1
|
Haji N, Faizi M, Koutentis PA, Carty MP, Aldabbagh F. Heterocyclic Iminoquinones and Quinones from the National Cancer Institute (NCI, USA) COMPARE Analysis. Molecules 2023; 28:5202. [PMID: 37446864 DOI: 10.3390/molecules28135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
This review uses the National Cancer Institute (NCI) COMPARE program to establish an extensive list of heterocyclic iminoquinones and quinones with similarities in differential growth inhibition patterns across the 60-cell line panel of the NCI Developmental Therapeutics Program (DTP). Many natural products and synthetic analogues are revealed as potential NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates, through correlations to dipyridoimidazo[5,4-f]benzimidazoleiminoquinone (DPIQ), and as potential thioredoxin reductase (TrxR) inhibitors, through correlations to benzo[1,2,4]triazin-7-ones and pleurotin. The strong correlation to NQO1 infers the enzyme has a major influence on the amount of the active compound with benzo[e]perimidines, phenoxazinones, benz[f]pyrido[1,2-a]indole-6,11-quinones, seriniquinones, kalasinamide, indolequinones, and furano[2,3-b]naphthoquinones, hypothesised as prodrugs. Compounds with very strong correlations to known TrxR inhibitors had inverse correlations to the expression of both reductase enzymes, NQO1 and TrxR, including naphtho[2,3-b][1,4]oxazepane-6,11-diones, benzo[a]carbazole-1,4-diones, pyranonaphthoquinones (including kalafungin, nanaomycin A, and analogues of griseusin A), and discorhabdin C. Quinoline-5,8-dione scaffolds based on streptonigrin and lavendamycin can correlate to either reductase. Inhibitors of TrxR are not necessarily (imino)quinones, e.g., parthenolides, while oxidising moieties are essential for correlations to NQO1, as with the mitosenes. Herein, an overview of synthetic methods and biological activity of each family of heterocyclic imino(quinone) is provided.
Collapse
Affiliation(s)
- Naemah Haji
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | - Masoma Faizi
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | | | - Michael P Carty
- School of Biological and Chemical Sciences, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| |
Collapse
|
2
|
Makiabadi B, Zakarianezhad M, Zeydabadi E. The role of hydrogen bonds on the stability of anticancer drug compounds TG/uracil, TG/5-fluorouracil and TG/gimeracil. Struct Chem 2022. [DOI: 10.1007/s11224-022-02028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Martinez-Garcia M, White CI, Franklin FCH, Sanchez-Moran E. The Role of Topoisomerase II in DNA Repair and Recombination in Arabidopsis thaliana. Int J Mol Sci 2021; 22:13115. [PMID: 34884922 PMCID: PMC8658145 DOI: 10.3390/ijms222313115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
DNA entanglements and supercoiling arise frequently during normal DNA metabolism. DNA topoisomerases are highly conserved enzymes that resolve the topological problems that these structures create. Topoisomerase II (TOPII) releases topological stress in DNA by removing DNA supercoils through breaking the two DNA strands, passing a DNA duplex through the break and religating the broken strands. TOPII performs key DNA metabolic roles essential for DNA replication, chromosome condensation, heterochromatin metabolism, telomere disentanglement, centromere decatenation, transmission of crossover (CO) interference, interlock resolution and chromosome segregation in several model organisms. In this study, we reveal the endogenous role of Arabidopsis thaliana TOPII in normal root growth and cell cycle, and mitotic DNA repair via homologous recombination. Additionally, we show that the protein is required for meiotic DSB repair progression, but not for CO formation. We propose that TOPII might promote mitotic HR DNA repair by relieving stress needed for HR strand invasion and D-loop formation.
Collapse
Affiliation(s)
| | - Charles I. White
- Génétique, Reproduction et Développement, Faculté de Médecine, UMR CNRS 6293—INSERM U1103—Université Clermont Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France;
| | | | | |
Collapse
|
4
|
van der Westhuizen D, Bezuidenhout DI, Munro OQ. Cancer molecular biology and strategies for the design of cytotoxic gold(I) and gold(III) complexes: a tutorial review. Dalton Trans 2021; 50:17413-17437. [PMID: 34693422 DOI: 10.1039/d1dt02783b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review highlights key principles underpinning the design of selected metallodrugs to target specific biological macromolecules (DNA and proteins). The review commences with a descriptive overview of the eukaryotic cell cycle and the molecular biology of cancer, particularly apoptosis, which is provided as a necessary foundation for the discovery, design, and targeting of metal-based anticancer agents. Drugs which target DNA have been highlighted and clinically approved metallodrugs discussed. A brief history of the development of mainly gold-based metallodrugs is presented prior to addressing ligand systems for stabilizing and adding functionality to bio-active gold(I) and gold(III) complexes, particularly in the burgeoning field of anticancer metallodrugs. Concepts such as multi-modal and selective cytotoxic agents are covered where necessary for selected compounds. The emerging role of carbenes as the ligand system of choice to achieve these goals for gold-based metallodrug candidates is highlighted prior to closing the review with comments on some future directions that this research field might follow. The latter section ultimately emphasizes the importance of understanding the fate of metal complexes in cells to garner key mechanistic insights.
Collapse
Affiliation(s)
- Danielle van der Westhuizen
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Daniela I Bezuidenhout
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
5
|
Rapid and Accurate Detection of Escherichia coli and Klebsiella pneumoniae Strains Susceptible/Resistant to Cotrimoxazole through Evaluation of Cell Elongation. Antibiotics (Basel) 2021; 10:antibiotics10060720. [PMID: 34203917 PMCID: PMC8232604 DOI: 10.3390/antibiotics10060720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Trimethoprim-sulfamethoxazole is a well-known antibiotic that inhibits folic acid synthesis, a topic of renewed interest. Since resistant strains are increasingly more common, an early and accurate discrimination of susceptibility may assure confident therapy. Two morphological assays were performed in Escherichia coli (n = 50; 27 non-susceptible) and Klebsiella pneumoniae (n = 52; 18 non-susceptible). First, the strains were incubated with the CLSI breakpoint of cotrimoxazole for 150 min, which induced cell lengthening in the susceptible strains. Second, the bacteria were incubated with mitomycin C (MMC) (0.5 mg/L) for 120 min to induce a SOS-linked cell enlargement higher than that obtained by cotrimoxazole alone. When cotrimoxazole was added 30 min before MMC, the inhibition of folic acid synthesis in the susceptible strain resulted in the suppression of MMC-induced extra elongation. In the non-susceptible strains, folic acid synthesis continued despite the antibiotic, so that the MMC-induced extra cell lengthening could not be impeded. Whereas the first assay resulted in five false negatives and four false positives of resistance, the results of the second assay matched those of the conventional antibiogram. This simple morphological procedure is performed in 2 h and 45 min and may allow a rapid selection of useful and relatively inexpensive therapy, thereby preserving the newer broad-spectrum antibiotics.
Collapse
|
6
|
Pipercevic J, Jakob RP, Righetto RD, Goldie KN, Stahlberg H, Maier T, Hiller S. Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183607. [PMID: 33775657 DOI: 10.1016/j.bbamem.2021.183607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
Colicins are bacterial toxins targeting Gram-negative bacteria, including E. coli and related Enterobacteriaceae strains. Some colicins form ion-gated pores in the inner membrane of attacked bacteria that are lethal to their target. Colicin Ia was the first pore-forming E. coli toxin, for which a high-resolution structure of the monomeric full-length protein was determined. It is so far also the only colicin, for which a low-resolution structure of its membrane-inserted pore was reported by negative-stain electron microscopy. Resolving this structure at the atomic level would allow an understanding of the mechanism of toxin pore formation. Here, we report an observation that we made during an attempt to determine the Colicin Ia pore structure at atomic resolution. Colicin Ia was natively expressed by mitomycin-C induction under a native SOS promotor and purified following published protocols. The visual appearance in the electron microscope of negatively stained preparations and the lattice parameters of 2D crystals obtained from the material were highly similar to those reported earlier resulting from the same purification protocol. However, a higher-resolution structural analysis revealed that the protein is Dps (DNA-binding protein from starved cells), a dodecameric E. coli protein. This finding suggests that the previously reported low-resolution structure of a "Colicin Ia oligomeric pore" actually shows Dps.
