1
|
Liu Y, Wu X, Zhao YYS, Pan L, Wang C, Liu J, Zhao Z, Zhou X, Zhang C, Wu Y, Wan W, Zou Y. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars. SCIENCE ADVANCES 2022; 8:eabn8555. [PMID: 35544566 PMCID: PMC9094648 DOI: 10.1126/sciadv.abn8555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Mars' climate is cold and dry in the most recent epoch, and liquid water activities are considered extremely limited. Previous orbital data only show sporadic hydrous minerals in the northern lowlands of Mars excavated by large impacts. Using the short-wave infrared spectral data obtained by the Zhurong rover of China's Tianwen-1 mission, which landed in southern Utopia Planitia on Mars, we identify hydrated sulfate/silica materials on the Amazonian terrain at the landing site. These hydrated minerals are associated with bright-toned rocks, interpreted to be duricrust developed locally. The lithified duricrusts suggest that formation with substantial liquid water originates by either groundwater rising or subsurface ice melting. In situ evidence for aqueous activities identified at Zhurong's landing site indicates a more active Amazonian hydrosphere for Mars than previously thought.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
- Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 200083, China
- Corresponding author.
| | - Xing Wu
- State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Yan Sara Zhao
- Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 200083, China
- Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Lu Pan
- Center for Star and Planet Formation, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Chi Wang
- State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Jia Liu
- State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenxing Zhao
- State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Zhou
- State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaolin Zhang
- State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchun Wu
- State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Wan
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongliao Zou
- State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Bell JF, Maki JN, Mehall GL, Ravine MA, Caplinger MA, Bailey ZJ, Brylow S, Schaffner JA, Kinch KM, Madsen MB, Winhold A, Hayes AG, Corlies P, Tate C, Barrington M, Cisneros E, Jensen E, Paris K, Crawford K, Rojas C, Mehall L, Joseph J, Proton JB, Cluff N, Deen RG, Betts B, Cloutis E, Coates AJ, Colaprete A, Edgett KS, Ehlmann BL, Fagents S, Grotzinger JP, Hardgrove C, Herkenhoff KE, Horgan B, Jaumann R, Johnson JR, Lemmon M, Paar G, Caballo-Perucha M, Gupta S, Traxler C, Preusker F, Rice MS, Robinson MS, Schmitz N, Sullivan R, Wolff MJ. The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. SPACE SCIENCE REVIEWS 2021; 217:24. [PMID: 33612866 PMCID: PMC7883548 DOI: 10.1007/s11214-020-00755-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 05/16/2023]
Abstract
Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 μrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.
Collapse
Affiliation(s)
| | | | | | - M. A. Ravine
- Malin Space Science Systems, Inc., San Diego, CA USA
| | | | | | - S. Brylow
- Malin Space Science Systems, Inc., San Diego, CA USA
| | | | | | | | | | | | | | - C. Tate
- Cornell Univ., Ithaca, NY USA
| | | | | | - E. Jensen
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - K. Paris
- Arizona State Univ., Tempe, AZ USA
| | | | - C. Rojas
- Arizona State Univ., Tempe, AZ USA
| | | | | | | | - N. Cluff
- Arizona State Univ., Tempe, AZ USA
| | | | - B. Betts
- The Planetary Society, Pasadena, CA USA
| | | | - A. J. Coates
- Mullard Space Science Laboratory, Univ. College, London, UK
| | - A. Colaprete
- NASA/Ames Research Center, Moffett Field, CA USA
| | - K. S. Edgett
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - B. L. Ehlmann
- JPL/Caltech, Pasadena, CA USA
- Caltech, Pasadena, CA USA
| | | | | | | | | | | | - R. Jaumann
- Inst. of Geological Sciences, Free University Berlin, Berlin, Germany
| | | | - M. Lemmon
- Space Science Inst., Boulder, CO USA
| | - G. Paar
- Joanneum Research, Graz, Austria
| | | | | | | | - F. Preusker
- DLR/German Aerospace Center, Berlin, Germany
| | - M. S. Rice
- Western Washington Univ., Bellingham, WA USA
| | | | | | | | | |
Collapse
|
3
|
Integrating autonomously navigating assistance systems into the clinic: guiding principles and the ANTS-OR approach. Int J Comput Assist Radiol Surg 2020; 15:1063-1067. [PMID: 32242298 PMCID: PMC7303065 DOI: 10.1007/s11548-020-02137-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/20/2020] [Indexed: 11/06/2022]
Abstract
