1
|
Orndorff PB, Poddar S, Owens AM, Kumari N, Ugaz BT, Amin S, Van Horn WD, van der Vaart A, Levitus M. Uracil-DNA glycosylase efficiency is modulated by substrate rigidity. Sci Rep 2023; 13:3915. [PMID: 36890276 PMCID: PMC9995336 DOI: 10.1038/s41598-023-30620-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Uracil DNA-glycosylase (UNG) is a DNA repair enzyme that removes the highly mutagenic uracil lesion from DNA using a base flipping mechanism. Although this enzyme has evolved to remove uracil from diverse sequence contexts, UNG excision efficiency depends on DNA sequence. To provide the molecular basis for rationalizing UNG substrate preferences, we used time-resolved fluorescence spectroscopy, NMR imino proton exchange measurements, and molecular dynamics simulations to measure UNG specificity constants (kcat/KM) and DNA flexibilities for DNA substrates containing central AUT, TUA, AUA, and TUT motifs. Our study shows that UNG efficiency is dictated by the intrinsic deformability around the lesion, establishes a direct relationship between substrate flexibility modes and UNG efficiency, and shows that bases immediately adjacent to the uracil are allosterically coupled and have the greatest impact on substrate flexibility and UNG activity. The finding that substrate flexibility controls UNG efficiency is likely significant for other repair enzymes and has major implications for the understanding of mutation hotspot genesis, molecular evolution, and base editing.
Collapse
Affiliation(s)
- Paul B Orndorff
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Souvik Poddar
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, AZ, 85287, USA
| | - Aerial M Owens
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA
| | - Nikita Kumari
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, AZ, 85287, USA
| | - Bryan T Ugaz
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, AZ, 85287, USA
| | - Samrat Amin
- Magnetic Resonance Research Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Wade D Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
2
|
Ten TB, Zvoda V, Sarangi MK, Kuznetsov SV, Ansari A. "Flexible hinge" dynamics in mismatched DNA revealed by fluorescence correlation spectroscopy. J Biol Phys 2022; 48:253-272. [PMID: 35451661 PMCID: PMC9411374 DOI: 10.1007/s10867-022-09607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022] Open
Abstract
Altered unwinding/bending fluctuations at DNA lesion sites are implicated as plausible mechanisms for damage sensing by DNA-repair proteins. These dynamics are expected to occur on similar timescales as one-dimensional (1D) diffusion of proteins on DNA if effective in stalling these proteins as they scan DNA. We examined the flexibility and dynamics of DNA oligomers containing 3 base pair (bp) mismatched sites specifically recognized in vitro by nucleotide excision repair protein Rad4 (yeast ortholog of mammalian XPC). A previous Forster resonance energy transfer (FRET) study mapped DNA conformational distributions with cytosine analog FRET pair primarily sensitive to DNA twisting/unwinding deformations (Chakraborty et al. Nucleic Acids Res. 46: 1240-1255 (2018)). These studies revealed B-DNA conformations for nonspecific (matched) constructs but significant unwinding for mismatched constructs specifically recognized by Rad4, even in the absence of Rad4. The timescales of these unwinding fluctuations, however, remained elusive. Here, we labeled DNA with Atto550/Atto647N FRET dyes suitable for fluorescence correlation spectroscopy (FCS). With these probes, we detected higher FRET in specific, mismatched DNA compared with matched DNA, reaffirming unwinding/bending deformations in mismatched DNA. FCS unveiled the dynamics of these spontaneous deformations at ~ 300 µs with no fluctuations detected for matched DNA within the ~ 600 ns-10 ms FCS time window. These studies are the first to visualize anomalous unwinding/bending fluctuations in mismatched DNA on timescales that overlap with the < 500 µs "stepping" times of repair proteins on DNA. Such "flexible hinge" dynamics at lesion sites could arrest a diffusing protein to facilitate damage interrogation and recognition.
Collapse
Affiliation(s)
- Timour B Ten
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Viktoriya Zvoda
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Manas K Sarangi
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
- Present Address: Department of Physics, Indian Institute of Technology, Patna, 801103, India
| | - Serguei V Kuznetsov
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Anjum Ansari
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
3
|
Transformation characteristics of A-DNA in salt solution revealed through molecular dynamics simulations. Biophys Chem 2022; 288:106845. [DOI: 10.1016/j.bpc.2022.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
|
4
|
Zheng Y, Vaissier Welborn V. Tuning the Catalytic Activity of Synthetic Enzyme KE15 with DNA. J Phys Chem B 2022; 126:3407-3413. [PMID: 35483007 DOI: 10.1021/acs.jpcb.2c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficiency improvement of synthetic enzymes through scaffold modifications suffers from limitations in terms of effectiveness, cost, and potential devastating consequences for protein structural stability. Here, we propose an alternative to scaffold modification, within electrostatic preorganization theory, where the enzyme's greater environment is designed to support the evolution of the reaction in the active site. We demonstrate the feasibility of such an approach by placing a (polar) DNA fragment in the surroundings of the Kemp eliminase enzyme KE15 (structure from Houk's group) and computing the resulting change in catalytic activity. We find that the introduction of a DNA fragment magnifies the contribution of protein residues to the stabilization of the transition state, estimated from electric field calculations with polarizable molecular dynamics. Our randomly generated test systems reveal a 2.0 kcal/mol reduction in activation energy, suggesting that even more significant catalytic improvements could be made by optimizing DNA size, sequence, and orientation with respect to the enzyme, validating our approach.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | | |
Collapse
|
5
|
Westwood MN, Ljunggren KD, Boyd B, Becker J, Dwyer TJ, Meints GA. Single-Base Lesions and Mismatches Alter the Backbone Conformational Dynamics in DNA. Biochemistry 2021; 60:873-885. [PMID: 33689312 DOI: 10.1021/acs.biochem.0c00784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA damage has been implicated in numerous human diseases, particularly cancer, and the aging process. Single-base lesions and mismatches in DNA can be cytotoxic or mutagenic and are recognized by a DNA glycosylase during the process of base excision repair. Altered local dynamics and conformational properties in damaged DNAs have previously been suggested to assist in recognition and specificity. Herein, we use solution nuclear magnetic resonance to quantify changes in BI-BII backbone conformational dynamics due to the presence of single-base lesions in DNA, including uracil, dihydrouracil, 1,N6-ethenoadenine, and T:G mismatches. Stepwise changes to the %BII and ΔG of the BI-BII dynamic equilibrium compared to those of unmodified sequences were observed. Additionally, the equilibrium skews toward endothermicity for the phosphates nearest the lesion/mismatched base pair. Finally, the phosphates with the greatest alterations correlate with those most relevant to the repair of enzyme binding. All of these results suggest local conformational rearrangement of the DNA backbone may play a role in lesion recognition by repair enzymes.