Collapse
Affiliation(s)
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ricardo D Righetto
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Kenneth N Goldie
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
7
|
Shilkin ES, Boldinova EO, Stolyarenko AD, Goncharova RI, Chuprov-Netochin RN, Smal MP, Makarova AV. Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance. BIOCHEMISTRY (MOSCOW) 2021; 85:869-882. [PMID: 33045948 DOI: 10.1134/s0006297920080039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders.
Collapse
Affiliation(s)
- E S Shilkin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - E O Boldinova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - R I Goncharova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - R N Chuprov-Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - M P Smal
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus.
| | - A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
8
|
Ghodke PP, Pradeepkumar PI. Site‐Specific
N
2
‐dG DNA Adducts: Formation, Synthesis, and TLS Polymerase‐Mediated Bypass. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pratibha P. Ghodke
- Department of Biochemistry Vanderbilt University School of Medicine 638B Robinson Research Building 2200 Pierce Avenue 37323‐0146 Nashville Tennessee United States
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai Powai India
| | | |
Collapse
|
9
|
Muangkaew P, Vilaivan T. Pyrrolidinyl Peptide Nucleic Acid Probes Capable of Crosslinking with DNA: Effects of Terminal and Internal Modifications on Crosslink Efficiency. Chembiochem 2020; 22:241-252. [PMID: 32889765 DOI: 10.1002/cbic.202000589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/03/2020] [Indexed: 12/27/2022]
Abstract
In this study, we describe a furan-modified acpcPNA as a probe that can form an interstrand crosslink (ICL) with its DNA target upon activation with N-bromosuccinimide (NBS). To overcome the problem of furan instability under acidic conditions, a simple and versatile post-synthetic methodology for the attachment of the furan group to the PNA probe was developed. Unlike in other designs, the furan was placed at the end of the PNA molecule or tethered to the PNA backbone with all the base pairs in the PNA ⋅ DNA duplexes fully preserved. Hence, the true reactivity of each nucleobase towards the crosslinking could be compared. We show that all DNA bases except T could participate in the crosslinking reaction when the furan was placed at the end of the PNA strand. The crosslinking process was sensitive to mispairing, and lower crosslinking efficiency was observed in the presence of a base-mismatch in the PNA ⋅ DNA duplex. In contrast, when the furan was placed at internal positions of the acpcPNA ⋅ DNA duplex, no ICL was observed; this was explained by the inability of a hydrogen-bonded nucleobase to participate in the crosslinking reaction. The crosslinking efficiency was considerably improved, despite lower duplex stability, when an unpaired base (in the form of C-insertion) was present in the complementary DNA strand close to the furan modification site.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| |
Collapse
|
10
|
Aguilar W, Zacarias O, Romaine M, Proni G, Petrovic AG, Abzalimov R, Paz MM, Champeil E. Synthesis of Oligonucleotides containing the cis-Interstrand Crosslink Produced by Mitomycins in their Reaction with DNA. Chemistry 2020; 26:12570-12578. [PMID: 32574396 PMCID: PMC7681910 DOI: 10.1002/chem.202002452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 01/25/2023]
Abstract
Mitomycin C (MC) an antitumor drug and decarbamoylmitomycin C (DMC), a derivative of MC lacking the carbamoyl moiety, are DNA alkylating agents which can form DNA interstrand crosslinks (ICLs) between deoxyguanosine residues located on opposing DNA strands. MC forms primarily deoxyguanosine adducts with a 1"-R stereochemistry at the guanine-mitosene bond (1"-α, trans) whereas DMC forms mainly adducts with a 1"-S stereochemistry (1"-β, cis). The crosslinking reaction is diastereospecific: trans-crosslinks are formed exclusively at CpG sequences, while cis-crosslinks are formed only at GpC sequences. Until now, oligonucleotides containing 1"-β-deoxyguanosine adducts or ICL at a specific site could not be synthesized, thus limiting the investigation of the role played by the stereochemical configuration at C1'' in the toxicity of these compounds. Here, a novel biomimetic synthesis to access these substrates is presented. Structural proof of the adducted oligonucleotides and ICL were provided by enzymatic digestion to nucleosides, high resolution mass spectral analysis, CD spectroscopy and UV melting temperature studies. Finally, a virtual model of the 25-mer 1"-β ICL synthesized was created to explore the conformational space and structural features of the crosslinked duplex.
Collapse
Affiliation(s)
- William Aguilar
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Owen Zacarias
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Marian Romaine
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Gloria Proni
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Ana G Petrovic
- New York Institute of Technology, 1855 Broadway, EGGC 405A, New York, NY, 10023, USA
| | - Rinat Abzalimov
- City University of New York, Advanced Research Center, 85 St Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Manuel M Paz
- Departamento de Química Orgánica, Facultad de Química, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, 15782, Spain
| | - Elise Champeil
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| |
Collapse
|
11
|
Klimova AN, Sandler SJ. An Epistasis Analysis of recA and recN in Escherichia coli K-12. Genetics 2020; 216:381-393. [PMID: 32816866 PMCID: PMC7536844 DOI: 10.1534/genetics.120.303476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
RecA is essential for double-strand-break repair (DSBR) and the SOS response in Escherichia coli K-12. RecN is an SOS protein and a member of the Structural Maintenance of Chromosomes family of proteins thought to play a role in sister chromatid cohesion/interactions during DSBR. Previous studies have shown that a plasmid-encoded recA4190 (Q300R) mutant had a phenotype similar to ∆recN (mitomycin C sensitive and UV resistant). It was hypothesized that RecN and RecA physically interact, and that recA4190 specifically eliminated this interaction. To test this model, an epistasis analysis between recA4190 and ∆recN was performed in wild-type and recBC sbcBC cells. To do this, recA4190 was first transferred to the chromosome. As single mutants, recA4190 and ∆recN were Rec+ as measured by transductional recombination, but were 3-fold and 10-fold decreased in their ability to do I-SceI-induced DSBR, respectively. In both cases, the double mutant had an additive phenotype relative to either single mutant. In the recBC sbcBC background, recA4190 and ∆recN cells were very UVS (sensitive), Rec-, had high basal levels of SOS expression and an altered distribution of RecA-GFP structures. In all cases, the double mutant had additive phenotypes. These data suggest that recA4190 (Q300R) and ∆recN remove functions in genetically distinct pathways important for DNA repair, and that RecA Q300 was not important for an interaction between RecN and RecA in vivorecA4190 (Q300R) revealed modest phenotypes in a wild-type background and dramatic phenotypes in a recBC sbcBC strain, reflecting greater stringency of RecA's role in that background.
Collapse
Affiliation(s)
- Anastasiia N Klimova
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts 01003
| | - Steven J Sandler
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts 01003
- Department of Microbiology, University of Massachusetts Amherst, Massachusetts 01003
| |
Collapse
|
12
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2020; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China.,Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Chen X, Peng F, Ji Y, Xiang H, Wang X, Liu T, Wang H, Han Y, Wang C, Zhang Y, Kong X, Lang JY. Brca2 deficiency drives gastrointestinal tumor formation and is selectively inhibited by mitomycin C. Cell Death Dis 2020; 11:812. [PMID: 32980867 PMCID: PMC7519908 DOI: 10.1038/s41419-020-03013-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
BRCA2 is crucial for repairing DNA double-strand breaks with high fidelity, and loss of BRCA2 increases the risks of developing breast and ovarian cancers. Herein, we show that BRCA2 is inactively mutated in 10% of gastric and 7% of colorectal adenocarcinomas, and that this inactivation is significantly correlated with microsatellite instability. Villin-driven Brca2 depletion promotes mouse gastrointestinal tumor formation when genome instability is increased. Whole-genome screening data showed that these BRCA2 monoallelic and biallelic mutant tumors were selectively inhibited by mitomycin C. Mechanistically, mitomycin C provoked double-strand breaks in cancer cells that often recruit wild-type BRCA2 for repair; the failure to repair double-strand breaks caused cell-cycle arrest at the S phase and p53-mediated cell apoptosis of BRCA2 monoallelic and biallelic mutant tumor cells. Our study unveils the role of BRCA2 loss in the development of gastrointestinal tumors and provides a potential therapeutic strategy to eliminate BRCA2 monoallelic and biallelic mutant tumors through mitomycin C.