Purpose Autonomously self-navigating clinical assistance systems (ASCAS) seem highly promising for improving clinical workflows. There is great potential for easing staff workload and improving overall efficiency by reducing monotonous and physically demanding tasks. However, a seamless integration of such systems into complex human-supervised clinical workflows is challenging. As of yet, guiding principles and specific approaches for solving this problem are lacking. Methods We propose to treat ASCAS orchestration as a scheduling problem. However, underlying objectives and constraints for this scheduling problem differ considerably from those found in other domains (e.g., manufacturing, logistics). We analyze the clinical environment to deduce unique needs and conclude that existing scheduling approaches are not sufficient to overcome these challenges. Results We present four guiding principles, namely human precedence, command structure, emergency context and immediacy, that govern the integration of self-navigating assistance systems into clinical workflows. Based on these results, we propose our approach, namely Auto-Navigation Task Scheduling for Operating Rooms (ANTS-OR), for solving the ASCAS orchestration problem in a surgical application scenario, employing a score-based scheduling strategy. Conclusion The proposed approach is a first step toward addressing the ASCAS orchestration problem for the OR wing. We are currently advancing and validating our concept using a simulation environment and aim at realizing a dynamic end-to-end ASCAS orchestration platform in the future.
Collapse
|
4
|
Ruff SW, Campbell KA, Van Kranendonk MJ, Rice MS, Farmer JD. The Case for Ancient Hot Springs in Gusev Crater, Mars. ASTROBIOLOGY 2020; 20:475-499. [PMID: 31621375 PMCID: PMC7133449 DOI: 10.1089/ast.2019.2044] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/11/2019] [Indexed: 05/19/2023]
Abstract
The origin and age of opaline silica deposits discovered by the Spirit rover adjacent to the Home Plate feature in the Columbia Hills of Gusev crater remains debated, in part because of their proximity to sulfur-rich soils. Processes related to fumarolic activity and to hot springs and/or geysers are the leading candidates. Both processes are known to produce opaline silica on Earth, but with differences in composition, morphology, texture, and stratigraphy. Here, we incorporate new and existing observations of the Home Plate region with observations from field and laboratory work to address the competing hypotheses. The results, which include new evidence for a hot spring vent mound, demonstrate that a volcanic hydrothermal system manifesting both hot spring/geyser and fumarolic activity best explains the opaline silica rocks and proximal S-rich materials, respectively. The opaline silica rocks most likely are sinter deposits derived from hot spring activity. Stratigraphic evidence indicates that their deposition occurred before the emplacement of the volcaniclastic deposits comprising Home Plate and nearby ridges. Because sinter deposits throughout geologic history on Earth preserve evidence for microbial life, they are a key target in the search for ancient life on Mars.
Collapse
Affiliation(s)
- Steven W. Ruff
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Address correspondence to: Steven W. Ruff, School of Earth and Space Exploration, Arizona State University, Mars Space Flight Facility, Moeur Building Room 131, Tempe, AZ 85287-6305
| | - Kathleen A. Campbell
- School of Environment and Te Ao Mārama—Centre for Fundamental Inquiry, The University of Auckland, Auckland, New Zealand
| | - Martin J. Van Kranendonk
- Australian Centre for Astrobiology, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Melissa S. Rice
- Department of Geology, Western Washington University, Bellingham, Washington
| | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| |
Collapse
|
5
|
Ali H, Nasidi I, Hao R, Li E. Frequency optimization of permeability metamaterial for enhanced resolution. APPLIED OPTICS 2019; 58:3200-3208. [PMID: 31044795 DOI: 10.1364/ao.58.003200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
We analyze and optimize the performance of unconventional negative permeability (μ) metamaterial and demonstrate its ability to focus and restore the decaying Fourier harmonics (FH) in microwave regime operating frequencies. We show that multiple real μr' and imaginary μr'' values of μr at same or multiple operating frequencies for a resonant type of -μ metamaterial could not exhibit finest resolution at the region of interest (ROI), unless and until the distance of the source plane with respect to metamaterial and ROI could be re-optimized in accordance with μr' and μr'' of μr. Using the variable parameters to enhance the resolution limit of -μ metamaterial, we optimize the metamaterial's configuration for maximum propagation field absorption and regeneration of decaying FH at ROI. The optimization of the test bed that contains the source plane, -μ metamaterial, and ROI followed by the regeneration of the decaying FH from the source plane at the surface of the material, yielded a high image resolution at ROI.
