives based on targeting treatment-resistant cell states.
Collapse
Affiliation(s)
- Clément Berthelot
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (C.B.); (P.H.); (A.B.-C.); (P.L.); (M.C.)
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
| | - Paul Huchedé
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (C.B.); (P.H.); (A.B.-C.); (P.L.); (M.C.)
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
| | - Adrien Bertrand-Chapel
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (C.B.); (P.H.); (A.B.-C.); (P.L.); (M.C.)
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
| | - Pierre-Aurélien Beuriat
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hopital Femme-Mère-Enfant, 69677 Bron, France
| | - Pierre Leblond
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (C.B.); (P.H.); (A.B.-C.); (P.L.); (M.C.)
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France
- Department of Pediatric Oncology, Institut d’Hématologie et d’Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (C.B.); (P.H.); (A.B.-C.); (P.L.); (M.C.)
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
21
|
Lei Z, Tang R, Wu Y, Mao C, Xue W, Shen J, Yu J, Wang X, Qi X, Wei C, Xu L, Zhu J, Li Y, Zhang X, Ye C, Chen X, Yang X, Zhou S, Su C. TGF-β1 induces PD-1 expression in macrophages through SMAD3/STAT3 cooperative signaling in chronic inflammation. JCI Insight 2024; 9:e165544. [PMID: 38441961 PMCID: PMC11128204 DOI: 10.1172/jci.insight.165544] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Programmed cell death protein 1 (PD-1), a coinhibitory T cell checkpoint, is also expressed on macrophages in pathogen- or tumor-driven chronic inflammation. Increasing evidence underscores the importance of PD-1 on macrophages for dampening immune responses. However, the mechanism governing PD-1 expression in macrophages in chronic inflammation remains largely unknown. TGF-β1 is abundant within chronic inflammatory microenvironments. Here, based on public databases, significantly positive correlations between PDCD1 and TGFB1 gene expression were observed in most human tumors. Of note, among immune infiltrates, macrophages as the predominant infiltrate expressed higher PDCD1 and TGFBR1/TGFBR2 genes. MC38 colon cancer and Schistosoma japonicum infection were used as experimental models for chronic inflammation. PD-1hi macrophages from chronic inflammatory tissues displayed an immunoregulatory pattern and expressed a higher level of TGF-β receptors. Either TGF-β1-neutralizing antibody administration or macrophage-specific Tgfbr1 knockdown largely reduced PD-1 expression on macrophages in animal models. We further demonstrated that TGF-β1 directly induced PD-1 expression on macrophages. Mechanistically, TGF-β1-induced PD-1 expression on macrophages was dependent on SMAD3 and STAT3, which formed a complex at the Pdcd1 promoter. Collectively, our study shows that macrophages adapt to chronic inflammation through TGF-β1-triggered cooperative SMAD3/STAT3 signaling that induces PD-1 expression and modulates macrophage function.
Collapse
Affiliation(s)
- Zhigang Lei
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Rui Tang
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - Yu Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chenxu Mao
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Weijie Xue
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Junyao Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaohong Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xin Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chuan Wei
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jifeng Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yalin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiujun Zhang
- Department of Liver Diseases, Institute of Hepatology, the Third People’s Hospital of Changzhou, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Chunyan Ye
- Department of Liver Diseases, Institute of Hepatology, the Third People’s Hospital of Changzhou, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xiaojun Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaojun Yang
- Department of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General Surgery, the Friendship Hospital of Ili Kazak Autonomous Prefecture, Yining, Xinjiang Uygur Autonomous Region, China
| | - Sha Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chuan Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, National Vaccine Innovation Platform of Nanjing Medical University, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Sojka C, Sloan SA. Gliomas: a reflection of temporal gliogenic principles. Commun Biol 2024; 7:156. [PMID: 38321118 PMCID: PMC10847444 DOI: 10.1038/s42003-024-05833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The hijacking of early developmental programs is a canonical feature of gliomas where neoplastic cells resemble neurodevelopmental lineages and possess mechanisms of stem cell resilience. Given these parallels, uncovering how and when in developmental time gliomagenesis intersects with normal trajectories can greatly inform our understanding of tumor biology. Here, we review how elapsing time impacts the developmental principles of astrocyte (AS) and oligodendrocyte (OL) lineages, and how these same temporal programs are replicated, distorted, or circumvented in pathological settings such as gliomas. Additionally, we discuss how normal gliogenic processes can inform our understanding of the temporal progression of gliomagenesis, including when in developmental time gliomas originate, thrive, and can be pushed towards upon therapeutic coercion.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
23
|
Weible MW, Lovelace MD, Mundell HD, Pang TWR, Chan-Ling T. BMPRII + neural precursor cells isolated and characterized from organotypic neurospheres: an in vitro model of human fetal spinal cord development. Neural Regen Res 2024; 19:447-457. [PMID: 37488910 PMCID: PMC10503628 DOI: 10.4103/1673-5374.373669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 07/26/2023] Open
Abstract
Roof plate secretion of bone morphogenetic proteins (BMPs) directs the cellular fate of sensory neurons during spinal cord development, including the formation of the ascending sensory columns, though their biology is not well understood. Type-II BMP receptor (BMPRII), the cognate receptor, is expressed by neural precursor cells during embryogenesis; however, an in vitro method of enriching BMPRII+ human neural precursor cells (hNPCs) from the fetal spinal cord is absent. Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRII and leukemia inhibitory factor (LIF). Regions of highest BMPRII+ immunofluorescence localized to sensory columns. Parenchymal and meningeal-associated BMPRII+ vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers, CD34/CD39. LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons, mirroring the expression of LIF receptor/CD118. A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages, while synergistically increasing the proportion of neurospheres with a stratified, cytoarchitecture. These neurospheres were characterized by BMPRII+/MAP2ab+/-/βIII-tubulin+/nestin-/vimentin-/GFAP-/NeuN- surface hNPCs surrounding a heterogeneous core of βIII-tubulin+/nestin+/vimentin+/GFAP+/MAP2ab-/NeuN- multipotent precursors. Dissociated cultures from tripotential neurospheres contained neuronal (βIII-tubulin+), astrocytic (GFAP+), and oligodendrocytic (O4+) lineage cells. Fluorescence-activated cell sorting-sorted BMPRII+ hNPCs were MAP2ab+/-/βIII-tubulin+/GFAP-/O4- in culture. This is the first isolation of BMPRII+ hNPCs identified and characterized in human fetal spinal cords. Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres, characterized by surface BMPRII+ hNPCs. Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for > 10 passages. Investigations of the role BMPRII plays in spinal cord development have primarily relied upon mouse and rat models, with interpolations to human development being derived through inference. Because of significant species differences between murine biology and human, including anatomical dissimilarities in central nervous system (CNS) structure, the findings made in murine models cannot be presumed to apply to human spinal cord development. For these reasons, our human in vitro model offers a novel tool to better understand neurodevelopmental pathways, including BMP signaling, as well as spinal cord injury research and testing drug therapies.