Collapse
Affiliation(s)
- Xiaomin Chen
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fangfei Peng
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yan Ji
- Bioinformatics Core, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Honggang Xiang
- Department of General Surgery, Pudong New Area People's Hospital affiliated to Shanghai University of Medicine & Health Science, 201299, Shanghai, China
| | - Xiang Wang
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Tingting Liu
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Heng Wang
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yumin Han
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Changxu Wang
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yongfeng Zhang
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiangyin Kong
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jing-Yu Lang
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
14
|
Martinez-Garcia M, Fernández-Jiménez N, Santos JL, Pradillo M. Duplication and divergence: New insights into AXR1 and AXL functions in DNA repair and meiosis. Sci Rep 2020; 10:8860. [PMID: 32483285 PMCID: PMC7264244 DOI: 10.1038/s41598-020-65734-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
Rubylation is a conserved regulatory pathway similar to ubiquitination and essential in the response to the plant hormone auxin. In Arabidopsis thaliana, AUXIN RESISTANT1 (AXR1) functions as the E1-ligase in the rubylation pathway. The gene AXR1-LIKE (AXL), generated by a relatively recent duplication event, can partially replace AXR1 in this pathway. We have analysed mutants deficient for both proteins and complementation lines (with the AXR1 promoter and either AXR1 or AXL coding sequences) to further study the extent of functional redundancy between both genes regarding two processes: meiosis and DNA repair. Here we report that whereas AXR1 is essential to ensure the obligatory chiasma, AXL seems to be dispensable during meiosis, although its absence slightly alters chiasma distribution. In addition, expression of key DNA repair and meiotic genes is altered when either AXR1 or AXL are absent. Furthermore, our results support a significant role for both genes in DNA repair that was not previously described. These findings highlight that AXR1 and AXL show a functional divergence in relation to their involvement in homologous recombination, exemplifying a duplicate retention model in which one copy tends to have more sub-functions than its paralog.
Collapse
Affiliation(s)
- Marina Martinez-Garcia
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Juan L Santos
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
15
|
Ellestad G, Zask A, Berova N. The enduring legacy of Koji Nakanishi's research on bioorganic chemistry and natural products. Part 1: Isolation, structure determination and mode of action. Chirality 2020; 32:632-651. [PMID: 32157754 DOI: 10.1002/chir.23214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
In this brief review on Koji Nakanishi's remarkable career in natural products chemistry, we have highlighted a number of his accomplishments that illustrate the broad diversity of his interests. These include the isolation, structure determination, and biological mechanism of action of many natural products including the triterpenoid pristimerin; the diterpenoid ginkgolides; insect and crustacean molting hormones; phytoalexins; the toxic red tide principle brevetoxin; the vanadium tunicate pigments; philanthotoxin from killer wasps; antisickling agents; mitomycin DNA adducts; insect antifeedants; a mitotic hormone, the small molecule fish attractants from the sea anemone; new isolation and purification technologies; molecular chemistry of vision; age-related macular degeneration; and the development of the exciton circular dichroism (CD) chirality method for microscale determination of absolute configuration of natural products and chirality of other chiral molecules and supramolecular assembly.
Collapse
Affiliation(s)
- George Ellestad
- Department of Chemistry, Columbia University, New York, New York
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, New York
| | - Nina Berova
- Department of Chemistry, Columbia University, New York, New York
| |
Collapse
|
16
|
Anirudhan TS, Manasa AM. Novel pH/reduction responsive graphene oxide nanoparticles based hydrogel for targeted combination chemotherapy. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1706513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - A. M. Manasa
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Trivandrum, India
| |
Collapse
|
17
|
Carramiñana V, Ochoa de Retana AM, de Los Santos JM, Palacios F. First synthesis of merged hybrids phosphorylated azirino[2,1-b]benzo[e][1,3]oxazine derivatives as anticancer agents. Eur J Med Chem 2019; 185:111771. [PMID: 31671309 DOI: 10.1016/j.ejmech.2019.111771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
This work describes a straightforward diastereoselective synthetic access to azirino[2,1-b]benzo[e][1,3]oxazines containing phosphorus substituents such as phosphonate or phosphine oxide, by means of nucleophilic addition of functionalized phenols to the C-N double bond of 2H-azirine derivatives. In addition, the cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549) and human embryonic kidney (HEK293) was also screened. Some azirino[2,1-b]benzo[e][1,3]oxazines 4 and 6 exhibited very good activity against the A549 cell line in vitro. Furthermore, selectivity towards cancer cell (A549) over (HEK293), and non-malignant cells (MCR-5) has been detected.
Collapse
Affiliation(s)
- Victor Carramiñana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain
| | - Ana M Ochoa de Retana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain
| | - Jesús M de Los Santos
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain.
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain.
| |
Collapse
|
18
|
Wu J, Du H, Li L, Price NE, Liu X, Wang Y. The Impact of Minor-Groove N2-Alkyl-2'-deoxyguanosine Lesions on DNA Replication in Human Cells. ACS Chem Biol 2019; 14:1708-1716. [PMID: 31347832 DOI: 10.1021/acschembio.9b00129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endogenous metabolites and exogenous chemicals can induce covalent modifications on DNA, producing DNA lesions. The N2 of guanine was shown to be a common alkylation site in DNA; however, not much is known about the influence of the size of the alkyl group in N2-alkyldG lesions on cellular DNA replication or how translesion synthesis (TLS) polymerases modulate DNA replication past these lesions in human cells. To answer these questions, we employ a robust shuttle vector method to investigate the impact of four N2-alkyldG lesions (i.e., with the alkyl group being a methyl, ethyl, n-propyl, or n-butyl group) on DNA replication in human cells. We find that replication through the N2-alkyldG lesions was highly efficient and accurate in HEK293T cells or isogenic CRISPR-engineered cells with deficiency in polymerase (Pol) ζ or Pol η. Genetic ablation of Pol ι, Pol κ, or Rev1, however, results in decreased bypass efficiencies and elicits substantial frequencies of G → A transition and G → T transversion mutations for these lesions. Moreover, further depletion of Pol ζ in Pol κ- or Pol ι-deficient cells gives rise to elevated rates of G → A and G → T mutations and substantially decreased bypass efficiencies. Cumulatively, we demonstrate that the error-free replication past the N2-alkyldG lesions is facilitated by a specific subset of TLS polymerases, and we find that longer alkyl chains in these lesions induce diminished bypass efficiency and fidelity in DNA replication.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Hua Du
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Nathan E. Price
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Xiaochuan Liu
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
19
|
Zhong S, Zhou Z, Liang Y, Cheng X, Li Y, Teng W, Zhao M, Liu C, Guan M, Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: does gut microbiota play a role? Crit Rev Microbiol 2019; 45:369-393. [PMID: 31106639 DOI: 10.1080/1040841x.2019.1608905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University , Shenyang , PR China
| | - Yifan Liang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Xi Cheng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University , Shenyang , PR China
| | - Weiyu Teng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University , Shenyang , PR China
| | - Chang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Meiting Guan
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| |
Collapse
|
20
|
Chang SM, Jain V, Chen TL, Patel AS, Pidugu HB, Lin YW, Wu MH, Huang JR, Wu HC, Shah A, Su TL, Lee TC. Design and Synthesis of 1,2-Bis(hydroxymethyl)pyrrolo[2,1-a]phthalazine Hybrids as Potent Anticancer Agents that Inhibit Angiogenesis and Induce DNA Interstrand Cross-links. J Med Chem 2019; 62:2404-2418. [DOI: 10.1021/acs.jmedchem.8b01689] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Anamik Shah
- Center of Excellence in Drug Discovery, Saurashtra University, Rajkot 360005, India
| | | | | |
Collapse
|
21
|
Burby PE, Simmons LA. A bacterial DNA repair pathway specific to a natural antibiotic. Mol Microbiol 2018; 111:338-353. [PMID: 30379365 DOI: 10.1111/mmi.14158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2018] [Indexed: 12/17/2022]
Abstract
All organisms possess DNA repair pathways that are used to maintain the integrity of their genetic material. Although many DNA repair pathways are well understood, new pathways continue to be discovered. Here, we report an antibiotic specific DNA repair pathway in Bacillus subtilis that is composed of a previously uncharacterized helicase (mrfA) and exonuclease (mrfB). Deletion of mrfA and mrfB results in sensitivity to the DNA damaging agent mitomycin C, but not to any other type of DNA damage tested. We show that MrfAB function independent of canonical nucleotide excision repair, forming a novel excision repair pathway. We demonstrate that MrfB is a metal-dependent exonuclease and that the N-terminus of MrfB is required for interaction with MrfA. We determined that MrfAB failed to unhook interstrand cross-links in vivo, suggesting that MrfAB are specific to the monoadduct or the intrastrand cross-link. A phylogenetic analysis uncovered MrfAB homologs in diverse bacterial phyla, and cross-complementation indicates that MrfAB function is conserved in closely related species. B. subtilis is a soil dwelling organism and mitomycin C is a natural antibiotic produced by the soil bacterium Streptomyces lavendulae. The specificity of MrfAB suggests that these proteins are an adaptation to environments with mitomycin producing bacteria.