Collapse
|
6
|
Lewis KW, Peters S, Gonter K, Morrison S, Schmerr N, Vasavada AR, Gabriel T. A surface gravity traverse on Mars indicates low bedrock density at Gale crater. Science 2019; 363:535-537. [DOI: 10.1126/science.aat0738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/02/2019] [Indexed: 11/02/2022]
Abstract
Gravimetry, the precise measurement of gravitational fields, can be used to probe the internal structure of Earth and other planets. The Curiosity rover on Mars carries accelerometers normally used for navigation and attitude determination. We have recalibrated them to isolate the signature of the changing gravitational acceleration as the rover climbs through Gale crater. The subsurface rock density is inferred from the measured decrease in gravitational field strength with elevation. The density of the sedimentary rocks in Gale crater is 1680 ± 180 kilograms per cubic meter. This value is lower than expected, indicating a high porosity and constraining maximum burial depths of the rocks over their history.
Collapse
|
7
|
Huang T, Wang R, Xiao L, Wang H, Martínez JM, Escudero C, Amils R, Cheng Z, Xu Y. Dalangtan Playa (Qaidam Basin, NW China): Its microbial life and physicochemical characteristics and their astrobiological implications. PLoS One 2018; 13:e0200949. [PMID: 30067805 PMCID: PMC6070256 DOI: 10.1371/journal.pone.0200949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/04/2018] [Indexed: 01/29/2023] Open
Abstract
Dalangtan Playa is the second largest salt playa in the Qaidam Basin, north-western China. The hyper saline deposition, extremely arid climate and high UV radiation make Dalangtan a Mars analogue both for geomorphology and life preservation. To better understand microbial life at Dalangtan, both culture-dependent and culture-independent methods were examined and simultaneously, environment conditions and the evaporitic mineral assemblages were investigated. Ten and thirteen subsurface samples were collected along a 595-cm deep profile (P1) and a 685-cm deep profile (P2) respectively, and seven samples were gathered from surface sediments. These samples are composed of salt minerals, minor silicate mineral fragments and clays. The total bacterial cell numbers are (1.54±0.49) ×10(5) g-1 for P1 and (3.22±0.95) ×10(5) g-1 for P2 as indicated by the CAtalyzed Reporter Deposition- Fluorescent in situ Hybridization (CARD-FISH). 76.6% and 75.7% of the bacteria belong to Firmicutes phylum respectively from P1 and P2. In total, 47 bacteria and 6 fungi were isolated from 22 subsurface samples. In contrast, only 3 bacteria and 1 fungus were isolated from 3 surface samples. The isolated bacteria show high homology (≥97%) with members of the Firmicutes phylum (47 strains, 8 genera) and the Actinobacteria phylum (3 strains, 2 genera), which agrees with the result of CARD-FISH. Isolated fungi showed ≥98% ITS1 homology with members of the phylum Ascomycota. Moisture content and TOC values may control the sediments colonization. Given the deliquescence of salts, evaporites may provide refuge for microbial life, which merits further investigation. Halotolerant and spore-forming microorganisms are the dominant microbial groups capable of surviving under extreme conditions. Our results offer brand-new information on microbial biomass in Dalangtan Playa and shed light on understanding the potential microbial life in the dried playa or paleo-lakes on Mars.