Collapse
Affiliation(s)
- M N Westwood
- Department of Chemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| | - K D Ljunggren
- Department of Chemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| | - Benjamin Boyd
- Department of Chemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| | - Jaclyn Becker
- Department of Chemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| | - Tammy J Dwyer
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States
| | - Gary A Meints
- Department of Chemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| |
Collapse
|
6
|
Landuzzi F, Viader-Godoy X, Cleri F, Pastor I, Ritort F. Detection of single DNA mismatches by force spectroscopy in short DNA hairpins. J Chem Phys 2020; 152:074204. [PMID: 32087630 DOI: 10.1063/1.5139284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Identification of defective DNA structures is a difficult task, since small differences in base-pair bonding are hidden in the local structural variability of a generally random base-pair sequence. Defects, such as base mismatches, missing bases, crosslinks, and so on, occur in DNA with high frequency and must be efficiently identified and repaired to avoid dire consequences such as genetic mutations. Here, we focus on the detection of base mismatches, which is local deviations from the ideal Watson-Crick pairing rule, which may typically originate from DNA replication process, foreign chemical attack, or ionizing radiation. Experimental detection of a mismatch defect demands the ability to measure slight deviations in the free energy and molecular structure. We introduce different mismatches in short DNA hairpins (10 or 20 base pairs plus a 4-base loop) sandwiched between dsDNA handles to be used in single-molecule force spectroscopy with optical tweezers. We perform both hopping and force-pulling experiments to measure the excess free energies and deduce the characteristic kinetic signatures of the mismatch from the force-distance curves. All-atom molecular dynamics simulations lend support to the detailed interpretation of the experimental data. Such measurements, at the lowest sensitivity limits of this experimental technique, demonstrate the capability of identifying the presence of mismatches in a random complementary dsDNA sequence and provide lower bounds for the ability to distinguish different structural defects.
Collapse
Affiliation(s)
- F Landuzzi
- Department of Physics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Japan
| | - X Viader-Godoy
- Small Biosystems Lab., Univ. de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | - F Cleri
- I.E.M.N. (UMR Cnrs 8520), 59652 Villeneuve d'Ascq, France
| | - I Pastor
- Small Biosystems Lab., Univ. de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | - F Ritort
- Small Biosystems Lab., Univ. de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Zheng W, He L. Quantitative measurements of thermodynamics and kinetics of polythiophene–DNA complex formation in DNA detection. Biomater Sci 2014; 2:1471-1479. [DOI: 10.1039/c4bm00210e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Khutsishvili I, Zhang N, Marky LA, Crean C, Patel DJ, Geacintov NE, Shafirovich V. Thermodynamic profiles and nuclear magnetic resonance studies of oligonucleotide duplexes containing single diastereomeric spiroiminodihydantoin lesions. Biochemistry 2013; 52:1354-63. [PMID: 23360616 DOI: 10.1021/bi301566v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The spiroiminodihydantoins (Sp) are highly mutagenic oxidation products of guanine and 8-oxo-7,8-dihydroguanine in DNA. The Sp lesions have recently been detected in the liver and colon of mice infected with Helicobacter hepaticus that induces inflammation and the development of liver and colon cancers in murine model systems [Mangerich, A., et al. (2012) Proc. Natl. Acad. Sci. U.S.A. 109, E1820-E1829]. The impact of Sp lesions on the thermodynamic characteristics and the effects of the diastereomeric Sp-R and Sp-S lesions on the conformational features of double-stranded 11-mer oligonucleotide duplexes have been studied by a combination of microcalorimetric methods, analysis of DNA melting curves, and two-dimensional nuclear magnetic resonance methods. The nonplanar, propeller-like shapes of the Sp residues strongly diminish the extent of local base stacking interactions that destabilize the DNA duplexes characterized by unfavorable enthalpy contributions. Relative to that of an unmodified duplex, the thermally induced unfolding of the duplexes with centrally positioned Sp-R and Sp-S lesions into single strands is accompanied by a smaller release of cationic counterions (Δn(Na⁺) = 0.6 mol of Na⁺/mol of duplex) and water molecules (Δn(w) = 17 mol of H₂O/mol of duplex). The unfolding parameters are similar for the Sp-R and Sp-S lesions, although their orientations in the duplexes are different. The structural disturbances radiate one base pair beyond the flanking C:G pair, although Watson-Crick hydrogen bonding is maintained at all flanking base pairs. The observed relatively strong destabilization of B-form DNA by the physically small Sp lesions is expected to have a significant impact on the processing of these lesions in biological environments.
Collapse
Affiliation(s)
- Irine Khutsishvili
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-4628, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Nakamura Y, Taruno Y, Sugimoto M, Kitamura Y, Seng HL, Kong SM, Ng CH, Chikira M. The DNA binding site specificity and antiproliferative property of ternary Pt(ii) and Zn(ii) complexes of phenanthroline and N,N′-ethylenediaminediacetic acid. Dalton Trans 2013; 42:3337-45. [DOI: 10.1039/c2dt32709k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Hu W, Blecking C, Kralj M, Šuman L, Piantanida I, Schrader T. Dimeric calixarenes: a new family of major-groove binders. Chemistry 2012; 18:3589-97. [PMID: 22336964 DOI: 10.1002/chem.201100634] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 11/26/2011] [Indexed: 01/26/2023]
Abstract
A new class of potent DNA binding agents is presented. Dimeric calix[4]arenes with cationic groups at their upper rims and flexible alkyl bridges can be synthesized from triply acyl-protected calix[4]arene tetramines in relatively short synthetic sequences (3-5 steps). The compounds attach themselves to double-stranded nucleic acids in a noncovalent fashion, with micro- to nanomolar affinities. Guanidinium headgroups with their extended hydrogen-bonding "fingers" are more powerful than ammonium groups, and the benzylamine series is superior to the anilinium series (see below). The new ligands easily distinguish between RNA and various DNA types, and produce characteristic changes in UV/Vis, fluorescence, CD, as well as NMR spectra. Especially extended oligonucleotides of more than 100 base pairs are bound with affinities increasing from RNA (10 μM K(d))<AT-rich (1 μM)<GC-rich DNA double strands (100-10 nM). Ethidium bromide displacement studies confirm this order. CE(50) values are remarkably low (1-4 μM), and are more than 300 times lower than that of spermine, which is a typical backbone binder. Stoichiometries are rather high (one calixarene dimer per two BP), suggesting a potential aggregation of bound ligands inside the major groove. Most UV/Vis melting curves display an inverted shape, and start from drastically enhanced absorption intensities for the DNA complexes. DAPI displacement studies prove that up to one equivalent of calixarene dimer can be accommodated in the dye-loaded DNA. RNA complexation by calixarene dimers is accompanied by a drastic CD spectral transition from the typical A-form to a perfect B-signature, providing further experimental evidence for major-groove binding. The orientation of the ligands can be deduced from NMR titrations and is reproduced in Monte-Carlo simulations on 1:1 complexes in water.