Collapse
Affiliation(s)
- Michael W. Weible
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Michael D. Lovelace
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
- Discipline of Medicine, Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW, Australia
| | - Hamish D. Mundell
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
- New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Charles Perkins Centre (D17), Sydney, NSW, Australia
| | - Tsz Wai Rosita Pang
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
| | - Tailoi Chan-Ling
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Jastrzębski MK, Wójcik P, Stępnicki P, Kaczor AA. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation. Acta Pharm Sin B 2024; 14:20-37. [PMID: 38239239 PMCID: PMC10793103 DOI: 10.1016/j.apsb.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Neurons are believed to be non-proliferating cells. However, neuronal stem cells are still present in certain areas of the adult brain, although their proliferation diminishes with age. Just as with other cells, their proliferation and differentiation are modulated by various mechanisms. These mechanisms are foundational to the strategies developed to induce neuronal proliferation and differentiation, with potential therapeutic applications for neurodegenerative diseases. The most common among these diseases are Parkinson's disease and Alzheimer's disease, associated with the formation of β -amyloid (Aβ ) aggregates which cause a reduction in the number of neurons. Compounds such as LiCl, 4-aminothiazoles, Pregnenolone, ACEA, harmine, D2AAK1, methyl 3,4-dihydroxybenzoate, and shikonin may induce neuronal proliferation/differentiation through the activation of pathways: MAPK ERK, PI3K/AKT, NFκ B, Wnt, BDNF, and NPAS3. Moreover, combinations of these compounds can potentially transform somatic cells into neurons. This transformation process involves the activation of neuron-specific transcription factors such as NEUROD1, NGN2, ASCL1, and SOX2, which subsequently leads to the transcription of downstream genes, culminating in the transformation of somatic cells into neurons. Neurodegenerative diseases are not the only conditions where inducing neuronal proliferation could be beneficial. Consequently, the impact of pro-proliferative compounds on neurons has also been researched in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Michał K. Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
- School of Pharmacy, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
25
|
Guo R, Han D, Song X, Gao Y, Li Z, Li X, Yang Z, Xu Z. Context-dependent regulation of Notch signaling in glial development and tumorigenesis. SCIENCE ADVANCES 2023; 9:eadi2167. [PMID: 37948517 PMCID: PMC10637744 DOI: 10.1126/sciadv.adi2167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
In the mammalian brain, Notch signaling maintains the cortical stem cell pool and regulates the glial cell fate choice and differentiation. However, the function of Notch in regulating glial development and its involvement in tumorigenesis have not been well understood. Here, we show that Notch inactivation by genetic deletion of Rbpj in stem cells decreases astrocytes but increases oligodendrocytes with altered internal states. Inhibiting Notch in glial progenitors does not affect cell generation but instead accelerates the growth of Notch-deprived oligodendrocyte progenitor cells (OPCs) and OPC-related glioma. We also identified a cross-talk between oligodendrocytes and astrocytes, with premyelinating oligodendrocytes secreting BMP4, which is repressed by Notch, to up-regulate GFAP expression in adjacent astrocytes. Moreover, Notch inactivation in stem cells causes a glioma subtype shift from astroglia-associated to OPC-correlated patterns and vice versa. Our study reveals Notch's context-dependent function, promoting astrocytes and astroglia-associated glioma in stem cells and repressing OPCs and related glioma in glial progenitors.
Collapse
Affiliation(s)
| | | | | | - Yanjing Gao
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhenmeiyu Li
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaosu Li
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhejun Xu
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Guo X, Jiang C, Chen Z, Wang X, Hong F, Hao D. Regulation of the JAK/STAT signaling pathway in spinal cord injury: an updated review. Front Immunol 2023; 14:1276445. [PMID: 38022526 PMCID: PMC10663250 DOI: 10.3389/fimmu.2023.1276445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Cytokines are involved in neural homeostasis and pathological processes associated with neuroinflammation after spinal cord injury (SCI). The biological effect of cytokines, including those associated with acute or chronic SCI pathologies, are the result of receptor-mediated signaling through the Janus kinases (JAKs) as well as the signal transducers and activators of transcription (STAT) DNA-binding protein families. Although therapies targeting at cytokines have led to significant changes in the treatment of SCI, they present difficulties in various aspects for the direct use by patients themselves. Several small-molecule inhibitors of JAKs, which may affect multiple pro-inflammatory cytokine-dependent pathways, as well as STATs, are in clinical development for the treatment of SCI. This review describes the current understanding of the JAK-STAT signaling in neuroendocrine homeostasis and diseases, together with the rationale for targeting at this pathway for the treatment of SCI.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| | - Chao Jiang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| | - Zhe Chen
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| | - Xiaohui Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fan Hong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|
27
|
Voss AJ, Lanjewar SN, Sampson MM, King A, Hill EJ, Sing A, Sojka C, Bhatia TN, Spangle JM, Sloan SA. Identification of ligand-receptor pairs that drive human astrocyte development. Nat Neurosci 2023; 26:1339-1351. [PMID: 37460808 PMCID: PMC11046429 DOI: 10.1038/s41593-023-01375-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/08/2023] [Indexed: 08/05/2023]
Abstract
Extrinsic signaling between diverse cell types is crucial for nervous system development. Ligand binding is a key driver of developmental processes. Nevertheless, it remains a significant challenge to disentangle which and how extrinsic signals act cooperatively to affect changes in recipient cells. In the developing human brain, cortical progenitors transition from neurogenesis to gliogenesis in a stereotyped sequence that is in part influenced by extrinsic ligands. Here we used published transcriptomic data to identify and functionally test five ligand-receptor pairs that synergistically drive human astrogenesis. We validate the synergistic contributions of TGFβ2, NLGN1, TSLP, DKK1 and BMP4 ligands on astrocyte development in both hCOs and primary fetal tissue. We confirm that the cooperative capabilities of these five ligands are greater than their individual capacities. Additionally, we discovered that their combinatorial effects converge in part on the mTORC1 signaling pathway, resulting in transcriptomic and morphological features of astrocyte development. Our data-driven framework can leverage single-cell and bulk genomic data to generate and test functional hypotheses surrounding cell-cell communication regulating neurodevelopmental processes.