Collapse
Affiliation(s)
- Ting Huang
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
| | - Long Xiao
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
- Space Science Institute, Macau University of Science and Technology, Macau, China
- * E-mail: (LX); (HW)
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
- * E-mail: (LX); (HW)
| | - José M. Martínez
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Cristina Escudero
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Ziye Cheng
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Yi Xu
- Space Science Institute, Macau University of Science and Technology, Macau, China
| |
Collapse
|
8
|
Kim D, Yang JH, Choi S, Yoh JJ. Analytical Methods to Distinguish the Positive and Negative Spectra of Mineral and Environmental Elements Using Deep Ablation Laser-Induced Breakdown Spectroscopy (LIBS). APPLIED SPECTROSCOPY 2018; 72:896-907. [PMID: 29350540 DOI: 10.1177/0003702818758046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Environments affect mineral surfaces, and the surface contamination or alteration can provide potential information to understanding their regional environments. However, when investigating mineral surfaces, mineral and environmental elements appear mixed in data. This makes it difficult to determine their atomic compositions independently. In this research, we developed four analytical methods to distinguish mineral and environmental elements into positive and negative spectra based on depth profiling data using laser-induced breakdown spectroscopy (LIBS). The principle of the methods is to utilize how intensity varied with depth for creating a new spectrum. The methods were applied to five mineral samples exposed to four environmental conditions including seawater, crude oil, sulfuric acid, and air as control. The proposed methods are then validated by applying the resultant spectra to principal component analysis and data were classified by the environmental conditions and atomic compositions of mineral. By applying the methods, the atomic information of minerals and environmental conditions were successfully inferred in the resultant spectrum.
Collapse
Affiliation(s)
- Dongyoung Kim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Jun-Ho Yang
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Soojin Choi
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Jack J Yoh
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Seybold HJ, Kite E, Kirchner JW. Branching geometry of valley networks on Mars and Earth and its implications for early Martian climate. SCIENCE ADVANCES 2018; 4:eaar6692. [PMID: 29963627 PMCID: PMC6021146 DOI: 10.1126/sciadv.aar6692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/18/2018] [Indexed: 05/29/2023]
Abstract
Mars' surface bears the imprint of valley networks formed billions of years ago. Whether these networks were formed by groundwater sapping, ice melt, or fluvial runoff has been debated for decades. These different scenarios have profoundly different implications for Mars' climatic history and thus for its habitability in the distant past. Recent studies on Earth revealed that valley networks in arid landscapes with more surface runoff branch at narrower angles, while in humid environments with more groundwater flow, branching angles are much wider. We find that valley networks on Mars generally tend to branch at narrow angles similar to those found in arid landscapes on Earth. This result supports the inference that Mars once had an active hydrologic cycle and that Mars' valley networks were formed primarily by overland flow erosion, with groundwater seepage playing only a minor role.
Collapse
Affiliation(s)
| | - Edwin Kite
- University of Chicago, Chicago, IL 60637, USA
| | - James W. Kirchner
- ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Research Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
- Department of Earth and Planetary Science, University of California, 307 McCone Hall, Berkeley, CA 94720–4767, USA
| |
Collapse
|
10
|
Vago JL, Westall F. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. ASTROBIOLOGY 2017; 17:471-510. [PMID: 31067287 PMCID: PMC5685153 DOI: 10.1089/ast.2016.1533] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/05/2017] [Indexed: 05/19/2023]
Abstract
The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures-ExoMars-Landing sites-Mars rover-Search for life. Astrobiology 17, 471-510.
Collapse
|
11
|
Potter-McIntyre SL, Williams J, Phillips-Lander C, O'Connell L. Taphonomy of Microbial Biosignatures in Spring Deposits: A Comparison of Modern, Quaternary, and Jurassic Examples. ASTROBIOLOGY 2017; 17:216-230. [PMID: 28323483 DOI: 10.1089/ast.2016.1495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
On Earth, microorganisms commonly enhance mineral precipitation and mediate mineralogical and chemical compositions of resulting deposits, particularly at spring systems. However, preservation of any type of microbial fossil or chemical or textural biosignature depends on the degree of alteration during diagenesis and factors such as exposure to diagenetic fluids. Little is known about the transformation of biosignatures during diagenesis over geologic time. Ten Mile Graben, Utah, USA, hosts a cold spring system that is an exceptional site for evaluation of diagenetic alteration of biosignatures because of the presence of modern springs with actively precipitating microbial mats and a series of progressively older tufa terraces (<400 ka) preserved in the area from the same spring system. A previously undescribed Jurassic laminated carbonate unit within the upper part of the Brushy Basin Member of the Morrison Formation is also exposed in Ten Mile Graben. This research characterizes the geology of these modern and Quaternary saline, Fe-undersaturated, circumneutral Ten Mile Graben cold springs and provides the first description in the literature of the Jurassic Brushy Basin Member of the Morrison Formation carbonate deposit. Taphonomy of microbial fossils is characterized by scanning electron microscopy (SEM). The data highlight two distinct methods of biosignature formation: (1) precipitation of minerals from an undersaturated solution owing to metabolic activity of the cells and (2) mineral precipitation on charged cell surfaces that produce distinctive microbial trace fossils. Although diagenesis can destroy or severely degrade biosignatures, particularly microbial fossils, some fossils and trace fossils are preserved because entombment by Ostwald ripening limits diagenetic alteration. Recognizing spring-fed, biogenic tufas is crucial for astrobiological research and the search for life on Mars. Key Words: Biosignatures-Taphonomy-Diagenesis-Carbonates-Hot springs. Astrobiology 17, 216-230.