Collapse
Affiliation(s)
- Peter E Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
22
|
Aguilar W, Paz MM, Vargas A, Zheng M, Cheng SY, Champeil E. Interdependent Sequence Selectivity and Diastereoselectivity in the Alkylation of DNA by Decarbamoylmitomycin C. Chemistry 2018; 24:13278-13289. [PMID: 29958326 PMCID: PMC7152928 DOI: 10.1002/chem.201802038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/27/2018] [Indexed: 02/01/2023]
Abstract
Mitomycin C (MC), an antitumor drug, and decarbamoylmitomycin C (DMC), a derivative of MC, alkylate DNA and form deoxyguanosine monoadducts and interstrand crosslinks (ICLs). Interestingly, in mammalian culture cells, MC forms primarily deoxyguanosine adducts with a 1"-R stereochemistry at the guanine-mitosene bond (1"-α) whereas DMC forms mainly adducts with a 1"-S stereochemistry (1"-β). The molecular basis for the stereochemical configuration exhibited by DMC has been investigated using biomimetic synthesis. Here, we present the results of our studies on the monoalkylation of DNA by DMC. We show that the formation of 1"-β-deoxyguanosine adducts requires bifunctional reductive activation of DMC, and that monofunctional activation only produces 1"-α-adducts. The stereochemistry of the deoxyguanosine adducts formed is also dependent on the regioselectivity of DNA alkylation and on the overall DNA CG content. Additionally, we found that temperature plays a determinant role in the regioselectivity of duplex DNA alkylation by mitomycins: At 0 °C, both deoxyadenosine (dA) and deoxyguanosine (dG) alkylation occur whereas at 37 °C, mitomycins alkylate dG preferentially. The new reaction protocols developed in our laboratory to investigate DMC-DNA alkylation raise the possibility that oligonucleotides containing DMC 1"-β-deoxyguanosine adducts at a specific site may be synthesized by a biomimetic approach.
Collapse
Affiliation(s)
- William Aguilar
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Manuel M Paz
- Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782, Santiago, de Compostela, Spain
| | - Anayatzinc Vargas
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Maggie Zheng
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Shu-Yuan Cheng
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Elise Champeil
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City, University of New York, New York, NY, 10016, USA
| |
Collapse
|
23
|
Zacarias O, Aguilar W, Paz MM, Tsukanov S, Zheng M, Cheng SY, Pradhan P, Champeil E. Isolation and Rationale for the Formation of Isomeric Decarbamoylmitomycin C- N 6-deoxyadenosine Adducts in DNA. Chem Res Toxicol 2018; 31:762-771. [PMID: 30035537 PMCID: PMC7061421 DOI: 10.1021/acs.chemrestox.8b00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitomycin C (MC) is an anticancer agent that alkylates DNA to form monoadducts and interstrand cross-links. Decarbamoylmitomycin C (DMC) is an analogue of MC lacking the carbamate on C10. The major DNA adducts isolated from treatment of culture cells with MC and DMC are N2-deoxyguanosine (dG) adducts and adopt an opposite stereochemical configuration at the dG-mitosene bond. To elucidate the molecular mechanisms of DMC-DNA alkylation, we have reacted short oligonucleotides, calf thymus, and M. luteus DNA with DMC using biomimetic conditions. These experiments revealed that DMC is able to form two stereoisomeric deoxyadenosine (dA) adducts with DNA under bifuntional reduction conditions and at low temperature. The dA-DMC adducts formed were detected and quantified by HPLC analysis after enzymatic digestion of the alkylated DNA substrates. Results revealed the following rules for DMC dA alkylation: (i) DMC dA adducts are formed at a 48- to 4-fold lower frequency than dG adducts, (ii) the 5'-phosphodiester linkage of the dA adducts is resistant to snake venom diesterase, (iii) end-chain dA residues are more reactive than internal ones in duplex DNA, and (iv) nucleophilic addition by dA occurs on both faces of DMC and the ratio of stereoisomeric dA adducts formed is dependent on the end bases located at the 3' or 5' position. A key finding was to discover that temperature plays a determinant role in the regioselectivity of duplex DNA alkylation by DMC: at 0 °C, both dA and dG alkylation occur, whereas at 37 °C, DMC preferentially alkylates dG residues.
Collapse
Affiliation(s)
- Owen Zacarias
- John Jay College of Criminal Justice, 524 west 59th street, New-York, NY, 10019, United States
| | - William Aguilar
- John Jay College of Criminal Justice, 524 west 59th street, New-York, NY, 10019, United States
| | - Manuel M. Paz
- Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Sergey Tsukanov
- John Jay College of Criminal Justice, 524 west 59th street, New-York, NY, 10019, United States
| | - Maggie Zheng
- John Jay College of Criminal Justice, 524 west 59th street, New-York, NY, 10019, United States
| | - Shu-Yuan Cheng
- John Jay College of Criminal Justice, 524 west 59th street, New-York, NY, 10019, United States
| | - Padmanava Pradhan
- The City College, 138th Street at Convent Avenue, New York, New York 10031
| | - Elise Champeil
- John Jay College of Criminal Justice, 524 west 59th street, New-York, NY, 10019, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| |
Collapse
|
24
|
Resistance to UV Irradiation Caused by Inactivation of nurA and herA Genes in Thermus thermophilus. J Bacteriol 2018; 200:JB.00201-18. [PMID: 29844033 DOI: 10.1128/jb.00201-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
NurA and HerA are thought to be essential proteins for DNA end resection in archaeal homologous recombination systems. Thermus thermophilus, an extremely thermophilic eubacterium, has proteins that exhibit significant sequence similarity to archaeal NurA and HerA. To unveil the cellular function of NurA and HerA in T. thermophilus, we performed phenotypic analysis of disruptant mutants of nurA and herA with or without DNA-damaging agents. The nurA and herA genes were not essential for survival, and their deletion had no effect on cell growth and genome integrity. Unexpectedly, these disruptants of T. thermophilus showed increased resistance to UV irradiation and mitomycin C treatment. Further, these disruptants and the wild type displayed no difference in sensitivity to oxidative stress and a DNA replication inhibitor. T. thermophilus NurA had nuclease activity, and HerA had ATPase. The overexpression of loss-of-function mutants of nurA and herA in the respective disruptants showed no complementation, suggesting their enzymatic activities were involved in the UV sensitivity. In addition, T. thermophilus NurA and HerA interacted with each other in vitro and in vivo, forming a complex with 2:6 stoichiometry. These results suggest that the NurA-HerA complex has an architecture similar to that of archaeal counterparts but that it impairs, rather than promotes, the repair of photoproducts and DNA cross-links in T. thermophilus cells. This cellular function is distinctly different from that of archaeal NurA and HerA.IMPORTANCE Many nucleases and helicases are engaged in homologous recombination-mediated DNA repair. Previous in vitro analyses in archaea indicated that NurA and HerA are the recombination-related nuclease and helicase. However, their cellular function had not been fully understood, especially in bacterial cells. In this study, we performed in vivo analyses to address the cellular function of nurA and herA in an extremely thermophilic bacterium, Thermus thermophilus As a result, T. thermophilus NurA and HerA exhibited an interfering effect on the repair of several instances of DNA damage in the cell, which is in contrast to the results in archaea. This finding will facilitate our understanding of the diverse cellular functions of the recombination-related nucleases and helicases.