Collapse
Affiliation(s)
- Anna J Voss
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Samantha N Lanjewar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maureen M Sampson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Tarun N Bhatia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer M Spangle
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
28
|
Yoon I, Song JA, Suh JH, Kim S, Son J, Kim JH, Jang SY, Hwang KY, Kim MH, Kim S. EPRS1 Controls the TGF- β Signaling Pathway via Interaction with TβRI in Hepatic Stellate Cell. Mol Cell Biol 2023; 43:223-240. [PMID: 37154023 PMCID: PMC10184599 DOI: 10.1080/10985549.2023.2205344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is known to associated with fibrosis through its catalytic activity to produce prolyl-tRNA. Although its catalytic inhibitor halofuginone (HF) has been known to inhibit the TGF-β pathway as well as to reduce prolyl-tRNA production for the control of fibrosis, the underlying mechanism how EPRS1 regulates the TGF-β pathway was not fully understood. Here, we show a noncatalytic function of EPRS1 in controlling the TGF-β pathway and hepatic stellate cell activation via its interaction with TGF-β receptor I (TβRI). Upon stimulation with TGF-β, EPRS1 is phosphorylated by TGF-β-activated kinase 1 (TAK1), leading to its dissociation from the multi-tRNA synthetase complex and subsequent binding with TβRI. This interaction increases the association of TβRI with SMAD2/3 while decreases that of TβRI with SMAD7. Accordingly, EPRS1 stabilizes TβRI by preventing the ubiquitin-mediated degradation of TβRI. HF disrupts the interaction between EPRS1 and TβRI, and reduces TβRI protein levels, leading to inhibition of the TGF-β pathway. In conclusion, this work suggests the novel function of EPRS1 involved in the development of fibrosis by regulating the TGF-β pathway and the antifibrotic effects of HF by controlling both of EPRS1 functions.
Collapse
Affiliation(s)
- Ina Yoon
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Ji Ae Song
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, Yonsei University, Incheon, Republic of Korea
| | - Ji Hun Suh
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Sulhee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jonghyeon Son
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jong Hyun Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Song Yee Jang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea Research Republic of Korea
- Core Research Facility & Analysis Center, KRIBB, Daejeon, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea Research Republic of Korea
| | - Sunghoon Kim
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- College of Medicine, Gangnam Severance Hospital, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Marcy G, Foucault L, Babina E, Capeliez T, Texeraud E, Zweifel S, Heinrich C, Hernandez-Vargas H, Parras C, Jabaudon D, Raineteau O. Single-cell analysis of the postnatal dorsal V-SVZ reveals a role for Bmpr1a signaling in silencing pallial germinal activity. SCIENCE ADVANCES 2023; 9:eabq7553. [PMID: 37146152 PMCID: PMC10162676 DOI: 10.1126/sciadv.abq7553] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ventricular-subventricular zone (V-SVZ) is the largest neurogenic region of the postnatal forebrain, containing neural stem cells (NSCs) that emerge from both the embryonic pallium and subpallium. Despite of this dual origin, glutamatergic neurogenesis declines rapidly after birth, while GABAergic neurogenesis persists throughout life. We performed single-cell RNA sequencing of the postnatal dorsal V-SVZ for unraveling the mechanisms leading to pallial lineage germinal activity silencing. We show that pallial NSCs enter a state of deep quiescence, characterized by high bone morphogenetic protein (BMP) signaling, reduced transcriptional activity and Hopx expression, while in contrast, subpallial NSCs remain primed for activation. Induction of deep quiescence is paralleled by a rapid blockade of glutamatergic neuron production and differentiation. Last, manipulation of Bmpr1a demonstrates its key role in mediating these effects. Together, our results highlight a central role of BMP signaling in synchronizing quiescence induction and blockade of neuronal differentiation to rapidly silence pallial germinal activity after birth.
Collapse
Affiliation(s)
- Guillaume Marcy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
- Univ Lyon, Université Claude Bernard Lyon 1, Bioinformatic Platform of the Labex Cortex, 69008 Lyon, France
| | - Louis Foucault
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Elodie Babina
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Timothy Capeliez
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Emeric Texeraud
- Univ Lyon, Université Claude Bernard Lyon 1, Bioinformatic Platform of the Labex Cortex, 69008 Lyon, France
| | - Stefan Zweifel
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Hector Hernandez-Vargas
- Cancer Research Centre of Lyon (CRCL), INSERM U 1052, CNRS UMR 5286, UCBL1, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon Cedex 08, France
| | - Carlos Parras
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| |
Collapse
|
30
|
Liu Y, Yang H, Zhu F, Ouyang Y, Pan P. Inhibition of STAT3 phosphorylation by colchicine regulates NLRP3 activation to alleviate sepsis-induced acute lung injury. Inflammopharmacology 2023:10.1007/s10787-023-01199-9. [PMID: 37115345 DOI: 10.1007/s10787-023-01199-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
The pharmacotherapeutic mechanism of colchicine, a tricyclic, lipid-soluble alkaloid extracted from the plant of the Lily family Colchicum autumnale, has not been fully understood in diverse disorders, including sepsis-induced acute lung injury (ALI). The study aimed at exploring the impact of colchicine on sepsis-induced ALI and the relevant mechanisms. Colchicine significantly attenuated ALI in mice caused by sepsis by alleviating respiratory dysfunction and pulmonary edema in mice, inhibiting NLRP3 inflammasome formation, and reducing oxidative stress, pyroptosis, and apoptosis of murine alveolar macrophage (J774A.1) cells. The targets of colchicine were predicted in the superPRED database and intersected with the differentially expressed genes in the GSE5883 and GSE129775 datasets. The major targets were subjected to protein-protein interaction network generation and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. It was thus found that colchicine inhibited STAT3 phosphorylation but did not alter STAT3 total protein expression. Phosphorylated STAT3 recruited EP300 to form a complex to promote histone H3 acetylation and histone H4 acetylation of NLRP3 promoter, leading to pyroptosis of J774A.1 cells. In conclusion, inhibition of STAT3 phosphorylation by colchicine represses NLRP3 promoter acetylation via the STAT3/EP300 complex, thereby alleviating ALI caused by sepsis.