Collapse
Affiliation(s)
| | - Jason Williams
- 1 Geology Department, Southern Illinois University , Carbondale, Illinois
| | - Charity Phillips-Lander
- 2 Conoco Phillips School of Geology and Geophysics, University of Oklahoma , Norman, Oklahoma
| | - Laura O'Connell
- 1 Geology Department, Southern Illinois University , Carbondale, Illinois
| |
Collapse
|
12
|
Kinch KM, Bell JF, Goetz W, Johnson JR, Joseph J, Madsen MB, Sohl-Dickstein J. Dust deposition on the decks of the Mars Exploration Rovers: 10 years of dust dynamics on the Panoramic Camera calibration targets. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2015; 2:144-172. [PMID: 27981072 PMCID: PMC5125412 DOI: 10.1002/2014ea000073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/09/2015] [Accepted: 03/26/2015] [Indexed: 05/13/2023]
Abstract
The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two-layer scattering model, and we present a dust reflectance spectrum derived from long-term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance-calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history.
Collapse
Affiliation(s)
- Kjartan M Kinch
- Niels Bohr Institute University of Copenhagen Copenhagen Denmark
| | - James F Bell
- School of Earth and Space Exploration Arizona State University Phoenix Arizona USA
| | - Walter Goetz
- Max Planck Institute for Solar System Research Göttingen Germany
| | - Jeffrey R Johnson
- Applied Physics Laboratory Johns Hopkins University Laurel Maryland USA
| | - Jonathan Joseph
- Department of Astronomy Cornell University Ithaca New York USA
| | - Morten Bo Madsen
- Niels Bohr Institute University of Copenhagen Copenhagen Denmark
| | - Jascha Sohl-Dickstein
- Neural Dynamics and Computation Laboratory Stanford University Stanford California USA
| |
Collapse
|
13
|
Zhou F, Arvidson RE, Bennett K, Trease B, Lindemann R, Bellutta P, Iagnemma K, Senatore C. Simulations of Mars Rover Traverses. J FIELD ROBOT 2013. [DOI: 10.1002/rob.21483] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Zhou
- Department of Earth and Planetary Sciences; Washington University in St Louis; St Louis Missouri 63130
| | - Raymond E. Arvidson
- Department of Earth and Planetary Sciences; Washington University in St Louis; St Louis Missouri 63130
| | - Keith Bennett
- Department of Earth and Planetary Sciences; Washington University in St Louis; St Louis Missouri 63130
| | - Brian Trease
- California Institute of Technology/Jet Propulsion Laboratory; Pasadena California 91011
| | - Randel Lindemann
- California Institute of Technology/Jet Propulsion Laboratory; Pasadena California 91011
| | - Paolo Bellutta
- California Institute of Technology/Jet Propulsion Laboratory; Pasadena California 91011
| | - Karl Iagnemma
- Robotic Mobility Group; Massachusetts Institute of Technology; Cambridge Massachusetts 02139
| | - Carmine Senatore
- Robotic Mobility Group; Massachusetts Institute of Technology; Cambridge Massachusetts 02139
| |
Collapse
|
14
|
Goudge TA, Mustard JF, Head JW, Fassett CI. Constraints on the history of open-basin lakes on Mars from the composition and timing of volcanic resurfacing. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Planning for Mars returned sample science: final report of the MSR End-to-End International Science Analysis Group (E2E-iSAG). ASTROBIOLOGY 2012; 12:175-230. [PMID: 22468886 DOI: 10.1089/ast.2011.0805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
16
|
Abstract
Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon's crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus.