Collapse
|
25
|
Rycenga HB, Long DT. The evolving role of DNA inter-strand crosslinks in chemotherapy. Curr Opin Pharmacol 2018; 41:20-26. [PMID: 29679802 PMCID: PMC6108900 DOI: 10.1016/j.coph.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
Abstract
DNA crosslinking agents make up a broad class of chemotherapy agents that target rapidly dividing cancer cells by disrupting DNA synthesis. These drugs differ widely in both chemical structure and biological effect. In cells, crosslinking agents can form multiple types of DNA lesions with varying efficiencies. Inter-strand crosslinks (ICLs) are considered to be the most cytotoxic lesion, creating a covalent roadblock to replication and transcription. Despite over 50 years in the clinic, the use of crosslinking agents that specialize in the formation of ICLs remains limited, largely due to high toxicity in patients. Current ICL-based therapeutics have focused on late-stage and drug-resistant tumors, or localized treatments that limit exposure. In this article, we review the development of clinical crosslinking agents, our understanding of how cells respond to different lesions, and the potential to improve ICL-based chemotherapeutics in the future.
Collapse
Affiliation(s)
- Halley B Rycenga
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - David T Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE To determine whether scleral topical application of mitomycin-C (MMC) results in measurable plasma levels of systemic absorption. METHODS The study comprised 27 patients who were treated with MMC 0.2 mg/mL (0.02%) for 60 seconds during pterygium surgery. Blood samples were taken 30 minutes after surgery and evaluated by the human plasma liquid chromatography tandem-mass spectrometry method to determine the presence of MMC. RESULTS The amount of MMC in 27 samples tested was determined as below 0.25 ppb (ng/mL). CONCLUSIONS In this study of 27 patients treated with topical application of MMC for pterygium surgery, there was no measurable evidence of systemic drug absorption. Although systemic absorption has been found with the use of larger quantities of MMC, there is an extremely low likelihood of systemic absorption or toxicity of MMC after pterygium surgery.
Collapse
|
27
|
Alkhatib MH, Al-Otaibi WA, Wali AN. Antineoplastic activity of mitomycin C formulated in nanoemulsions-based essential oils on HeLa cervical cancer cells. Chem Biol Interact 2018; 291:72-80. [PMID: 29908166 DOI: 10.1016/j.cbi.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 01/27/2023]
Abstract
Combining the essential oils (ESSOs) with the chemotherapeutic agent, mitomycin C (MMC), in nanoparticle can be beneficial in cancer therapy. The aim of the current study was to in vitro evaluate the antineoplastic effect of MMC, formulated in two different nanoemulsions (NE) based on two ESSOs, chamomile (Ch) and garlic (Gar), on HeLa cervical cancer cells. The z-average diameter of Ch-NE has slightly increased from 83.39 ± 12.85 nm to 91.18 ± 5.79 nm when mixed with MMC (Ch-MMC) whereas the z-average diameter of Gar-NE has markedly increased from 50.6 ± 1.96 nm to 75.64 ± 7.13 nm when loaded with MMC (Gar-MMC). The zeta potentials of both of Ch-NE and Ch-MMC, which were -1.91 ± 4.38 mV and -5.44 ± 5.26 mV, respectively, have differed from Gar-NE and Gar-MMC, which were 11.4 ± 2.29 mV and 11.5 ± 2.28 mV, respectively. Compared to MMC solution, the cell viabilities of HeLa cells, measured by the MTT assay, were reduced 42 and 20 times when subjected into Ch-MMC and Gar-MMC, respectively. The light microscopy images revealed that the cell membrane of the HeLa cells treated with Gar-NE or Gar-MMC were more altered relative to the cells treated with Ch-NE or Ch-MMC. In contrast, the nuclei of the HeLa cells, stained with DAPI and treated with Ch-NE or Ch-MMC, were more fragmented than the cells treated with Gar-NE or Gar-MMC, indicating that both of Ch-NE and Ch-MMC have passed the cell membrane and affected the nucleus directly whereas Gar-NE and Gar-MMC have got attached to the cell membrane causing damage to the cell. In conclusion, combining MMC with NE-based ESSOs has increased the cytotoxic effect of the MMC on the HeLa cells with different mechanism of actions.
Collapse
Affiliation(s)
- Mayson H Alkhatib
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Waad A Al-Otaibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Chemistry Department, College of Science and Humanities, Shaqra University, Shagra, Saudi Arabia
| | - Abdulwahab Noor Wali
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Aguilar W, Paz MM, Vargas A, Clement CC, Cheng SY, Champeil E. Sequence-Dependent Diastereospecific and Diastereodivergent Crosslinking of DNA by Decarbamoylmitomycin C. Chemistry 2018; 24:6030-6035. [PMID: 29504661 PMCID: PMC7046179 DOI: 10.1002/chem.201705771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 11/08/2022]
Abstract
Mitomycin C (MC), a potent antitumor drug, and decarbamoylmitomycin C (DMC), a derivative lacking the carbamoyl group, form highly cytotoxic DNA interstrand crosslinks. The major interstrand crosslink formed by DMC is the C1'' epimer of the major crosslink formed by MC. The molecular basis for the stereochemical configuration exhibited by DMC was investigated using biomimetic synthesis. The formation of DNA-DNA crosslinks by DMC is diastereospecific and diastereodivergent: Only the 1''S-diastereomer of the initially formed monoadduct can form crosslinks at GpC sequences, and only the 1''R-diastereomer of the monoadduct can form crosslinks at CpG sequences. We also show that CpG and GpC sequences react with divergent diastereoselectivity in the first alkylation step: 1"S stereochemistry is favored at GpC sequences and 1''R stereochemistry is favored at CpG sequences. Therefore, the first alkylation step results, at each sequence, in the selective formation of the diastereomer able to generate an interstrand DNA-DNA crosslink after the "second arm" alkylation. Examination of the known DNA adduct pattern obtained after treatment of cancer cell cultures with DMC indicates that the GpC sequence is the major target for the formation of DNA-DNA crosslinks in vivo by this drug.
Collapse
Affiliation(s)
- William Aguilar
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Manuel M Paz
- Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Anayatzinc Vargas
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Cristina C Clement
- Pathology Department, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York, 10468, USA
| | - Shu-Yuan Cheng
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Elise Champeil
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
- The Graduate Center of the, City University of New York, New York, NY, 10016, USA
| |
Collapse
|
29
|
Nakhaei E, Nowroozi A, Ravari F. The hydrogen-bonded complexes of the 5-fluorouracil with the DNA purine bases: a comprehensive quantum chemical study. Struct Chem 2018. [DOI: 10.1007/s11224-017-1001-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Nakhaei E, Nowroozi A, Ravari F. The influence of 5-fluorouracil anticancer drug on the DNA base pairs; a quantum chemical study. J Biomol Struct Dyn 2018; 37:1-19. [DOI: 10.1080/07391102.2017.1417912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ebrahim Nakhaei
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Alireza Nowroozi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan 98135-674, Iran
| | - Fateme Ravari
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
31
|
Saravana Mani K, Kaminsky W, Rajendran SP. A facile atom economic one pot multicomponent synthesis of bioactive spiro-indenoquinoxaline pyrrolizines as potent antioxidants and anti-cancer agents. NEW J CHEM 2018. [DOI: 10.1039/c7nj02993d] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One pot method for the synthesis of biologically active novel spiro-indenoquinoxaline pyrrolizines by means of four-component reaction between ninhydrin, o-phenylenediamine, l-proline and quinolinyl chalcones in methanol via [3+2] cycloaddition.
Collapse
|
32
|
Papanicolas LE, Gordon DL, Wesselingh SL, Rogers GB. Not Just Antibiotics: Is Cancer Chemotherapy Driving Antimicrobial Resistance? Trends Microbiol 2017; 26:393-400. [PMID: 29146383 DOI: 10.1016/j.tim.2017.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023]
Abstract
The global spread of antibiotic-resistant pathogens threatens to increase the mortality of cancer patients significantly. We propose that chemotherapy contributes to the emergence of antibiotic-resistant bacteria within the gut and, in combination with antibiotics, drives pathogen overgrowth and translocation into the bloodstream. In our model, these processes are mediated by the effects of chemotherapy on bacterial mutagenesis and horizontal gene transfer, the disruption of commensal gut microbiology, and alterations to host physiology. Clinically, this model manifests as a cycle of recurrent sepsis, with each episode involving ever more resistant organisms and requiring increasingly broad-spectrum antimicrobial therapy. Therapies that restore the gut microbiota following chemotherapy or antibiotics could provide a means to break this cycle of infection and treatment failure.