Collapse
Affiliation(s)
- Yuanshui Liu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
- Department of Emergency Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, People's Republic of China
| | - Hang Yang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Fei Zhu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Yanhong Ouyang
- Department of Emergency Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, People's Republic of China
| | - Pinhua Pan
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
31
|
Hagemann TL, Coyne S, Levin A, Wang L, Feany MB, Messing A. STAT3 Drives GFAP Accumulation and Astrocyte Pathology in a Mouse Model of Alexander Disease. Cells 2023; 12:cells12070978. [PMID: 37048051 PMCID: PMC10093589 DOI: 10.3390/cells12070978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Alexander disease (AxD) is caused by mutations in the gene for glial fibrillary acidic protein (GFAP), an intermediate filament expressed by astrocytes in the central nervous system. AxD-associated mutations cause GFAP aggregation and astrogliosis, and GFAP is elevated with the astrocyte stress response, exacerbating mutant protein toxicity. Studies in mouse models suggest disease severity is tied to Gfap expression levels, and signal transducer and activator of transcription (STAT)-3 regulates Gfap during astrocyte development and in response to injury and is activated in astrocytes in rodent models of AxD. In this report, we show that STAT3 is also activated in the human disease. To determine whether STAT3 contributes to GFAP elevation, we used a combination of genetic approaches to knockout or reduce STAT3 activation in AxD mouse models. Conditional knockout of Stat3 in cells expressing Gfap reduced Gfap transactivation and prevented protein accumulation. Astrocyte-specific Stat3 knockout in adult mice with existing pathology reversed GFAP accumulation and aggregation. Preventing STAT3 activation reduced markers of reactive astrocytes, stress-related transcripts, and microglial activation, regardless of disease stage or genetic knockout approach. These results suggest that pharmacological inhibition of STAT3 could potentially reduce GFAP toxicity and provide a therapeutic benefit in patients with AxD.
Collapse
Affiliation(s)
- Tracy L Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sierra Coyne
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alder Levin
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Liqun Wang
- Wyss Institute, Harvard University, Boston, MA 02115, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
32
|
González-García I, García-Clavé E, Cebrian-Serrano A, Le Thuc O, Contreras RE, Xu Y, Gruber T, Schriever SC, Legutko B, Lintelmann J, Adamski J, Wurst W, Müller TD, Woods SC, Pfluger PT, Tschöp MH, Fisette A, García-Cáceres C. Estradiol regulates leptin sensitivity to control feeding via hypothalamic Cited1. Cell Metab 2023; 35:438-455.e7. [PMID: 36889283 PMCID: PMC10028007 DOI: 10.1016/j.cmet.2023.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clavé
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yanjun Xu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jutta Lintelmann
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive 8, Singapore 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, LudwigMaximilians Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, 80333 Munich, Germany
| | - Alexandre Fisette
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
33
|
Tanikawa S, Ebisu Y, Sedlačík T, Semba S, Nonoyama T, Kurokawa T, Hirota A, Takahashi T, Yamaguchi K, Imajo M, Kato H, Nishimura T, Tanei ZI, Tsuda M, Nemoto T, Gong JP, Tanaka S. Engineering of an electrically charged hydrogel implanted into a traumatic brain injury model for stepwise neuronal tissue reconstruction. Sci Rep 2023; 13:2233. [PMID: 36788295 PMCID: PMC9929269 DOI: 10.1038/s41598-023-28870-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Neural regeneration is extremely difficult to achieve. In traumatic brain injuries, the loss of brain parenchyma volume hinders neural regeneration. In this study, neuronal tissue engineering was performed by using electrically charged hydrogels composed of cationic and anionic monomers in a 1:1 ratio (C1A1 hydrogel), which served as an effective scaffold for the attachment of neural stem cells (NSCs). In the 3D environment of porous C1A1 hydrogels engineered by the cryogelation technique, NSCs differentiated into neuroglial cells. The C1A1 porous hydrogel was implanted into brain defects in a mouse traumatic damage model. The VEGF-immersed C1A1 porous hydrogel promoted host-derived vascular network formation together with the infiltration of macrophages/microglia and astrocytes into the gel. Furthermore, the stepwise transplantation of GFP-labeled NSCs supported differentiation towards glial and neuronal cells. Therefore, this two-step method for neural regeneration may become a new approach for therapeutic brain tissue reconstruction after brain damage in the future.