Collapse
|
17
|
House CH, Beal EJ, Orphan VJ. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy. Life (Basel) 2011; 1:19-33. [PMID: 25382054 PMCID: PMC4187123 DOI: 10.3390/life1010019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/14/2011] [Accepted: 11/11/2011] [Indexed: 11/17/2022] Open
Abstract
On Earth, marine anaerobic methane oxidation (AOM) can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2) found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to release), a total of about 1020 microbial cells could be supported through methanotrophy with the cells concentrated in regions of methane release.
Collapse
Affiliation(s)
- Christopher H House
- Department of Geosciences and Penn State Astrobiology Research Center, The Pennsylvania State University, 220 Deike Building, University Park, PA 16802, USA.
| | - Emily J Beal
- Department of Geosciences and Penn State Astrobiology Research Center, The Pennsylvania State University, 220 Deike Building, University Park, PA 16802, USA.
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
18
|
Edwards CS, Nowicki KJ, Christensen PR, Hill J, Gorelick N, Murray K. Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003755] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Summons RE, Amend JP, Bish D, Buick R, Cody GD, Des Marais DJ, Dromart G, Eigenbrode JL, Knoll AH, Sumner DY. Preservation of martian organic and environmental records: final report of the Mars biosignature working group. ASTROBIOLOGY 2011; 11:157-81. [PMID: 21417945 DOI: 10.1089/ast.2010.0506] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL.
Collapse
Affiliation(s)
- Roger E Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sullivan R, Anderson R, Biesiadecki J, Bond T, Stewart H. Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003625] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM, Chojnacki M, Bishop JL, Ehlmann BL, Murchie SL, Clark RN, Seelos FP, Tornabene LL, Squyres SW. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003694] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Geissler PE, Sullivan R, Golombek M, Johnson JR, Herkenhoff K, Bridges N, Vaughan A, Maki J, Parker T, Bell J. Gone with the wind: Eolian erasure of the Mars Rover tracks. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003674] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Greeley R, Waller DA, Cabrol NA, Landis GA, Lemmon MT, Neakrase LDV, Pendleton Hoffer M, Thompson SD, Whelley PL. Gusev Crater, Mars: Observations of three dust devil seasons. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003608] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Usui T, McSween HY, Clark BC. Petrogenesis of high-phosphorous Wishstone Class rocks in Gusev Crater, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003225] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Morris RV, Klingelhöfer G, Schröder C, Fleischer I, Ming DW, Yen AS, Gellert R, Arvidson RE, Rodionov DS, Crumpler LS, Clark BC, Cohen BA, McCoy TJ, Mittlefehldt DW, Schmidt ME, de Souza PA, Squyres SW. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003201] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Yingst RA, Crumpler L, Farrand WH, Li R, Cabrol NA, Neakrase LD. Morphology and texture of particles along the Spirit rover traverse from sol 450 to sol 745. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003179] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Ming DW, Gellert R, Morris RV, Arvidson RE, Brückner J, Clark BC, Cohen BA, d'Uston C, Economou T, Fleischer I, Klingelhöfer G, McCoy TJ, Mittlefehldt DW, Schmidt ME, Schröder C, Squyres SW, Tréguier E, Yen AS, Zipfel J. Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003195] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Wang A, Bell JF, Li R, Johnson JR, Farrand WH, Cloutis EA, Arvidson RE, Crumpler L, Squyres SW, McLennan SM, Herkenhoff KE, Ruff SW, Knudson AT, Chen W, Greenberger R. Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003126] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Lewis KW, Aharonson O, Grotzinger JP, Squyres SW, Bell JF, Crumpler LS, Schmidt ME. Structure and stratigraphy of Home Plate from the Spirit Mars Exploration Rover. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Stivaletta N, Barbieri R. Endoliths in Terrestrial Arid Environments: Implications for Astrobiology. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2008. [DOI: 10.1007/978-1-4020-8837-7_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Tréguier E, d'Uston C, Pinet PC, Berger G, Toplis MJ, McCoy TJ, Gellert R, Brückner J. Overview of Mars surface geochemical diversity through Alpha Particle X-Ray Spectrometer data multidimensional analysis: First attempt at modeling rock alteration. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Seelos KD, Arvidson RE, Cull SC, Hash CD, Heet TL, Guinness EA, McGuire PC, Morris RV, Murchie SL, Parker TJ, Roush TL, Seelos FP, Wolff MJ. Geomorphologic and mineralogic characterization of the northern plains of Mars at the Phoenix Mission candidate landing sites. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Thomson BJ, Bridges NT, Greeley R. Rock abrasion features in the Columbia Hills, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Schmidt ME, Ruff SW, McCoy TJ, Farrand WH, Johnson JR, Gellert R, Ming DW, Morris RV, Cabrol N, Lewis KW, Schroeder C. Hydrothermal origin of halogens at Home Plate, Gusev Crater. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003027] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
McCoy TJ, Sims M, Schmidt ME, Edwards L, Tornabene LL, Crumpler LS, Cohen BA, Soderblom LA, Blaney DL, Squyres SW, Arvidson RE, Rice JW, Tréguier E, d'Uston C, Grant JA, McSween HY, Golombek MP, Haldemann AFC, de Souza PA. Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Jensen LL, Merrison J, Hansen AA, Mikkelsen KA, Kristoffersen T, Nørnberg P, Lomstein BA, Finster K. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH). ASTROBIOLOGY 2008; 8:537-548. [PMID: 18593229 DOI: 10.1089/ast.2006.0092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.