Collapse
Affiliation(s)
- Lito E Papanicolas
- The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; The SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, Flinders University, Adelaide, South Australia, Australia
| | - Steve L Wesselingh
- The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; The SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Geraint B Rogers
- The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; The SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
33
|
Gillingham D, Geigle S, Anatole von Lilienfeld O. Properties and reactivity of nucleic acids relevant to epigenomics, transcriptomics, and therapeutics. Chem Soc Rev 2017; 45:2637-55. [PMID: 26992131 DOI: 10.1039/c5cs00271k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Developments in epigenomics, toxicology, and therapeutic nucleic acids all rely on a precise understanding of nucleic acid properties and chemical reactivity. In this review we discuss the properties and chemical reactivity of each nucleobase and attempt to provide some general principles for nucleic acid targeting or engineering. For adenine-thymine and guanine-cytosine base pairs, we review recent quantum chemical estimates of their Watson-Crick interaction energy, π-π stacking energies, as well as the nuclear quantum effects on tautomerism. Reactions that target nucleobases have been crucial in the development of new sequencing technologies and we believe further developments in nucleic acid chemistry will be required to deconstruct the enormously complex transcriptome.
Collapse
Affiliation(s)
- Dennis Gillingham
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, CH-4056, Switzerland.
| | - Stefanie Geigle
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, CH-4056, Switzerland.
| | | |
Collapse
|
34
|
Boylan KL, Buchanan PC, Manion RD, Shukla DM, Braumberger K, Bruggemeyer C, Skubitz AP. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget 2017; 8:9717-9738. [PMID: 28038455 PMCID: PMC5354766 DOI: 10.18632/oncotarget.14206] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022] Open
Abstract
The cell adhesion molecule Nectin-4 is overexpressed in epithelial cancers, including ovarian cancer. The objective of this study was to determine the biological significance of Nectin-4 in the adhesion, aggregation, migration, and proliferation of ovarian cancer cells. Nectin-4 and its binding partner Nectin-1 were detected in patients' primary tumors, omental metastases, and ascites cells. The human cell lines NIH:OVCAR5 and CAOV3 were genetically modified to alter Nectin-4 expression. Cells that overexpressed Nectin-4 adhered to Nectin-1 in a concentration and time-dependent manner, and adhesion was inhibited by antibodies to Nectin-4 and Nectin-1, as well as synthetic Nectin peptides. In functional assays, CAOV3 cells with Nectin-4 knock-down were unable to form spheroids and migrated more slowly than CAOV3 parental cells expressing Nectin-4. NIH:OVCAR5 parental cells proliferated more rapidly, migrated faster, and formed larger spheroids than either the Nectin-4 knock-down or over-expressing cells. Parental cell lines expressed higher levels of epithelial markers and lower levels of mesenchymal markers compared to Nectin-4 knock-down cells, suggesting a role for Nectin-4 in epithelial-mesenchymal transition. Our results demonstrate that Nectin-4 promotes cell-cell adhesion, migration, and proliferation. Understanding the biology of Nectin-4 in ovarian cancer progression is critical to facilitate its development as a novel therapeutic target.
Collapse
Affiliation(s)
- Kristin L.M. Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Petra C. Buchanan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Rory D. Manion
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Dip M. Shukla
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kelly Braumberger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Cody Bruggemeyer
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Amy P.N. Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
35
|
Stornetta A, Zimmermann M, Cimino GD, Henderson PT, Sturla SJ. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine. Chem Res Toxicol 2017; 30:388-409. [PMID: 27936622 PMCID: PMC5379252 DOI: 10.1021/acs.chemrestox.6b00380] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 01/23/2023]
Abstract
Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge.
Collapse
Affiliation(s)
- Alessia Stornetta
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Maike Zimmermann
- Department
of Internal Medicine, Division of Hematology and Oncology and the
UC Davis Comprehensive Cancer Center, University
of California Davis, 4501 X Street, Sacramento, California 95655, United States
- Accelerated
Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, California 95618, United States
| | - George D. Cimino
- Accelerated
Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, California 95618, United States
| | - Paul T. Henderson
- Department
of Internal Medicine, Division of Hematology and Oncology and the
UC Davis Comprehensive Cancer Center, University
of California Davis, 4501 X Street, Sacramento, California 95655, United States
- Accelerated
Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, California 95618, United States
| | - Shana J. Sturla
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
36
|
Suzuki T, Grúz P, Honma M, Adachi N, Nohmi T. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells. Mutat Res 2016; 791-792:35-41. [PMID: 27591392 DOI: 10.1016/j.mrfmmm.2016.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD>KO>WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N'-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were more sensitive to the cytotoxicity of 4-nitroquinoline N-oxide, styrene oxide, cisplatin, methyl methanesulfonate, and ethyl methanesulfonate than WT cells. However, the KO cells displayed sensitivity camptothecin, etoposide, bleomycin, hydroxyurea, crotonealdehyde, and methylglyoxal in a manner similar to the WT cells. Our results suggest that Pol ζ plays an important role in the protection of human cells by carrying out TLS across bulky DNA adducts and cross-links, but has no or limited role in the protection against strand-breaks in DNA.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
37
|
Wang Y, Lin Z, Fan H, Peng X. Photoinduced DNA Interstrand Cross-Link Formation by Naphthalene Boronates via a Carbocation. Chemistry 2016; 22:10382-6. [DOI: 10.1002/chem.201601504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yibin Wang
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Zechao Lin
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Heli Fan
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| |
Collapse
|
38
|
Sagonas K, Rota IA, Tsitsilonis OE, Pafilis P, Valakos ED. Infection risk dictates immunological divergence among populations in a Mediterranean lizard. J Evol Biol 2016; 29:1680-8. [PMID: 27208549 DOI: 10.1111/jeb.12903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
Abstract
The ability of vertebrates to evolve different defence strategies in response to varying parasitism regimes remains poorly understood. Hosts may adopt two different strategies to defend themselves against parasites: tolerance (hosts alleviate the negative fitness consequences of parasite infection) and resistance (hosts strengthen their immune response as parasite burden increases). Both strategies are effective, but fitness has been reported to decline faster in less-tolerant individuals. Here, we assessed the number of splenocytes and the cell-mediated response (proxies for resistance) and body condition (a proxy for tolerance) in four populations of a Greek endemic lizard (Podarcis gaigeae), each exposed to different infection risks (defined as the cumulative effect of parasite burden and duration of exposure). We anticipated that populations with heavy parasite burden would enhance the efficacy of their immune response (resistance) compared to lizards deriving from parasite-poor habitats. We also predicted that populations with longer exposure to parasites would be adopted and be more tolerant. Each factor (duration of exposure and parasite burden) had a distinct effect on the immune response, and thus, our results were rather complicated. Lizards with heavy parasite burden and aperiodic exposure demonstrated resistance, whereas lizards with heavy parasite burden and chronic exposure were more tolerant. Populations with low parasite burden and minimal exposure were more resistant. Our results suggest that the development of some immunological strategies may be differentiated under different infection risks, even within the same species.