Collapse
Affiliation(s)
- Wenbin Hu
- Department of Chemistry, Universität Duisburg-Essen, Universitätsstr. 7, 45117 Essen, Germany
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Cai Y, Patel DJ, Geacintov NE, Broyde S. Differential nucleotide excision repair susceptibility of bulky DNA adducts in different sequence contexts: hierarchies of recognition signals. J Mol Biol 2008; 385:30-44. [PMID: 18948114 DOI: 10.1016/j.jmb.2008.09.087] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 11/26/2022]
Abstract
The structural origin underlying differential nucleotide excision repair (NER) susceptibilities of bulky DNA lesions remains a challenging problem. We investigated the 10S (+)-trans-anti-[BP]-N(2)-2'-deoxyguanosine (G*) adduct in double-stranded DNA. This adduct arises from the reaction, in vitro and in vivo, of a major genotoxic metabolite of benzo[a]pyrene (BP), (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, with the exocyclic amino group of guanine. Removal of this lesion by the NER apparatus in cell-free extracts has been found to depend on the base sequence context in which the lesion is embedded, providing an excellent opportunity for elucidating the properties of the damaged DNA duplexes that favor NER. While the BP ring system is in the B-DNA minor groove, 5' directed along the modified strand, there are orientational distinctions that are sequence dependent and are governed by flanking amino groups [Nucleic Acids Res.35 (2007), 1555-1568]. To elucidate sequence-governed NER susceptibility, we conducted molecular dynamics simulations for the 5'-...CG*GC..., 5'-...CGG*C..., and 5'-...TCG*CT... adduct-containing duplexes. We also investigated the 5'-...CG*IC... and 5'-...CIG*C... sequences, which contain "I" (2'-deoxyinosine), with hydrogen replacing the amino group in 2'-deoxyguanosine, to further characterize the structural and dynamic roles of the flanking amino groups in the damaged duplexes. Our results pinpoint explicit roles for the amino groups in tandem GG sequences on the efficiency of NER and suggest a hierarchy of destabilizing structural features that differentially facilitate NER of the BP lesion in the sequence contexts investigated. Furthermore, combinations of several locally destabilizing features in the hierarchy, consistent with a multipartite model, may provide a relatively strong recognition signal.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
13
|
Zenkova MA, Karpova GG. Imperfectly matched nucleic acid complexes and their biochemical manifestation. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1993v062n04abeh000023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Lee YA, Yun BH, Kim SK, Margolin Y, Dedon PC, Geacintov NE, Shafirovich V. Mechanisms of Oxidation of Guanine in DNA by Carbonate Radical Anion, a Decomposition Product of Nitrosoperoxycarbonate. Chemistry 2007; 13:4571-81. [PMID: 17335089 DOI: 10.1002/chem.200601434] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxynitrite is produced during inflammation and combines rapidly with carbon dioxide to yield the unstable nitrosoperoxycarbonate, which decomposes (in part) to CO(3) (.-) and (.)NO(2) radicals. The CO(3) (.-) radicals oxidize guanine bases in DNA through a one-electron transfer reaction process that ultimately results in the formation of stable guanine oxidation products. Here we have explored these mechanisms, starting with a spectroscopic study of the kinetics of electron transfer from 20-22mer double-stranded oligonucleotides to CO(3) (.-) radicals, together with the effects of base sequence on the formation of the end-products in runs of one, two, or three contiguous guanines. The distributions of these alkali-labile lesions were determined by gel electrophoresis methods. The cascade of events was initiated through the use of 308 nm XeCl excimer laser pulses to generate CO(3) (.-) radicals by an established method based on the photodissociation of persulfate to sulfate radicals and the oxidation of bicarbonate. Although the Saito model (Saito et al., J. Am. Chem. Soc. 1995, 117, 6406-6407) predicts relative ease of one-electron oxidations in DNA, following the trend 5'-GGG > 5'-GG > 5'-G, we found that the rate constants for CO(3) (.-)-mediated oxidation of guanines in these sequence contexts (k(5)) showed only small variation within a narrow range [(1.5-3.0)x10(7) M(-1) s(-1)]. In contrast, the distributions of the end-products are dependent on the base sequence context and are higher at the 5'-G in 5'-GG sequences and at the first two 5'-guanines in the 5'-GGG sequences. These effects are attributed to a combination of initial hole distributions among the contiguous guanines and the subsequent differences in chemical reaction yields at each guanine. The lack of dependence of k(5) on sequence context indicates that the one-electron oxidation of guanine in DNA by CO(3) (.-) radicals occurs by an inner-sphere mechanism.
Collapse
Affiliation(s)
- Young Ae Lee
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Bugs MR, Cornélio ML. Analysis of the Ethidium Bromide Bound to DNA by Photoacoustic and FTIR Spectroscopy¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740512aotebb2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
|
17
|
Rodríguez FA, Cai Y, Lin C, Tang Y, Kolbanovskiy A, Amin S, Patel DJ, Broyde S, Geacintov NE. Exocyclic amino groups of flanking guanines govern sequence-dependent adduct conformations and local structural distortions for minor groove-aligned benzo[a]pyrenyl-guanine lesions in a GG mutation hotspot context. Nucleic Acids Res 2007; 35:1555-68. [PMID: 17287290 PMCID: PMC1865068 DOI: 10.1093/nar/gkm022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The environmental carcinogen benzo[a]pyrene (BP) is metabolized to reactive diol epoxides that bind to cellular DNA by predominantly forming N2-guanine adducts (G*). Mutation hotspots for these adducts are frequently found in 5′- ··· GG ··· dinucleotide sequences, but their origins are poorly understood. Here we used high resolution NMR and molecular dynamics simulations to investigate differences in G* adduct conformations in 5′- ··· CG*GC ··· and 5′- ··· CGG* C··· sequence contexts in otherwise identical 12-mer duplexes. The BP rings are positioned 5′ along the modified strand in the minor groove in both cases. However, subtle orientational differences cause strong distinctions in structural distortions of the DNA duplexes, because the exocyclic amino groups of flanking guanines on both strands compete for space with the BP rings in the minor groove, acting as guideposts for placement of the BP. In the 5′- ··· CGG* C ··· case, the 5′-flanking G · C base pair is severely untwisted, concomitant with a bend deduced from electrophoretic mobility. In the 5′- ··· CG*GC ··· context, there is no untwisting, but there is significant destabilization of the 5′-flanking Watson–Crick base pair. The minor groove width opens near the lesion in both cases, but more for 5′- ··· CGG*C···. Differential sequence-dependent removal rates of this lesion result and may contribute to the mutation hotspot phenomenon.
Collapse
Affiliation(s)
- Fabián A. Rodríguez
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yuqin Cai
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chin Lin
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yijin Tang
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Alexander Kolbanovskiy
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Shantu Amin
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Dinshaw J. Patel
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Suse Broyde
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nicholas E. Geacintov
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- *To whom correspondence should be addressed. +1 212 998 8407+1 212 998 8421
| |
Collapse
|
18
|
Gorenstein DG, Schroeder S, Miyasaki M, Fu JM, Jones CR, Roongta V, Abuaf P. Oxygen Isotope and Sulfur Labeling of Phosphoryl Groups and 2-Dimensional NMR Methodology for Assignment of 31P and 1H Signals of Oligonucleotides. ACTA ACUST UNITED AC 2007. [DOI: 10.1080/03086648708079128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Steve Schroeder
- a Departments of Chemistry , Purdue University , W. Lafayette , IN , 47907
| | | | - Josepha M. Fu
- a Departments of Chemistry , Purdue University , W. Lafayette , IN , 47907
| | - Claude R. Jones
- a Departments of Chemistry , Purdue University , W. Lafayette , IN , 47907
| | - Vikram Roongta
- a Departments of Chemistry , Purdue University , W. Lafayette , IN , 47907
| | - Perlette Abuaf
- b University of Illinois at Chicago , Chicago , IL , 60680
| |
Collapse
|
19
|
Okahata Y, Kawase M, Niikura K, Ohtake F, Furusawa H, Ebara Y. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Anal Chem 2005; 70:1288-96. [PMID: 15779144 DOI: 10.1021/ac970584w] [Citation(s) in RCA: 290] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly sensitive 27-MHz quartz-crystal microbalance, on which a 10-30-mer oligonucleotide was immobilized as a probe molecule, was employed to detect hybridization of complementary oligonucleotides in aqueous solution. From frequency decreases (mass increases due to the hybridization) with passage of time, kinetic parameters such as association constants (K(a)) and binding and dissociation rate constants (k(1) and k(-1)) could be obtained, as well as binding (hybridization) amount at the nanogram level (delta m). Kinetic studies were carried out by changing various parameters: (i) the immobilization method of a probe oligonucleotide on Au electrode, (ii) number of mismatching bases in sequences of target oligonucleotides, (iii) length of both probe and target oligonucleotides, (iv) hybridization temperature, and (v) ionic strength in solution. The obtained results were compared with those obtained by a surface plasmon resonance method using a BIAcore system.