Collapse
Affiliation(s)
- Lars Liengaard Jensen
- Department of Biological Sciences, Section for Microbiology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
37
|
ten Kate IL, Canham JS, Conrad PG, Errigo T, Katz I, Mahaffy PR. Mitigation of the impact of terrestrial contamination on organic measurements from the Mars Science Laboratory. ASTROBIOLOGY 2008; 8:571-582. [PMID: 18558810 DOI: 10.1089/ast.2007.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements.
Collapse
Affiliation(s)
- Inge L ten Kate
- NASA Goddard Space Flight Center, Atmospheric Experiments Laboratory, Greenbelt, Maryland 20771, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Campbell JL, Gellert R, Lee M, Mallett CL, Maxwell JA, O'Meara JM. Quantitative in situ determination of hydration of bright high-sulfate Martian soils. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002959] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Lichtenberg KA, Arvidson RE, Poulet F, Morris RV, Knudson A, Bell JF, Bellucci G, Bibring JP, Farrand WH, Johnson JR, Ming DW, Pinet PC, Rogers AD, Squyres SW. Coordinated analyses of orbital and Spirit Rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002850] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Cabrol NA, Wettergreen D, Warren-Rhodes K, Grin EA, Moersch J, Diaz GC, Cockell CS, Coppin P, Demergasso C, Dohm JM, Ernst L, Fisher G, Glasgow J, Hardgrove C, Hock AN, Jonak D, Marinangeli L, Minkley E, Ori GG, Piatek J, Pudenz E, Smith T, Stubbs K, Thomas G, Thompson D, Waggoner A, Wagner M, Weinstein S, Wyatt M. Life in the Atacama: Searching for life with rovers (science overview). ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jg000298] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nathalie A. Cabrol
- Space Sciences Division; NASA Ames Research Center; Moffett Field California USA
- SETI Institute; Mountain View California USA
| | - David Wettergreen
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Kim Warren-Rhodes
- Space Sciences Division; NASA Ames Research Center; Moffett Field California USA
- SETI Institute; Mountain View California USA
| | - Edmond A. Grin
- Space Sciences Division; NASA Ames Research Center; Moffett Field California USA
- SETI Institute; Mountain View California USA
| | - Jeffrey Moersch
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | | | - Charles S. Cockell
- Planetary and Space Sciences Research Institute; Open University; Milton Keynes UK
| | - Peter Coppin
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | | | - James M. Dohm
- Hydrology and Water Resources Department; University of Arizona; Tucson Arizona USA
| | - Lauren Ernst
- Department of Biology; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Gregory Fisher
- Department of Biology; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Justin Glasgow
- Department of Industrial Engineering; University of Iowa; Iowa City Iowa USA
| | - Craig Hardgrove
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - Andrew N. Hock
- Department of Earth and Space Sciences; University of California; Los Angeles California USA
| | - Dominic Jonak
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | | | - Edwin Minkley
- Department of Biology; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | | | - Jennifer Piatek
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - Erin Pudenz
- Department of Industrial Engineering; University of Iowa; Iowa City Iowa USA
| | - Trey Smith
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Kristen Stubbs
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Geb Thomas
- Department of Industrial Engineering; University of Iowa; Iowa City Iowa USA
| | - David Thompson
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Alan Waggoner
- Department of Biology; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Michael Wagner
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Shmuel Weinstein
- Department of Biology; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Michael Wyatt
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| |
Collapse
|
41
|
Hansen CJ, Paige DA, Bearman G, Furstenau S, Horn J, Mahoney C, Patrick S, Peters G, Scherbenski J, Shiraishi L, Zimmerman W. SPADE: A rock-crushing and sample-handling system developed for Mars missions. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2005je002413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