Collapse
Affiliation(s)
- K Sagonas
- Department of Human and Animal Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | - I A Rota
- Department of Human and Animal Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - O E Tsitsilonis
- Department of Human and Animal Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - P Pafilis
- Department of Zoology and Marine Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - E D Valakos
- Department of Human and Animal Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
39
|
Bose A, Surugihalli C, Pande P, Champeil E, Basu AK. Comparative Error-Free and Error-Prone Translesion Synthesis of N(2)-2'-Deoxyguanosine Adducts Formed by Mitomycin C and Its Metabolite, 2,7-Diaminomitosene, in Human Cells. Chem Res Toxicol 2016; 29:933-9. [PMID: 27082015 PMCID: PMC4871107 DOI: 10.1021/acs.chemrestox.6b00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 11/28/2022]
Abstract
Mitomycin C (MC) is a cytotoxic and mutagenic antitumor agent that alkylates DNA upon reductive activation. 2,7-Diaminomitosene (2,7-DAM) is a major metabolite of MC in tumor cells, which also alkylates DNA. MC forms seven DNA adducts, including monoadducts and inter- and intrastrand cross-links, whereas 2,7-DAM forms two monoadducts. Herein, the biological effects of the dG-N(2) adducts formed by MC and 2,7-DAM have been compared by constructing single-stranded plasmids containing these adducts and replicating them in human embryonic kidney 293T cells. Translesion synthesis (TLS) efficiencies of dG-N(2)-MC and dG-N(2)-2,7-DAM were 38 ± 3 and 27 ± 3%, respectively, compared to that of a control plasmid. This indicates that both adducts block DNA synthesis and that dG-N(2)-2,7-DAM is a stronger replication block than dG-N(2)-MC. TLS of each adducted construct was reduced upon siRNA knockdown of pol η, pol κ, or pol ζ. For both adducts, the most significant reduction occurred with knockdown of pol κ, which suggests that pol κ plays a major role in TLS of these dG-N(2) adducts. Analysis of the progeny showed that both adducts were mutagenic, and the mutation frequencies (MF) of dG-N(2)-MC and dG-N(2)-2,7-DAM were 18 ± 3 and 10 ± 1%, respectively. For both adducts, the major type of mutation was G → T transversions. Knockdown of pol η and pol ζ reduced the MF of dG-N(2)-MC and dG-N(2)-2,7-DAM, whereas knockdown of pol κ increased the MF of these adducts. This suggests that pol κ predominantly carries out error-free TLS, whereas pol η and pol ζ are involved in error-prone TLS. The largest reduction in MF by 78 and 80%, respectively, for dG-N(2)-MC and dG-N(2)-2,7-DAM constructs occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down. This result strongly suggests that, unlike pol κ, these three TLS polymerases cooperatively perform the error-prone TLS of these adducts.
Collapse
Affiliation(s)
- Arindam Bose
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Chaitra Surugihalli
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Paritosh Pande
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Elise Champeil
- Department
of Science, John Jay College of Criminal
Justice, New York, New York 10019, United
States
| | - Ashis K. Basu
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
40
|
Genome-Wide Mutational Signature of the Chemotherapeutic Agent Mitomycin C in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2015; 6:133-40. [PMID: 26564951 PMCID: PMC4704711 DOI: 10.1534/g3.115.021915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC). Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5'-CpG-3' sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA.
Collapse
|
41
|
Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth. Proc Natl Acad Sci U S A 2015; 112:E6339-48. [PMID: 26578794 DOI: 10.1073/pnas.1511377112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
H3K9 methylation directs heterochromatin formation by recruiting multiple heterochromatin protein 1 (HP1)-containing complexes that deacetylate histones and methylate cytosine bases in DNA. In Neurospora crassa, a single H3K9 methyltransferase complex, called the DIM-5,-7,-9, CUL4, DDB1 Complex (DCDC), is required for normal growth and development. DCDC-deficient mutants are hypersensitive to the genotoxic agent methyl methanesulfonate (MMS), but the molecular basis of genotoxic stress is unclear. We found that both the MMS sensitivity and growth phenotypes of DCDC-deficient strains are suppressed by mutation of embryonic ectoderm development or Su-(var)3-9; E(z); Trithorax (set)-7, encoding components of the H3K27 methyltransferase Polycomb repressive complex-2 (PRC2). Trimethylated histone H3K27 (H3K27me3) undergoes genome-wide redistribution to constitutive heterochromatin in DCDC- or HP1-deficient mutants, and introduction of an H3K27 missense mutation is sufficient to rescue phenotypes of DCDC-deficient strains. Accumulation of H3K27me3 in heterochromatin does not compensate for silencing; rather, strains deficient for both DCDC and PRC2 exhibit synthetic sensitivity to the topoisomerase I inhibitor Camptothecin and accumulate γH2A at heterochromatin. Together, these data suggest that PRC2 modulates the response to genotoxic stress.
Collapse
|
42
|
Das D, Dutta A, Mondal P. Interaction of aquated form of ruthenium(III) anticancer complexes with normal and mismatch base pairs: A density functional theoretical study. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Schneider C, Gordon ON, Edwards RL, Luis PB. Degradation of Curcumin: From Mechanism to Biological Implications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7606-14. [PMID: 25817068 PMCID: PMC4752206 DOI: 10.1021/acs.jafc.5b00244] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Curcumin is the main bioactive ingredient in turmeric extract and widely consumed as part of the spice mix curry or as a dietary supplement. Turmeric has a long history of therapeutic application in traditional Asian medicine. Biomedical studies conducted in the past two decades have identified a large number of cellular targets and effects of curcumin. In vitro curcumin rapidly degrades in an autoxidative transformation to diverse chemical species, the formation of which has only recently been appreciated. This paper discusses how the degradation and metabolism of curcumin, through products and their mechanism of formation, provide a basis for the interpretation of preclinical data and clinical studies. It is suggested that the previously unrecognized diversity of its degradation products could be an important factor in explaining the polypharmacology of curcumin.
Collapse
Affiliation(s)
- Claus Schneider
- Correspondence to: Claus Schneider, PhD; Department of Pharmacology, RRB514, 23 Ave S. at Pierce, Nashville, TN 37232;
| | | | | | | |
Collapse
|
44
|
Boylston JA, Brenner C. A knockdown with smoke model reveals FHIT as a repressor of Heme oxygenase 1. Cell Cycle 2015; 13:2913-30. [PMID: 25486479 DOI: 10.4161/15384101.2014.946858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fragile histidine triad (FHIT) gene deletions are among the earliest and most frequent events in carcinogenesis, particularly in carcinogen-exposed tissues. Though FHIT has been established as an authentic tumor suppressor, the mechanism underlying tumor suppression remains opaque. Most experiments designed to clarify FHIT function have analyzed the consequence of re-expressing FHIT in FHIT-negative cells. However, carcinogenesis occurs in cells that transition from FHIT-positive to FHIT-negative. To better understand cancer development, we induced FHIT loss in human bronchial epithelial cells with RNA interference. Because FHIT is a demonstrated target of carcinogens in cigarette smoke, we combined FHIT silencing with cigarette smoke extract (CSE) exposure and measured gene expression consequences by RNA microarray. The data indicate that FHIT loss enhances the expression of a set of oxidative stress response genes after exposure to CSE, including the cytoprotective enzyme heme oxygenase 1 (HMOX1) at the RNA and protein levels. Data are consistent with a mechanism in which Fhit protein is required for accumulation of the transcriptional repressor of HMOX1, Bach1 protein. We posit that by allowing superinduction of oxidative stress response genes, loss of FHIT creates a survival advantage that promotes carcinogenesis.
Collapse
Key Words
- ARE, antioxidant response element
- ApppA, diadenosine triphosphate
- BACH1
- BACH1, BTB and CNC homology 1 gene
- BMC, bone marrow cell
- CPT, camptothecin
- CSE, cigarette smoke extract
- Cigarette smoke
- FHIT
- FHIT, fragile histidine triad gene
- HMOX1
- HMOX1, heme oxygenase 1 gene
- MMC, mitomycin C
- NRF2
- Nrf2, nuclear factor erythroid derived 2-like 2 protein
- Oxidative Stress
- RNAi, RNA interference
- ROS, reactive oxygen species
- qRT-PCR, quantitative real time PCR
- siRNA, short interfering RNA
Collapse
Affiliation(s)
- Jennifer A Boylston
- a Department of Biochemistry and Program in Molecular and Cellular Biology; Carver College of Medicine ; University of Iowa ; Iowa City , IA USA
| | | |
Collapse
|
45
|
Song J, Keppler BD, Wise RR, Bent AF. PARP2 Is the Predominant Poly(ADP-Ribose) Polymerase in Arabidopsis DNA Damage and Immune Responses. PLoS Genet 2015; 11:e1005200. [PMID: 25950582 PMCID: PMC4423837 DOI: 10.1371/journal.pgen.1005200] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/08/2015] [Indexed: 01/09/2023] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) catalyze the transfer of multiple poly(ADP-ribose) units onto target proteins. Poly(ADP-ribosyl)ation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family) accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390), rather than PARP1 (At2g31320), makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose) glycohydrolase (PARG) enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose) removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosyl)ation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosyl)ation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.