Collapse
Affiliation(s)
- Y Okahata
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8507, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Shafirovich V, Geacintov NE. Proton-Coupled Electron Transfer Reactions at a Distance in DNA Duplexes. Top Curr Chem (Cham) 2004. [DOI: 10.1007/b94475] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
|
22
|
Abstract
Under physiological conditions B-form DNA is an exceedingly stable structure. However, experimental evidences obtained through nuclear magnetic resonance and fluorescence anisotropy suggest that the structure of the double helix fluctuates substantially. We describe photoacoustic phase modulation frequency measurements of ethidium bromide (Eb) with calf thymus DNA. As in fluorescence phase modulation measurements, we used an intercalating dye as a probe; however, we monitored the triplet excited state lifetime at different ionic strengths. The triplet lifetime of Eb varied from about 0.30 ms, with no DNA present, to 20 ms (at a DNA:Eb molar ratio of 5). With salt titration, this value falls to about 2.0 ms. This result suggests a strong coupling between the phenantridinium ring of the ethidium and the base pairs because of the stacking movement of the DNA molecule under salt effect. This effect may be understood considering DNA as a polyelectrolyte. The counterions in the solution shield the phosphate groups, reducing the electrostatic repulsion force between them, hence compacting the DNA molecule. The results from Fourier transform infrared demonstrated two important bands: 3187 cm-1 corresponding to the symmetric stretching of the NH group of the bases and 1225 cm-1 corresponding to the asymmetric stretching of phosphate groups shifted toward higher wavenumbers, suggesting a proximity between the intercalant and base pairs and a modification of the DNA backbone state, both induced by salt accretion.
Collapse
Affiliation(s)
- M R Bugs
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, Rua Cristovão Colombo, 2265 São José do Rio Preto, São Paulo CEP 15054-000, Brazil.
| | | |
Collapse
|
23
|
Keck MV, Manderville RA, Hecht SM. Chemical and structural characterization of the interaction of bleomycin A2 with d(CGCGAATTCGCG)2. efficient, double-strand DNA cleavage accessible without structural reorganization. J Am Chem Soc 2001; 123:8690-700. [PMID: 11535073 DOI: 10.1021/ja003795i] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A detailed description of the interaction between Fe(II).bleomycin A2 and the Dickerson-Drew dodecamer d(CGCGAATTCGCG)2 is presented. The reaction between bleomycin and this substrate leads to DNA cleavage at two major sites, adenosine5 and cytidine11, and two minor sites, cytidine3 and thymidine8. The pattern and relative intensities of cleavage at these sites was not entirely consistent with what would be predicted based on the preference of the drug for cleavage at the pyrimidines of 5'-GC-3' and 5'-GT-3' sites. Insight into the origins of the apparent alteration of selectivity was provided by examination of the structure of the duplex which had been determined by X-ray crystallography. This indicated that the C4' hydrogens of the two nucleotides located at the strongest cleavage sites, C11 on one strand and A5 on the other, were oriented toward each other in the minor groove. Two-dimensional NMR measurements and molecular dynamics modeling indicated that a metalloBLM could bind to the duplex in an orientation that positioned the metal center roughly equally close to each of these hydrogen atoms. On the basis of this observation, it was proposed that these two residues represented a double-stranded BLM cleavage site. This hypothesis was tested through the study of the BLM-mediated cleavage of the related decamer duplex, d(CGCGAATTCG).d(CGAATTCGCG), as well as the hairpin sequence d(CGCGAATTCGIIIITTTTCCCCCGAATTCGCG). By the use of the hairpin oligonucleotide 32P-labeled alternately at the 5' and 3'-ends, unequivocal evidence was obtained for BLM-mediated double-strand cleavage. Quantitative analysis of the proportion of damage involving double-strand cleavage was effected by the use of the hairpin substrate; for damage initiated at the predominant cleavage site (cytidine31, analogous to cytidine11 in the dodecanucleotide), it is estimated that 43% of all damage leads to double-stranded lesions. The exceptional efficiency of double-strand cleavage observed in this system must reflect the spatial proximity and orientation of the two sugar H's whose abstraction is required to produce double-stranded lesions.
Collapse
Affiliation(s)
- M V Keck
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | | | | |
Collapse
|
24
|
Shafirovich V, Dourandin A, Huang W, Geacintov NE. The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides. J Biol Chem 2001; 276:24621-6. [PMID: 11320091 DOI: 10.1074/jbc.m101131200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The carbonate radical anion (CO(3)) is believed to be an important intermediate oxidant derived from the oxidation of bicarbonate anions and nitrosoperoxocarboxylate anions (formed in the reaction of CO(2) with ONOO(-)) in cellular environments. Employing nanosecond laser flash photolysis methods, we show that the CO(3) anion can selectively oxidize guanines in the self-complementary oligonucleotide duplex d(AACGCGAATTCGCGTT) dissolved in air-equilibrated aqueous buffer solution (pH 7.5). In these time-resolved transient absorbance experiments, the CO(3) radicals are generated by one-electron oxidation of the bicarbonate anions (HCO(3)(-)) with sulfate radical anions (SO(4)) that, in turn, are derived from the photodissociation of persulfate anions (S(2)O(8)(2-)) initiated by 308-nm XeCl excimer laser pulse excitation. The kinetics of the CO(3) anion and neutral guanine radicals, G(-H)( small middle dot), arising from the rapid deprotonation of the guanine radical cation, are monitored via their transient absorption spectra (characteristic maxima at 600 and 315 nm, respectively) on time scales of microseconds to seconds. The bimolecular rate constant of oxidation of guanine in this oligonucleotide duplex by CO(3) is (1.9 +/- 0.2) x 10(7) m(-1) s(-1). The decay of the CO(3) anions and the formation of G(-H)( small middle dot) radicals are correlated with one another on the millisecond time scale, whereas the neutral guanine radicals decay on time scales of seconds. Alkali-labile guanine lesions are produced and are revealed by treatment of the irradiated oligonucleotides in hot piperidine solution. The DNA fragments thus formed are identified by a standard polyacrylamide gel electrophoresis assay, showing that strand cleavage occurs at the guanine sites only. The biological implications of these oxidative processes are discussed.