Collapse
Affiliation(s)
- Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Yuki Ebisu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Tomáš Sedlačík
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shingo Semba
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Taiga Takahashi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazushi Yamaguchi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Hinako Kato
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Takuya Nishimura
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.
| |
Collapse
|
34
|
Organization of self-advantageous niche by neural stem/progenitor cells during development via autocrine VEGF-A under hypoxia. Inflamm Regen 2023; 43:8. [PMID: 36726165 PMCID: PMC9893632 DOI: 10.1186/s41232-022-00254-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/27/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Tissue stem cells are confined within a special microenvironment called niche. Stem cells in such a niche are supplied with nutrients and contacted by other cells to maintain their characters and also to keep or expand their population size. Besides, oxygen concentration is a key factor for stem cell niche. Adult neural stem/progenitor cells (NSPCs) are known to reside in a hypoxic niche. Oxygen concentration levels are lower in fetal organs including brain than maternal organs. However, how fetal NSPCs adapt to the hypoxic environment during brain development, particularly before pial and periventricular vessels start to invade the telencephalon, has not fully been elucidated. METHODS NSPCs were prepared from cerebral cortices of embryonic day (E) 11.5 or E14.5 mouse embryos and were enriched by 4-day incubation with FGF2. To evaluate NSPC numbers, neurosphere formation assay was performed. Sparsely plated NSPCs were cultured to form neurospheres under the hypoxic (1% O2) or normoxic condition. VEGF-A secreted from NSPCs in the culture medium was measured by ELISA. VEGF-A expression and Hif-1a in the developing brain was investigated by in situ hybridization and immunohistochemistry. RESULTS Here we show that neurosphere formation of embryonic NSPCs is dramatically increased under hypoxia compared to normoxia. Vegf-A gene expression and its protein secretion were both up-regulated in the NSPCs under hypoxia. Either recombinant VEGF-A or conditioned medium of the hypoxic NSPC culture enhanced the neurosphere forming ability of normoxic NSPCs, which was attenuated by a VEGF-A signaling inhibitor. Furthermore, in the developing brain, VEGF-A was strongly expressed in the VZ where NSPCs are confined. CONCLUSIONS We show that NSPCs secret VEGF-A in an autocrine fashion to efficiently maintain themselves under hypoxic developmental environment. Our results suggest that NSPCs have adaptive potential to respond to hypoxia to organize self-advantageous niche involving VEGF-A when the vascular system is immature.
Collapse
|
35
|
Tominaga K, Sakashita E, Kasashima K, Kuroiwa K, Nagao Y, Iwamori N, Endo H. Tip60/KAT5 Histone Acetyltransferase Is Required for Maintenance and Neurogenesis of Embryonic Neural Stem Cells. Int J Mol Sci 2023; 24:ijms24032113. [PMID: 36768434 PMCID: PMC9916716 DOI: 10.3390/ijms24032113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Epigenetic regulation via epigenetic factors in collaboration with tissue-specific transcription factors is curtail for establishing functional organ systems during development. Brain development is tightly regulated by epigenetic factors, which are coordinately activated or inactivated during processes, and their dysregulation is linked to brain abnormalities and intellectual disability. However, the precise mechanism of epigenetic regulation in brain development and neurogenesis remains largely unknown. Here, we show that Tip60/KAT5 deletion in neural stem/progenitor cells (NSCs) in mice results in multiple abnormalities of brain development. Tip60-deficient embryonic brain led to microcephaly, and proliferating cells in the developing brain were reduced by Tip60 deficiency. In addition, neural differentiation and neuronal migration were severely affected in Tip60-deficient brains. Following neurogenesis in developing brains, gliogenesis started from the earlier stage of development in Tip60-deficient brains, indicating that Tip60 is involved in switching from neurogenesis to gliogenesis during brain development. It was also confirmed in vitro that poor neurosphere formation, proliferation defects, neural differentiation defects, and accelerated astrocytic differentiation in mutant NSCs are derived from Tip60-deficient embryonic brains. This study uncovers the critical role of Tip60 in brain development and NSC maintenance and function in vivo and in vitro.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Correspondence: (K.T.); (N.I.)
| | - Eiji Sakashita
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Katsumi Kasashima
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Kenji Kuroiwa
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Yasumitsu Nagao
- Center for Experimental Medicine, Jichi Medical University, Tochigi 321-0498, Japan
| | - Naoki Iwamori
- Department of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (K.T.); (N.I.)
| | - Hitoshi Endo
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| |
Collapse
|
36
|
Kang MJ, Jin N, Park SY, Han JS. Phospholipase D1 promotes astrocytic differentiation through the FAK/AURKA/STAT3 signaling pathway in hippocampal neural stem/progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119361. [PMID: 36162649 DOI: 10.1016/j.bbamcr.2022.119361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Phospholipase D1 (PLD1) plays a crucial role in cell differentiation of different cell types. However, the involvement of PLD1 in astrocytic differentiation remains uncertain. In the present study, we investigate the possible role of PLD1 and its product phosphatidic acid (PA) in astrocytic differentiation of hippocampal neural stem/progenitor cells (NSPCs) from hippocampi of embryonic day 16.5 rat embryos. We showed that overexpression of PLD1 increased the expression level of glial fibrillary acidic protein (GFAP), an astrocyte marker, and the number of GFAP-positive cells. Knockdown of PLD1 by transfection with Pld1 shRNA inhibited astrocytic differentiation. Moreover, PLD1 deletion (Pld1-/-) suppressed the level of GFAP in the mouse hippocampus. These results indicate that PLD1 plays a crucial role in regulating astrocytic differentiation in hippocampal NSPCs. Interestingly, PA itself was sufficient to promote astrocytic differentiation. PA-induced GFAP expression was decreased by inhibition of signal transducer and activation of transcription 3 (STAT3) using siRNA. Furthermore, PA-induced STAT3 activation and astrocytic differentiation were regulated by the focal adhesion kinase (FAK)/aurora kinase A (AURKA) pathway. Taken together, our findings suggest that PLD1 is an important modulator of astrocytic differentiation in hippocampal NSPCs via the FAK/AURKA/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Min-Jeong Kang
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Nuri Jin
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea.
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
37
|
BMP2 as a promising anticancer approach: functions and molecular mechanisms. Invest New Drugs 2022; 40:1322-1332. [PMID: 36040572 DOI: 10.1007/s10637-022-01298-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.