Collapse
Affiliation(s)
- Junqi Song
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Brian D. Keppler
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Robert R. Wise
- Department of Biology, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Andrew F. Bent
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
46
|
Hokmabady L, Raissi H, Khanmohammadi A. Interactions of the 5-fluorouracil anticancer drug with DNA pyrimidine bases: a detailed computational approach. Struct Chem 2015. [DOI: 10.1007/s11224-015-0578-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Lin J, Li Y, Wu H, Yang X, Li Y, Ye S, Hou Z, Lin C. Tumor-targeted co-delivery of mitomycin C and 10-hydroxycamptothecin via micellar nanocarriers for enhanced anticancer efficacy. RSC Adv 2015. [DOI: 10.1039/c4ra14602f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymer–lipid hybrid micelles co-delivered hydrophilic mitomycin C and hydrophobic 10-hydroxycamptothecin showed improved cellular uptake and cytotoxicity in vitro and enhanced tumor accumulation and antitumor activity in vivo.
Collapse
Affiliation(s)
- Jinyan Lin
- Department of Biomaterials
- Research Center of Biomedical Engineering
- Institute of Soft Matter and Biomimetics
- College of Materials
- Xiamen University
| | - Yang Li
- Department of Biomaterials
- Research Center of Biomedical Engineering
- Institute of Soft Matter and Biomimetics
- College of Materials
- Xiamen University
| | - Hongjie Wu
- Department of Pharmacy
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen 361002
- China
| | - Xiangrui Yang
- Department of Biomaterials
- Research Center of Biomedical Engineering
- Institute of Soft Matter and Biomimetics
- College of Materials
- Xiamen University
| | - Yanxiu Li
- Department of Biomaterials
- Research Center of Biomedical Engineering
- Institute of Soft Matter and Biomimetics
- College of Materials
- Xiamen University
| | - Shefang Ye
- Department of Biomaterials
- Research Center of Biomedical Engineering
- Institute of Soft Matter and Biomimetics
- College of Materials
- Xiamen University
| | - Zhenqing Hou
- Department of Biomaterials
- Research Center of Biomedical Engineering
- Institute of Soft Matter and Biomimetics
- College of Materials
- Xiamen University
| | - Changjian Lin
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
48
|
Li Y, Wu H, Jia M, Cui F, Lin J, Yang X, Wang Y, Dai L, Hou Z. Therapeutic effect of folate-targeted and PEGylated phytosomes loaded with a mitomycin C-soybean phosphatidyhlcholine complex. Mol Pharm 2014; 11:3017-26. [PMID: 25054963 DOI: 10.1021/mp5001873] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A mitomycin C (MMC)-soybean phosphatidyhlcholine complex loaded in phytosomes was previously reported for the purpose of developing a MMC drug delivery system (Mol. Pharmaceutics 2013, 10, 90-101), but this approach was limited by rapid elimination from the body and lack of target specificity. In this article, to overcome these limitations, MMC-soybean phosphatidyhlcholine complex-loaded phytosomes (MMC-loaded phytosomes) as drug carriers were surface-functionalized with folate-PEG (FA-PEG) to achieve reduced toxicity and a superior MMC-mediated therapeutic effect. For this purpose, FA was conjugated to DSPE-PEG-NH2, and the resultant DSPE-PEG-FA was introduced into the lipid moiety of the phytosomes via a postinsertion technique. The prepared FA-PEG-functionalized MMC-loaded phytosomes (FA-PEG-MMC-loaded phytosomes) have a particle size of 201.9 ± 2.4 nm, a PDI of 0.143 ± 0.010, a zeta potential of -27.50 ± 1.67 mV, a spherical shape, and sustained drug release. The remarkable features of FA-PEG-MMC-loaded phytosomes included increased cellular uptake in HeLa cells and higher accumulation in H22 tumor-bearing mice over that of the PEG-MMC-loaded phytosomes. Furthermore, FA-PEG-MMC-loaded phytosomes were associated with enhanced cytotoxic activity in vitro and an improved antitumor effect in vivo compared to that resulting from free MMC injection. These results suggest that FA-PEG-MMC-loaded phytosomes may be useful drug delivery systems for widening the therapeutic window of MMC in clinical trials.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomaterials & Materials Science and Engineering, College of Materials, ‡Department of Pharmacy, School of Pharmaceutical Sciences, and §Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University , Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li Y, Wu H, Yang X, Jia M, Li Y, Huang Y, Lin J, Wu S, Hou Z. Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release. Mol Pharm 2014; 11:2915-27. [PMID: 24984984 DOI: 10.1021/mp500254j] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most present drug-phospholipid delivery systems were based on a water-insoluble drug-phospholipid complex but rarely water-soluble drug-phospholipid complex. Mitomycin C (MMC) is a water-soluble anticancer drug extensively used in first-line chemotherapy but is limited by its poor aqueous stability in vitro, rapid elimination from the body, and lack of target specificity. In this article, we report the MMC-soybean phosphatidylcholine complex-loaded PEG-lipid-PLA hybrid nanoparticles (NPs) with Folate (FA) functionalization (FA-PEG-PE-PLA NPs@MMC-SPC) for targeted drug delivery and dual-controlled drug release. FA-PEG-PE-PLA NPs@MMC-SPC comprise a hydrophobic core (PLA) loaded with MMC-SPC, an amphiphilic lipid interface layer (PE), a hydrophilic shell (PEG), and a targeting ligand (FA) on the surface, with a spherical shape, a nanoscaled particle size, and high drug encapsulation efficiency of almost 95%. The advantage of the new drug delivery systems is the early phase controlled drug release by the drug-phospholipid complex and the late-phase controlled drug release by the pH-sensitive polymer-lipid hybrid NPs. In vitro cytotoxicity and hemolysis assays demonstrated that the drug carriers were cytocompatible and hemocompatible. The pharmacokinetics study in rats showed that FA-PEG-PE-PLA NPs@MMC-SPC significantly prolonged the blood circulation time compared to that of the free MMC. More importantly, FA-PEG-PE-PLA NPs@MMC-SPC presented the enhanced cell uptake/cytotoxicity in vitro and superior tumor accumulation/therapeutic efficacy in vivo while reducing the systemic toxicity. A significant accumulation of MMC in the nuclei as the site of MMC action achieved in FA-PEG-PE-PLA NPs@MMC-SPC made them ideal for MMC drug delivery. This study may provide an effective strategy for the design and development of the water-soluble drug-phospholipid complex-based targeted drug delivery and sustained/controlled drug release.
Collapse
Affiliation(s)
- Yang Li
- Research Center of Biomedical Engineering & Department of Biomaterials, College of Materials, Xiamen University , Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jia M, Li Y, Yang X, Huang Y, Wu H, Huang Y, Lin J, Li Y, Hou Z, Zhang Q. Development of both methotrexate and mitomycin C loaded PEGylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11413-23. [PMID: 24977925 DOI: 10.1021/am501932s] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Codelivery of multiple drugs with one kind of drug carriers provided a promising strategy to suppress the drug resistance and achieve the synergistic therapeutic effect in cancer treatment. In this paper, we successfully developed both methotrexate (MTX) and mitomycin C (MMC) loaded PEGylated chitosan nanoparticles (CS-NPs) as drug delivery systems, in which MTX, as a folic acid analogue, was also employed as a tumor-targeting ligand. The new drug delivery systems can coordinate the early phase targeting effect with the late-phase anticancer effect. The (MTX+MMC)-PEG-CS-NPs possessed nanoscaled particle size, narrow particle size distribution, and appropriate multiple drug loading content and simultaneously sustained drug release. In vitro cell viability tests indicated that the (MTX+MMC)-PEG-CS-NPs exhibited concentration- and time-dependent cytotoxicity. Moreover, in vitro cellular uptake suggested that the (MTX+MMC)-PEG-CS-NPs could be efficiently taken up by cancer cells by FA receptor-mediated endocytosis. On the other hand, the (MTX+MMC)-PEG-CS-NPs can codelivery MTX and MMC to not only achieve the high accumulation at the tumor site but also more efficiently suppress the tumor cells growth than the delivery of either drug alone, indicating a synergistic effect. In fact, the codelivery of two anticancer drugs with distinct functions and different anticancer mechanisms was key to opening the door to their targeted drug delivery and synergistic anticancer effect. Therefore, the (MTX+MMC)-PEG-CS-NPs as targeted drug codelivery systems might have important potential in clinical implications for combination cancer chemotherapy.
Collapse
Affiliation(s)
- Mengmeng Jia
- Research Center of Biochemical Engineering & Department of Biomaterials, College of Materials, §Department of Chemistry, College of Chemistry & Chemical Engineering, ∥School of Pharmaceutical Science, Xiamen University , Xiamen 361005, Fujian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|