Collapse
Affiliation(s)
- V Shafirovich
- Chemistry Department, Radiation and Solid State Laboratory, 31 Washington Place, New York University, New York, NY 10003-5180, USA.
| | | | | | | |
Collapse
|
25
|
|
26
|
Marcourt L, Cordier C, Couesnon T, Dodin G. Impact of C5-cytosine methylation on the solution structure of d(GAAAACGTTTTC)2. An NMR and molecular modelling investigation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:1032-42. [PMID: 10518799 DOI: 10.1046/j.1432-1327.1999.00819.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The solution structures of d(GAAAACGTTTTC)2 and of its methylated derivative d(GAAAAMe5CGTTTTC)2 have been determined by NMR and molecular modelling in order to examine the impact of cytosine methylation on the central CpG conformation. Detailed 1H NMR and 31P NMR investigation of the two oligomers includes quantitative NOESY, 2D homonuclear Hartmann-Hahn spectroscopy, double-quantum-filtered COSY and heteronuclear 1H-31P correlation. Back-calculations of NOESY spectra and simulations of double-quantum-filtered COSY patterns were performed to gain accurate information on interproton distances and sugar phase angles. Molecular models under experimental constraints were generated by energy minimization by means of the molecular mechanics program JUMNA. The MORASS software was used to iteratively refine the structures obtained. After methylation, the oligomer still has a B-DNA conformation. However, there are differences in the structural parameters and the thermal stability as compared to the unmethylated molecule. Careful structural analysis shows that after methylation CpG departs from the usual conformation observed in other ACGT tetramers with different surroundings. Subtle displacements of bases, sugars and backbone imposed by the steric interaction of the two methyl groups inside the major groove are accompanied by severe pinching of the minor groove at the C-G residues.
Collapse
Affiliation(s)
- L Marcourt
- Institut de Topologie et de Dynamique des Systèmes, associé au CNRS, Université D. Diderot (Paris 7), Paris, France
| | | | | | | |
Collapse
|
27
|
Park JY, Lee JH, Choi BS. Proton exchange kinetics in [d(ACGTATACGT)]2-echinomycin and [d(ACGTTAACGT)]2-echinomycin complexes. FEBS Lett 1998; 426:325-30. [PMID: 9600260 DOI: 10.1016/s0014-5793(98)00366-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Based on imino proton exchange catalysis, base-pair lifetimes and apparent dissociation constants are reported on the complexes formed by bisintercalation of echinomycin at the CpG steps of the d(ACGTATACGT)2 and d(ACGTTAACGT)2 duplexes. The lifetimes of the four central A x T base pairs between two echinomycin binding sites are much shorter than in the free duplexes. The destabilization of base pairs adjacent to the binding sites is propagated one additional base pair away from the binding site.
Collapse
Affiliation(s)
- J Y Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon, South Korea.
| | | | | |
Collapse
|
28
|
Dao V, Modrich P. Mismatch-, MutS-, MutL-, and helicase II-dependent unwinding from the single-strand break of an incised heteroduplex. J Biol Chem 1998; 273:9202-7. [PMID: 9535911 DOI: 10.1074/jbc.273.15.9202] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli MutS, MutL, and DNA helicase II are sufficient to initiate mismatch-dependent unwinding of an incised heteroduplex (Yamaguchi, M., Dao, V., and Modrich, P. (1998) J. Biol. Chem., 273, 9197-9201). We have studied unwinding of 6.4-kilobase circular G-T heteroduplexes that contain a single-strand incision, 808 base pairs 5' to the mismatch or 1023 base pairs 3' to the mispair as viewed along the shorter path between the two DNA sites. Unwinding of both substrates in the presence of MutS, MutL, DNA helicase II, and single-stranded DNA binding protein was mismatch-dependent and initiated at the single-strand break. Although unwinding occurred in both directions from the strand break, it was biased toward the shorter path linking the strand break and the mispair. MutS and MutL are thus sufficient to coordinate mismatch recognition to the orientation-dependent activation of helicase II unwinding at a single-strand break located a kilobase from the mispair.
Collapse
Affiliation(s)
- V Dao
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
29
|
|
30
|
Schwille P, Bieschke J, Oehlenschläger F. Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys Chem 1997; 66:211-28. [PMID: 9362560 DOI: 10.1016/s0301-4622(97)00061-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review demonstrates the large analytical and diagnostic potential of fluorescence correlation spectroscopy applied to freely diffusing biomolecules in solution. All applications discussed here in detail are based on changes in the diffusion characteristics of fluorescenctly labeled complementary strands of nucleic acids when they associate. However, the principle of the measurement can be extended to many different reactions with characteristic association times between several minutes up to several hours. If the reaction significantly affects the diffusion constants of at least one partner, single-color auto-correlation analysis is sufficient to extract kinetic parameters. If the observed binding process has only a moderate effect on diffusion coefficients, the detection selectivity and sensitivity can be improved by dual-color cross-correlation analysis. Finally, we show that diffusional analysis on the single-molecule level even opens up diagnostic applications, such as the detection of minute amounts of infectious agents like HIV-1 viruses in blood.
Collapse
Affiliation(s)
- P Schwille
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Biochemische Kinetik, Göttingen, Germany
| | | | | |
Collapse
|
31
|
Osborne SE, Völker J, Stevens SY, Breslauer KJ, Glick GD. Design, Synthesis, and Analysis of Disulfide Cross-Linked DNA Duplexes. J Am Chem Soc 1996. [DOI: 10.1021/ja962386c] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Scott E. Osborne
- Contribution from the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Jens Völker
- Contribution from the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Shawn Y. Stevens
- Contribution from the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Kenneth J. Breslauer
- Contribution from the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Gary D. Glick
- Contribution from the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
32
|
Song Z, Rupprecht A, Fritzsche H. Mechanochemical study of NaDNA and NaDNA-netropsin fibers in ethanol-water and trifluoroethanol-water solutions. Biophys J 1995; 68:1050-62. [PMID: 7756525 PMCID: PMC1281828 DOI: 10.1016/s0006-3495(95)80280-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Highly oriented calf-thymus NaDNA fibers, prepared by a wet-spinning method, were complexed with netropsin in ethanol-water and trifluoroethanol (TFE)-water solutions. The relative fiber length, L/L0, was measured at room temperature as a function of ethanol or TFE concentration to obtain information on the B-A conformational transition. The B-A transition point and transition cooperativity of the fibers were calculated. The binding of netropsin to NaDNA fibers was found to stabilize B form and to displace the B-A transition to higher ethanol concentration, as indicated by its elongational effect on the fiber bundles. An increased salt concentration was found to reduce netropsin binding. In netropsin-free ethanol solution, the dissociation of bound netropsin from the DNA fibers was observable. Pure B-NaDNA fibers were found to be more stable in TFE solution than in ethanol solution. This was interpreted as being due to a different steric factor and a larger polarity of TFE compared with ethanol, resulting in its smaller capacity to reduce the water activity and dielectric constant of the medium in the immediate vicinity of DNA fibers. Therefore, the effect of netropsin binding on the B-A transition of NaDNA fibers became less obvious in TFE solution. In another series of experiments, L/L0 was measured as a function of temperature to obtain information on the helix-coil transition, or melting, as well as the B-A transition of NaDNA and NaDNA-netropsin fibers. The melting temperature and helix-coil transition width were calculated from the melting curves. A phenomenological approach was used to describe the melting behavior of the fibers in and around the B-A transition region. The effect of netropsin on the melting of DNA fibers was attributed mainly to the stabilization of B-DNA and to a higher melting cooperativity in the B-DNA region.