Collapse
|
38
|
High Fat Diet Multigenerationally Affects Hippocampal Neural Stem Cell Proliferation via Epigenetic Mechanisms. Cells 2022; 11:cells11172661. [PMID: 36078069 PMCID: PMC9454549 DOI: 10.3390/cells11172661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Early-life metabolic stress has been demonstrated to affect brain development, persistently influence brain plasticity and to exert multigenerational effects on cognitive functions. However, the impact of an ancestor’s diet on the adult neurogenesis of their descendants has not yet been investigated. Here, we studied the effects of maternal high fat diet (HFD) on hippocampal adult neurogenesis and the proliferation of neural stem and progenitor cells (NSPCs) derived from the hippocampus of both the second and the third generations of progeny (F2HFD and F3HFD). Maternal HFD caused a multigenerational depletion of neurogenic niche in F2HFD and F3HFD mice. Moreover, NSPCs derived from HFD descendants showed altered expression of genes regulating stem cell proliferation and neurodifferentiation (i.e., Hes1, NeuroD1, Bdnf). Finally, ancestor HFD-related hyper-activation of both STAT3 and STAT5 induced enhancement of their binding on the regulatory sequences of Gfap gene and an epigenetic switch from permissive to repressive chromatin on the promoter of the NeuroD1 gene. Collectively, our data indicate that maternal HFD multigenerationally affects hippocampal adult neurogenesis via an epigenetic derangement of pro-neurogenic gene expression in NSPCs.
Collapse
|
39
|
The promise of the TGF-β superfamily as a therapeutic target for Parkinson's disease. Neurobiol Dis 2022; 171:105805. [PMID: 35764291 DOI: 10.1016/j.nbd.2022.105805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
A large body of evidence underscore the regulatory role of TGF-β superfamily in the central nervous system. Components of the TGF-β superfamily modulate key events during embryonic brain development and adult brain tissue injury repair. With respect to Parkinson's disease (PD), TGF-ß signaling pathways are implicated in the differentiation, maintenance and synaptic function of the dopaminergic neurons, as well as in processes related to the activation state of astrocytes and microglia. In vitro and in vivo studies using toxin models, have interrogated on the dopaminotrophic and protective role of the TGF-β superfamily members. The evolution of genetic and animal models of PD that more closely recapitulate the disease condition has made possible the dissection of intracellular pathways in response to TGF-ß treatment. Although the first clinical trials using GDNF did not meet their primary endpoints, substantial work has been carried out to reappraise the TGF-β superfamily's clinical benefit.
Collapse
|
40
|
Lattke M, Guillemot F. Understanding astrocyte differentiation: Clinical relevance, technical challenges, and new opportunities in the omics era. WIREs Mech Dis 2022; 14:e1557. [PMID: 35546493 PMCID: PMC9539907 DOI: 10.1002/wsbm.1557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/06/2022]
Abstract
Astrocytes are a major type of glial cells that have essential functions in development and homeostasis of the central nervous system (CNS). Immature astrocytes in the developing CNS support neuronal maturation and possess neural-stem-cell-like properties. Mature astrocytes partially lose these functions but gain new functions essential for adult CNS homeostasis. In pathological conditions, astrocytes become "reactive", which disrupts their mature homeostatic functions and reactivates some immature astrocyte-like properties, suggesting a partial reversal of astrocyte maturation. The loss of homeostatic astrocyte functions contributes to the pathogenesis of various neurological conditions, and therefore activating maturation-promoting mechanisms may be a promising therapeutic strategy to restore homeostasis. Manipulating the mechanisms underlying astrocyte maturation might also allow to facilitate CNS regeneration by enhancing developmental functions of adult astrocytes. However, such therapeutic strategies are still some distance away because of our limited understanding of astrocyte differentiation and maturation, due to biological and technical challenges, including the high degree of similarity of astrocytes with neural stem cells and the shortcomings of astrocyte markers. Current advances in systems biology have a huge potential to overcome these challenges. Recent transcriptomic analyses have already revealed new astrocyte markers and new regulators of astrocyte differentiation. However, the epigenomic changes that presumably occur during astrocyte differentiation remain an important, largely unexplored area for future research. Emerging technologies such as CRISPR/Cas9-based functional screens will further improve our understanding of the mechanisms underlying astrocyte differentiation. This may open up new clinical approaches to restore homeostasis in neurological disorders and/or promote CNS regeneration. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Stem Cells and Development Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Michael Lattke
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Francois Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
41
|
Manzari-Tavakoli A, Babajani A, Farjoo MH, Hajinasrollah M, Bahrami S, Niknejad H. The Cross-Talks Among Bone Morphogenetic Protein (BMP) Signaling and Other Prominent Pathways Involved in Neural Differentiation. Front Mol Neurosci 2022; 15:827275. [PMID: 35370542 PMCID: PMC8965007 DOI: 10.3389/fnmol.2022.827275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
The bone morphogenetic proteins (BMPs) are a group of potent morphogens which are critical for the patterning, development, and function of the central nervous system. The appropriate function of the BMP pathway depends on its interaction with other signaling pathways involved in neural differentiation, leading to synergistic or antagonistic effects and ultimately favorable biological outcomes. These opposite or cooperative effects are observed when BMP interacts with fibroblast growth factor (FGF), cytokines, Notch, Sonic Hedgehog (Shh), and Wnt pathways to regulate the impact of BMP-induced signaling in neural differentiation. Herein, we review the cross-talk between BMP signaling and the prominent signaling pathways involved in neural differentiation, emphasizing the underlying basic molecular mechanisms regarding the process of neural differentiation. Knowing these cross-talks can help us to develop new approaches in regenerative medicine and stem cell based therapy. Recently, cell therapy has received significant attention as a promising treatment for traumatic or neurodegenerative diseases. Therefore, it is important to know the signaling pathways involved in stem cell differentiation toward neural cells. Our better insight into the cross-talk of signaling pathways during neural development would improve neural differentiation within in vitro tissue engineering approaches and pre-clinical practices and develop futuristic therapeutic strategies for patients with neurological disease.