|
43
|
Murchie S, Arvidson R, Bedini P, Beisser K, Bibring JP, Bishop J, Boldt J, Cavender P, Choo T, Clancy RT, Darlington EH, Des Marais D, Espiritu R, Fort D, Green R, Guinness E, Hayes J, Hash C, Heffernan K, Hemmler J, Heyler G, Humm D, Hutcheson J, Izenberg N, Lee R, Lees J, Lohr D, Malaret E, Martin T, McGovern JA, McGuire P, Morris R, Mustard J, Pelkey S, Rhodes E, Robinson M, Roush T, Schaefer E, Seagrave G, Seelos F, Silverglate P, Slavney S, Smith M, Shyong WJ, Strohbehn K, Taylor H, Thompson P, Tossman B, Wirzburger M, Wolff M. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002682] [Citation(s) in RCA: 666] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Squyres SW, Aharonson O, Clark BC, Cohen BA, Crumpler L, de Souza PA, Farrand WH, Gellert R, Grant J, Grotzinger JP, Haldemann AFC, Johnson JR, Klingelhöfer G, Lewis KW, Li R, McCoy T, McEwen AS, McSween HY, Ming DW, Moore JM, Morris RV, Parker TJ, Rice JW, Ruff S, Schmidt M, Schröder C, Soderblom LA, Yen A. Pyroclastic activity at Home Plate in Gusev Crater, Mars. Science 2007; 316:738-42. [PMID: 17478719 DOI: 10.1126/science.1139045] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.
Collapse
Affiliation(s)
- S W Squyres
- Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McEwen AS, Eliason EM, Bergstrom JW, Bridges NT, Hansen CJ, Delamere WA, Grant JA, Gulick VC, Herkenhoff KE, Keszthelyi L, Kirk RL, Mellon MT, Squyres SW, Thomas N, Weitz CM. Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2005je002605] [Citation(s) in RCA: 1056] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Clark BC, Arvidson RE, Gellert R, Morris RV, Ming DW, Richter L, Ruff SW, Michalski JR, Farrand WH, Yen A, Herkenhoff KE, Li R, Squyres SW, Schröder C, Klingelhöfer G, Bell JF. Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002756] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Rogers AD, Bandfield JL, Christensen PR. Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002726] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Ruff SW, Christensen PR, Blaney DL, Farrand WH, Johnson JR, Michalski JR, Moersch JE, Wright SP, Squyres SW. The rocks of Gusev Crater as viewed by the Mini-TES instrument. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002747] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. W. Ruff
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - P. R. Christensen
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - D. L. Blaney
- Jet Propulsion Laboratory; Pasadena California USA
| | | | | | - J. R. Michalski
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - J. E. Moersch
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - S. P. Wright
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
49
|
Smith MD, Wolff MJ, Spanovich N, Ghosh A, Banfield D, Christensen PR, Landis GA, Squyres SW. One Martian year of atmospheric observations using MER Mini-TES. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002770] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Don Banfield
- Department of Astronomy; Cornell University; Ithaca New York USA
| | | | | | | |
Collapse
|
50
|
Greeley R, Whelley PL, Arvidson RE, Cabrol NA, Foley DJ, Franklin BJ, Geissler PG, Golombek MP, Kuzmin RO, Landis GA, Lemmon MT, Neakrase LDV, Squyres SW, Thompson SD. Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002743] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald Greeley
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - Patrick L. Whelley
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - Raymond E. Arvidson
- Department of Earth and Planetary Sciences; Washington University in St. Louis; St. Louis Missouri USA
| | | | - Daniel J. Foley
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | | | - Paul G. Geissler
- Astrogeology Program; U.S. Geological Survey; Flagstaff Arizona USA
| | | | | | | | - Mark T. Lemmon
- Department of Atmospheric Sciences; Texas A&M University; College Station Texas USA
| | - Lynn D. V. Neakrase
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | | | - Shane D. Thompson
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| |
Collapse
|