Collapse
Affiliation(s)
- Z Song
- Division of Physical Chemistry, Arrhenius Laboratory, University of Stockholm, Sweden
| | | | | |
Collapse
|
33
|
Abstract
This review outlines the steps for obtaining relative binding constants for drugs from footprinting data. After correcting the autoradiographic spot intensities for differing amounts of radioactive DNA loaded into the lanes of a sequencing gel, footprinting plots, showing individual spot intensities as a function of drug concentration, are constructed. The initial relative slopes of footprinting plots are proportional to the binding constant of the drug for its DNA site. Slopes of plots outside of drug binding sites can be used to identify locations of altered DNA structure. It illustrates the power of quantitative footprinting analysis by analyzing the binding of the antiviral agent netropsin to a 139-base pair restriction fragment in the presence of the antitumor agent actinomycin D. While two netropsin binding regions are unaffected by actinomycin D a third region experiences enhanced binding in the presence of the antitumor agent.
Collapse
Affiliation(s)
- M Shubsda
- Department of Chemistry, Syracuse University, New York 13244-4100
| | | | | | | |
Collapse
|
34
|
Abstract
Consideration is given to alternative approaches to the development of DNA sequence selective binding agents because of their potential applications in diagnosis and treatment of cancer as well as in molecular biology. The concept of lexitropsins, or information-reading molecules, is introduced within the antigene strategy as an alternative to, and complementary with, the antisense approach for cellular intervention and gene control. The chemical, physical and pharmacological factors involved in the design of effective lexitropsins are discussed and illustrated with experimental results. Among the factors contributing to the molecular recognition processes are: the presence and disposition of hydrogen bond accepting and donating groups, ligand shape, chirality, stereochemistry, flexibility and charge. For longer ligands, such as are required to target unique sequences in biological systems (14-16 base pairs), the critical feature is the phasing or spatial correspondence between repeat units in the ligand and the receptor. The recently discovered 2:1 lexitropsin-DNA binding motif provides a further refinement in molecular recognition in permitting discrimination between GC and CG base pairs. The application of these factors in the design and synthesis of novel agents which exhibit anticancer, antiviral and antiretroviral properties, and inhibition of critical cellular enzymes including topoisomerases is discussed. The emerging evidence of a relationship between sequence selectivity of the new agents and the biological responses they invoked is also described.
Collapse
Affiliation(s)
- J W Lown
- Department of Chemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
35
|
Vincent SJF, Zwahlen C, Bodenhausen G. Selektive Messung der Zeitabhängigkeit des transienten Overhauser-Effekts in NMR-Spektren; Anwendung auf Oligonucleotide. Angew Chem Int Ed Engl 1994. [DOI: 10.1002/ange.19941060319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
|
37
|
Itahara T, Imamura K. Preparation and NMR Study of 7,7′-(α,ω-Alkanediyl)bis[theophylline], 1,1′-(α,ω-Alkanediyl)bis[theobromine], and 1,1′-(α,ω-Alkanediyl)bis[3-methyluracil]. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1994. [DOI: 10.1246/bcsj.67.203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Maltseva TV, Yamakage SI, Agback P, Chattopadhyaya J. Direct estimation of base-pair exchange kinetics in oligo-DNA by a combination of NOESY and ROESY experiments. Nucleic Acids Res 1993; 21:4288-95. [PMID: 8414984 PMCID: PMC310063 DOI: 10.1093/nar/21.18.4288] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A new method for the determination of the kinetics of exchange of the imino protons of DNA duplex is reported using a combination NOESY and ROESY experiments at short mixing times (< or = 20 ms). These results have been compared with the commonly used longitudinal relaxation approach through the T1 measurement. To calculate kex and pi ex by ROESY-NOESY experiment, the volume of the cross-peaks between imino protons and water in the NOESY and ROESY spectra have been measured separately from the magnetization term. This work shows that the present approach for the measurement of the kinetics of slow exchanging imino protons of DNA duplex is comparable to the saturation recovery experiment in which the exchange rate can be accelerated by the addition of a base catalyst. The present ROESY-NOESY approach has been found to be particularly useful and reasonably accurate for the measurement of exchange kinetics of both the fast- and slow-exchanging imino protons in DNA duplex both under non-physiological and physiological condition where the saturation recovery method can not be used.
Collapse
Affiliation(s)
- T V Maltseva
- Department of Bioorganic Chemistry, University of Uppsala, Sweden
| | | | | | | |
Collapse
|
39
|
Morrison LE, Stols LM. Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution. Biochemistry 1993; 32:3095-104. [PMID: 8457571 DOI: 10.1021/bi00063a022] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Kinetic and thermodynamic constants associated with DNA hybridization were determined in solution using fluorescence measurements and complementary fluorophore-labeled oligomers. One oligomer was labeled with a 5'-terminal fluorescein, and the other was labeled with a 3'-terminal rhodamine. The juxtaposition of the two labels in double-stranded complexes results in a strong quenching of the fluorescein emission, thereby providing the means for distinguishing single-stranded DNA from double-stranded DNA. Since measurements were based on fluorescence, DNA denaturation and association could be monitored routinely at strand concentrations 100-1000-fold lower than permitted by absorbance hypochromicity measurements. To determine if fluorescence quenching mirrored base pair formation, temperature profiles of DNA association and dissociation were constructed from both absorbance hypochromicity and fluorescence quenching measurements at a number of different DNA concentrations. Analyses of these profiles using the "all-or-none" model of hybridization provided thermodynamic data which were statistically indistinguishable between the two measurement methods, thus validating the use of fluorescence quenching in thermodynamic studies of oligomers. The effects of fluorophore attachment on the thermodynamic properties of the DNA strands were investigated by analyzing the melting curves of different combinations of unlabeled and labeled complementary oligomers. The presence of both labels was found to stabilize the double-stranded DNA by about -1.5 kcal in delta G degrees 298, primarily due to the fluorescein label. Association and dissociation rate constants were determined by fluorescence measurements at different temperatures, and linear Arrhenius plots were obtained. The fluorescence measurements provided a unique "label dilution" method for measuring dissociation rate constants of oligomers based upon the dynamic association and dissociation of complementary DNA strands at constant temperature. Association rate measurements were simplified since relatively low concentrations of complementary oligomers could be mixed, thereby reducing hybridization rates and eliminating the need for rapid mixing and measurement techniques.
Collapse
Affiliation(s)
- L E Morrison
- AMOCO Technology Company, Naperville, Illinois 60566
| | | |
Collapse
|
40
|
Leijon M, Gräslund A. Effects of sequence and length on imino proton exchange and base pair opening kinetics in DNA oligonucleotide duplexes. Nucleic Acids Res 1992; 20:5339-43. [PMID: 1331987 PMCID: PMC334339 DOI: 10.1093/nar/20.20.5339] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The base catalysed imino proton exchange in DNA oligonucleotides of different sequences and lengths was studied by 1H-NMR saturation recovery experiments. The self-complementary sequences studied were GCGCGAATTCGCGC (I), CGCGAATTCGCG (II), GCGAATTCGC (III), and CGCGATCGCG (IV). The evaluation of base pair lifetimes was made after correction for the measured 'absence of added catalyst' effect which was found to be characterized by recovery times of 400-500 ms for the AT base pairs and 250-300 ms for the GC base pairs at 15 degrees C. End effects with rapid exchange is noticeable up to 3 base pairs from either end of the duplexes. The inner hexamer cores GAATTC of sequences I-II show similar base pair lifetime patterns, around 30 ms for the innermost AT, 5-10 ms for the outer AT and 20-50 ms for the GC base pairs at 15 degrees C. The shorter sequences III and particularly IV show much shorter lifetimes in their central AT base pairs (11 ms and 1 ms, respectively).