Collapse
Affiliation(s)
- Asma Manzari-Tavakoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University, Mashhad, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hajinasrollah
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Conforti P, Mezey S, Nath S, Chu YH, Malik SC, Martínez Santamaría JC, Deshpande SS, Pous L, Zieger B, Schachtrup C. Fibrinogen regulates lesion border-forming reactive astrocyte properties after vascular damage. Glia 2022; 70:1251-1266. [PMID: 35244976 DOI: 10.1002/glia.24166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/07/2022]
Abstract
Reactive astrocytes at the border of damaged neuronal tissue organize into a barrier surrounding the fibrotic lesion core, separating this central region of inflammation and fibrosis from healthy tissue. Astrocytes are essential to form the border and for wound repair but interfere with neuronal regeneration. However, the mechanisms driving these astrocytes during central nervous system (CNS) disease are unknown. Here we show that blood-derived fibrinogen is enriched at the interface of lesion border-forming elongated astrocytes after cortical brain injury. Anticoagulant treatment depleting fibrinogen reduces astrocyte reactivity, extracellular matrix deposition and inflammation with no change in the spread of inflammation, whereas inhibiting fibrinogen conversion into fibrin did not significantly alter astrocyte reactivity, but changed the deposition of astrocyte extracellular matrix. RNA sequencing of fluorescence-activated cell sorting-isolated astrocytes of fibrinogen-depleted mice after cortical injury revealed repressed gene expression signatures associated with astrocyte reactivity, extracellular matrix deposition and immune-response regulation, as well as increased gene expression signatures associated with astrocyte metabolism and astrocyte-neuron communication. Systemic pharmacologic depletion of fibrinogen resulted in the absence of elongated, border-forming astrocytes and increased the survival of neurons in the lesion core after cortical injury. These results identify fibrinogen as a critical trigger for lesion border-forming astrocyte properties in CNS disease.
Collapse
Affiliation(s)
- Pasquale Conforti
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Szilvia Mezey
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Suvra Nath
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yu-Hsuan Chu
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Subash C Malik
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jose C Martínez Santamaría
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sachin S Deshpande
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lauriane Pous
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany
| | - Christian Schachtrup
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Zheng K, Huang H, Yang J, Qiu M. Origin, molecular specification and stemness of astrocytes. Dev Neurobiol 2022; 82:149-159. [DOI: 10.1002/dneu.22863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Zheng
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Junlin Yang
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
44
|
Histone modifications in neurodifferentiation of embryonic stem cells. Heliyon 2022; 8:e08664. [PMID: 35028451 PMCID: PMC8741459 DOI: 10.1016/j.heliyon.2021.e08664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications of histone proteins regulate a long cascade of downstream cellular activities, including transcription and replication. Cellular lineage differentiation involves large-scale intracellular signaling and extracellular context. In particular, histone modifications play instructive and programmatic roles in central nervous system development. Deciphering functions of histone could offer feasible molecular strategies for neural diseases caused by histone modifications. Here, we review recent advances of in vitro and in vivo studies on histone modifications in neural differentiation.
Collapse
|
45
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1248] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
46
|
Achour M, Ferdousi F, Sasaki K, Isoda H. Luteolin Modulates Neural Stem Cells Fate Determination: In vitro Study on Human Neural Stem Cells, and in vivo Study on LPS-Induced Depression Mice Model. Front Cell Dev Biol 2021; 9:753279. [PMID: 34790666 PMCID: PMC8591246 DOI: 10.3389/fcell.2021.753279] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Luteolin is a natural flavone with neurotrophic effects observed on different neuronal cell lines. In the present study, we aimed to assess the effect of luteolin on hNSCs fate determination and the LPS-induced neuroinflammation in a mouse model of depression with astrocytogenesis defect. hNSCs were cultured in basal cell culture medium (control) or medium supplemented with luteolin or AICAR, a known inducer of astrogenesis. A whole-genome transcriptomic analysis showed that luteolin upregulated the expressions of genes related to neurotrophin, dopaminergic, hippo, and Wnt signaling pathways, and downregulated the genes involved in p53, TNF, FOXO, and Notch signaling pathways. We also found that astrocyte-specific gene GFAP, as well as other genes of the key signaling pathways involved in astrogenesis such as Wnt, BMP, and JAK-STAT pathways were upregulated in luteolin-treated hNSCs. On the other hand, neurogenesis and oligodendrogenesis-related genes, TUBB3, NEUROD 1 and 6, and MBP, were downregulated in luteolin-treated hNSCs. Furthermore, immunostaining showed that percentages of GFAP+ cells were significantly higher in luteolin- and AICAR-treated hNSCs compared to control hNSCs. Additionally, RT-qPCR results showed that luteolin upregulated the expressions of GFAP, BMP2, and STAT3, whereas the expression of TUBB3 remained unchanged. Next, we evaluated the effects of luteolin in LPS-induced mice model of depression that represents defects in astrocytogenesis. We found that oral administration of luteolin (10 mg/Kg) for eight consecutive days could decrease the immobility time on tail suspension test, a mouse behavioral test measuring depression-like behavior, and attenuate LPS-induced inflammatory responses by significantly decreasing IL-6 production in mice brain-derived astrocytes and serum, and TNFα and corticosterone levels in serum. Luteolin treatment also significantly increased mature BDNF, dopamine, and noradrenaline levels in the hypothalamus of LPS-induced depression mice. Though the behavioral effects of luteolin did not reach statistical significance, global gene expression analyses of mice hippocampus and brain-derived NSCs highlighted the modulatory effects of luteolin on different signaling pathways involved in the pathophysiology of depression. Altogether, our findings suggest an astrocytogenic potential of luteolin and its possible therapeutic benefits in neuroinflammatory and neurodegenerative diseases. However, further studies are required to identify the specific mechanism of action of luteolin.