Collapse
Affiliation(s)
- M Leijon
- Department of Medical Biochemistry and Biophysics, University of Umeå, Sweden
| | | |
Collapse
|
41
|
Van Cleve MD, Gumport RI. Influence of enzyme-substrate contacts located outside the EcoRI recognition site on cleavage of duplex oligodeoxyribonucleotide substrates by EcoRI endonuclease. Biochemistry 1992; 31:334-9. [PMID: 1731891 DOI: 10.1021/bi00117a004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A complete understanding of the sequence-specific interaction between the EcoRI restriction endonuclease and its DNA substrate requires identification of all contacts between the enzyme and substrate, and evaluation of their significance. We have searched for possible contacts adjacent to the recognition site, GAATTC, by using a series of substrates with differing lengths of flanking sequence. Each substrate is a duplex of non-self-complementary oligodeoxyribonucleotides in which the recognition site is flanked by six base pairs on one side and from zero to three base pairs on the other. Steady-state kinetic values were determined for the cleavage of each strand of these duplexes. A series of substrates in which the length of flanking sequence was varied on both sides of the hexamer was also examined. The enzyme cleaved both strands of each of the substrates. Decreasing the flanking sequence to fewer than three base pairs on one side of the recognition site induced an asymmetry in the rates of cleavage of the two strands. The scissile bond nearest the shortening sequence was hydrolyzed with increasing rapidity as base pairs were successively removed. Taken together, the KM and kcat values obtained may be interpreted to indicate the relative importance of several likely enzyme-substrate contacts located outside the canonical hexameric recognition site.
Collapse
Affiliation(s)
- M D Van Cleve
- Department of Chemistry, University of Virginia, Charlottesville 22901
| | | |
Collapse
|
42
|
Wender PA, Kelly RC, Beckham S, Miller BL. Studies on DNA-cleaving agents: computer modeling analysis of the mechanism of activation and cleavage of dynemicin-oligonucleotide complexes. Proc Natl Acad Sci U S A 1991; 88:8835-9. [PMID: 1924343 PMCID: PMC52605 DOI: 10.1073/pnas.88.19.8835] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dynemicin A is a recently identified antitumor antibiotic. Upon activation, dynemicin is reported to cause double-stranded cleavage of DNA, putatively through the intermediacy of a diradical. Computer modeling of this activation and cleavage process is described herein as part of an effort to establish a structural hypothesis for this mechanistic sequence and for the design of simple analogues. Intercalation complexes of duplex dodecamers [d(CGCGAATTCGCG)]2 and [d(GC)6]2 with both enantiomers of dynemicin and of all related mechanistic intermediates are evaluated. Examination of these structures shows that cycloaromatization of dynemicin to a diradical intermediate results in the rotation of the diradical-forming subunit with respect to the intercalation plane that is of an opposite sense for the two dynemicin enantiomers. In addition, the activation of the (2S) enantiomer of dynemicin occurs by a less restricted approach trajectory than the corresponding (2R) enantiomer. In all complexes, the 5'-3' strand is at least 1 A closer than the 3'-5' strand to the diyl intermediate. As a result, complexes are produced in which the diyl moiety is aligned along [(2S)] or across [(2R)] the minor groove, leading to different predictions for the selectivity of radical-initiated, oxidative lesion of DNA. Molecular dynamics simulations are found to support these predictions, including the 3-base-pair offset cleavage reported for dynemicin.
Collapse
Affiliation(s)
- P A Wender
- Department of Chemistry, Stanford University, CA 94305
| | | | | | | |
Collapse
|
43
|
Mauffret O, Rene B, Convert O, Monnot M, Lescot E, Fermandjian S. Drug-DNA interactions: spectroscopic and footprinting studies of site and sequence specificity of elliptinium. Biopolymers 1991; 31:1325-41. [PMID: 1777583 DOI: 10.1002/bip.360311110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The binding of the antitumoral ellipticine derivative 2-methyl-9-hydroxyellipticinium acetate (elliptinium; NMHE) to DNA was analyzed by the combined use of DNase I footprinting and spectroscopic methods. Using two fragments of pBR322 DNA, five discrete NMHE binding sites of 5-7 protected base pairs (bp) were detected by footprinting at 4 degrees C on the analyzed regions. These corresponded to alternating pyrimidines and purines. The inactive derivative 2-methyl ellipticinium acetate L(NME) lacking a hydroxy group failed to demonstrate DNA protection even at low temperature. Ultraviolet-absorption and 1H-nmr analysis was performed using two autocomplementary octanucleotides d(TGACGTCA) (I) and d(ACTGCAGT) (II). The uv-absorption titrations resulted in an intercalative binding mode for NMHE in the oligomers. Analysis of the derived biphasic Scatchard plots yielded two binding sites corresponding to approximately 6-bp and 2-bp sizes and characterized by apparent association constants K1 approximately 10(8) M-1 and K2 approximately 10(6) M-1, respectively. The 1H-nmr analysis of exchangeable (imino) protons and nonexchangeable protons performed in the one- and two-dimensional modes confirmed the intercalation of NMHE, and further revealed the existence of multiple sites on DNA. Assuming that imino resonance line width concerned the sole kinetic effects, 10-ms order lifetimes were estimated for the drug-oligonucleotide complexes at 7 degrees C, pH 7, and 0.1 ionic strength. Finally, examination of every drug-DNA spectra in the light of the footprinting results indicated that there was a preference for binding of NMHE to the CpG (octamer I) and TpG (octamers I and II) steps.
Collapse
Affiliation(s)
- O Mauffret
- Laboratoire de Biochimie-Enzymologie, INSERM U 140, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
A heptanucleotide sequence d(TATCACC)2 from OR3 region of bacteriophage lambda is considered sufficient for the recognition of Cro protein. We present here results on molecular dynamic simulations on this sequence for 100 ps in 0.02 ps interval. The simulations are done using computer program GROMOS. The conformational results are averaged over each ps. The IUPAC torsional parameters for 100 conformations are illustrated using a wheal and a dial systems. Several other stereochemical parameters such as H-bonding lengths and angles, sugar puckers, helix twist and roll angles as also distances between opposite strand phosphorus are depicted graphically. We find that there is rupture of terminal H-bonds. The bases are tilted and shifted away from the helix axis giving rise to bifurcated H-bonds. H-bonds are seen even in between different base pairs. The role of these dynamic structural changes in the recognition of OR3 operator by Cro protein is discussed in the paper.