Collapse
Affiliation(s)
- Mariem Achour
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
47
|
Katada S, Takouda J, Nakagawa T, Honda M, Igarashi K, Imamura T, Ohkawa Y, Sato S, Kurumizaka H, Nakashima K. Neural stem/precursor cells dynamically change their epigenetic landscape to differentially respond to BMP signaling for fate switching during brain development. Genes Dev 2021; 35:1431-1444. [PMID: 34675062 PMCID: PMC8559679 DOI: 10.1101/gad.348797.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
In this study, Katada et al. investigated NPC fate regulation and, using multiple genome-wide analyses, they demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. Their results show the regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development. During neocortical development, tight regulation of neurogenesis-to-astrogenesis switching of neural precursor cells (NPCs) is critical to generate a balanced number of each neural cell type for proper brain functions. Accumulating evidence indicates that a complex array of epigenetic modifications and the availability of extracellular factors control the timing of neuronal and astrocytic differentiation. However, our understanding of NPC fate regulation is still far from complete. Bone morphogenetic proteins (BMPs) are renowned as cytokines that induce astrogenesis of gliogenic late-gestational NPCs. They also promote neurogenesis of mid-gestational NPCs, although the underlying mechanisms remain elusive. By performing multiple genome-wide analyses, we demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. We found that histone H3K27 trimethylation and DNA methylation around Smad-binding sites change rapidly as gestation proceeds, strongly associated with the alteration of accessibility of Smads to their target binding sites. Furthermore, we identified two lineage-specific Smad-interacting partners—Sox11 for neurogenic and Sox8 for astrocytic differentiation—that further ensure Smad-regulated fate-specific gene induction. Our findings illuminate an exquisite regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development.
Collapse
Affiliation(s)
- Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun Takouda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takumi Nakagawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mizuki Honda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuhide Igarashi
- Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takuya Imamura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
48
|
Takouda J, Katada S, Imamura T, Sanosaka T, Nakashima K. SoxE group transcription factor Sox8 promotes astrocytic differentiation of neural stem/precursor cells downstream of Nfia. Pharmacol Res Perspect 2021; 9:e00749. [PMID: 34677001 PMCID: PMC8532136 DOI: 10.1002/prp2.749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
The brain consists of three major cell types: neurons and two glial cell types (astrocytes and oligodendrocytes). Although they are generated from common multipotent neural stem/precursor cells (NS/PCs), embryonic NS/PCs cannot generate all of the cell types at the beginning of brain development. NS/PCs first undergo extensive self-renewal to expand their pools, and then acquire the potential to produce neurons, followed by glial cells. Astrocytes are the most frequently found cell type in the central nervous system (CNS), and play important roles in brain development and functions. Although it has been shown that nuclear factor IA (Nfia) is a pivotal transcription factor for conferring gliogenic potential on neurogenic NS/PCs by sequestering DNA methyltransferase 1 (Dnmt1) from astrocyte-specific genes, direct targets of Nfia that participate in astrocytic differentiation have yet to be completely identified. Here we show that SRY-box transcription factor 8 (Sox8) is a direct target gene of Nfia at the initiation of the gliogenic phase. We found that expression of Sox8 augmented leukemia inhibitory factor (LIF)-induced astrocytic differentiation, while Sox8 knockdown inhibited Nfia-enhanced astrocytic differentiation of NS/PCs. In contrast to Nfia, Sox8 did not induce DNA demethylation of an astrocyte-specific marker gene, glial fibrillary acidic protein (Gfap), but instead associated with LIF downstream transcription factor STAT3 through transcriptional coactivator p300, explaining how Sox8 expression further facilitated LIF-induced Gfap expression. Taken together, these results suggest that Sox8 is a crucial Nfia downstream transcription factor for the astrocytic differentiation of NS/PCs in the developing brain.
Collapse
Affiliation(s)
- Jun Takouda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
Yu Y, Shen T, Zhong X, Wang LL, Tai W, Zou Y, Qin J, Zhang Z, Zhang CL. NEK6 is an injury-responsive kinase cooperating with STAT3 in regulation of reactive astrogliosis. Glia 2021; 70:273-286. [PMID: 34643969 DOI: 10.1002/glia.24104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/08/2022]
Abstract
In response to brain injury, resident astrocytes become reactive and play dynamic roles in neural repair and regeneration. The signaling pathways underlying such reactive astrogliosis remain largely unclear. We here show that NEK6, a NIMA-related serine/threonine protein kinase, is rapidly induced following pathological stimulations and plays critical roles in reactive astrogliosis. Enhanced NEK6 expression promotes reactive astrogliosis and exacerbates brain lesions; and conversely, NEK6 downregulation dampens injury-induced astrocyte reactivity and reduces lesion size. Mechanistically, NEK6 associates with and phosphorylates STAT3. Kinase activity of NEK6 is required for induction of GFAP and PCNA, markers of reactive astrogliosis. Interestingly, NEK6 is also localized in the nucleus and binds to STAT3-responsive genomic elements in astrocytes. These results indicate that NEK6 constitutes a molecular target for the regulation of reactive astrogliosis.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tianjin Shen
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wenjiao Tai
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yuhua Zou
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Qin
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
50
|
Soft surfaces promote astrocytic differentiation of mouse embryonic neural stem cells via dephosphorylation of MRLC in the absence of serum. Sci Rep 2021; 11:19574. [PMID: 34599241 PMCID: PMC8486742 DOI: 10.1038/s41598-021-99059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Astrocytes, which can be obtained from neural stem cells (NSCs) by adding serum and/or recombinant proteins in culture media or by passaging NSCs repeatedly, are expected to be applicable in regenerative medicine for the treatment of neurodegenerative diseases. However, astrocytes obtained using existing methods are costly and have poor quality. The stiffness of culture surfaces has been reported to affect astrocytic differentiation of adult NSCs. However, the influence of surface stiffness on astrocytic differentiation of embryonic NSCs has not yet been reported. In this study, we showed that astrocytic differentiation of embryonic NSCs was increased on soft surfaces (1 kPa and 12 kPa) compared with the NSCs on stiff surfaces (2.8 GPa) in serum-free condition. Furthermore, di-phosphorylated myosin regulatory light chain (PP-MRLC) was decreased in embryonic NSCs cultured on the soft surfaces than the cells on the stiff surfaces. Additionally, astrocytic differentiation of embryonic NSCs was induced by a Ras homolog associated kinase (ROCK) inhibitor, which decreased PP-MRLC in NSCs. These results suggest that decreasing the PP-MRLC of embryonic NSCs on soft surfaces or treating NSCs with a ROCK inhibitor is a good method to prepare astrocytes for application in regenerative medicine.
Collapse
|