Collapse
Affiliation(s)
- Mrigank
- Department of Biophysics All India Institute of Medical Sciences New Delhi
| | | |
Collapse
|
45
|
Ashcroft J, Live DH, Patel DJ, Cowburn D. Heteronuclear two-dimensional 15N- and 13C-NMR studies of DNA oligomers and their netropsin complexes using indirect proton detection. Biopolymers 1991; 31:45-55. [PMID: 1851045 DOI: 10.1002/bip.360310105] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heteronuclear multispin coherence proton-detected two-dimensional nmr spectroscopic experiments were used to obtain information on protonated carbons and nitrogens of the self-complementary d(G-G-T-A-T-A-C-C) and d(G-G-A-A-T-T-C-C) duplexes, with and without the drug netropsin dissolved in aqueous solution. Many correlations of protons coupled to 13C nuclei on the base and sugar rings of the octanucleotides were detected, allowing the carbon resonances to be assigned based on previous homonuclear proton two-dimensional nmr studies. Imino nitrogen assignments can also be made using the proton assignments from previous one-dimensional nuclear overhauser effect experiments. Imino nitrogen shifts may be useful indicators of changes in local hydrogen-bonding interactions to base-pair edges.
Collapse
Affiliation(s)
- J Ashcroft
- Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
46
|
Srinivasan J, Withka JM, Beveridge DL. Molecular dynamics of an in vacuo model of duplex d(CGCGAATTCGCG) in the B-form based on the amber 3.0 force field. Biophys J 1990; 58:533-47. [PMID: 2207251 PMCID: PMC1280992 DOI: 10.1016/s0006-3495(90)82397-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The characteristics of 100 ps of molecular dynamics (MD) on the DNA dodecamer d(CGCGAATTCGCG) at 300 K are described and investigated. The simulation is based on an in vacuo model of the oligomer and the AMBER 3.0 force field configured in the manner of Singh, U. C., S. J. Weiner, and P. A. Kollman, (1985, Proc. Natl. Acad. Sci. USA. 82:755-759). The analysis of the results was carried out using the "curves, dials, and windows" procedure (Ravishanker, G., S. Swaminathan, D. L. Beveridge, R. Lavery, and H. Sklenar. 1989. J. Biomol. Struct. Dyn. 6:669-699). The results indicate this dynamical model to be a provisionally stable double helix which lies at approximately 3.2 A rms deviation from the canonical B-form. There is, however, a persistent nonplanarity in the base pair orientations which resemble that observed in canonical A-DNA. The major groove width is seen to narrow during the course of the simulation and the minor groove expands, contravariant to the alterations in groove width seen in the crystal structure of the native dodecamer (Drew, H. R., R. M. Wing, T. Takano, C. Broka, S. Tanaka, I. Itakura, and R. E. Dickerson, 1981. Proc. Natl. Acad. Sci. USA. 78:2179-2183). The propeller twist in the bases, the sequence dependence of the base pair roll and aspects of bending in the helix axis are in some degree of agreement with the crystal structure. The patterns in DNA bending are observed to follow Zhurkin theory (Zhurkin, V. B. 1985. J. Biomol. Struct. Dyn. 2:785-804.). The relationship between the dynamical model and structure in solution is discussed.
Collapse
Affiliation(s)
- J Srinivasan
- Department of Chemistry, Hall-Atwater Laboratories, Wesleyan University, Middletown, Connecticut 06457
| | | | | |
Collapse
|
47
|
Fiel RJ, Jenkins BG, Alderfer JL. Cationic Porphyrin-DNA Complexes: Specificity of Binding Modes. THE JERUSALEM SYMPOSIA ON QUANTUM CHEMISTRY AND BIOCHEMISTRY 1990. [DOI: 10.1007/978-94-011-3728-7_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Mauffret O, Monnot M, Lanson M, Armier J, Fermandjian S. Conformational variations in d(TGACGTCA) and its reverse sequence d(ACTGCAGT): a joint circular dichroism and nuclear magnetic resonance study. Biochem Biophys Res Commun 1989; 165:602-14. [PMID: 2597149 DOI: 10.1016/s0006-291x(89)80009-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques have been used to characterize the structural properties of the two self-complementary DNA octamers d(TGACGTCA) (I) and d(ACTGCAGT) (II). These display as distinctive features reverse sequences and central steps CpG and GpC, respectively. CD experiments lead to B-form DNA spectra characterized by larger magnitude signals in the case of octamer (I). NMR COSY spectra indicate that in the two octamers all the residues are predominantly south, S, (2'-endo) sugar conformation. NMR NOESY spectra show most of the glycosidic angles confined in the range predicted for B-form DNA although important heterogeneity is noticed along the chains, more pronounced in the case of octamer (I). Both the increase of north, N, (3'-endo) sugar conformation and P (pseudorotation phase angle) deviation from its standard B-form DNA value (162 degrees) express local sequence dependent structure distortions, remarkably visible in CpG step of octamer (I) and agreeing with NOESY cross-peaks intensities. Results interpreted according to Calladine's rules indicate higher cross-chain strains in octamer (I) than in octamer (II). All together, we find evidence to support for octamer (I) in solution local structures with A-DNA properties likely dictated by the central CpG step. Such structures could be involved in the DNA recognition by proteins and anticancerous drugs.
Collapse
Affiliation(s)
- O Mauffret
- Pharmacologie Moléculaire, U 140 INSERM, URA 158 CNRS, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | |
Collapse
|
49
|
Bütje K, Schneider JH, Kim JJ, Wang Y, Ikuta S, Nakamoto K. Interactions of water-soluble porphyrins with hexadeoxyribonucleotides: resonance raman, UV-visible and 1H NMR studies. J Inorg Biochem 1989; 37:119-34. [PMID: 2557387 DOI: 10.1016/0162-0134(89)80035-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interactions of the water-soluble porphyrins M(TMpy-P4) [M = H2, Cu(II), Ni(II), and Co(III); TMpy-P4 = tetrakis(4-N-methylpyridyl)porphyrinato ion], with the hexadeoxyribonucleotides d(CGTACG)2, d(TACGTA)2, d(GCATGC)2, d(TGTGCA)2, and d(CTATAG)2 have been investigated by resonance Raman and/or UV-visible spectroscopy. The results indicate that all hexamers containing the 5'CG3' as well as the 5'GC3' site, and also the mismatched hexamer d(TGTGCA)2, are capable of intercalating the H2, Cu(II) and Ni(II) porphyrins. 1H nuclear magnetic resonance spectra of d(CGTACG)2 mixed with Cu(TMpy-P4) have provided further evidence for the intercalation. For the other cases, outside binding by localized electrostatic interaction is suggested. There is no evidence of groove binding to any of the hexamers. Possible reasons for different binding properties of long and short helices are discussed.
Collapse
Affiliation(s)
- K Bütje
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233
| | | | | | | | | | | |
Collapse
|
50
|
Shafer GE, Price MA, Tullius TD. Use of the hydroxyl radical and gel electrophoresis to study DNA structure. Electrophoresis 1989; 10:397-404. [PMID: 2504579 DOI: 10.1002/elps.1150100518] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The hydroxyl radical has been used as a chemical probe to study in solution the structure of DNA and DNA-protein complexes. The hydroxyl radical abstracts a deoxyribose hydrogen atom, cleaving one strand of the DNA. The cutting pattern, visualized by separating the cleavage products using gel electrophoresis, shows the reactivity of each backbone position toward the radical. This method has been applied to studies of DNA bending and helical twist. Phased runs of adenines (adenine tracts) cause sequence-directed DNA bending. The hydroxyl radical cleavage of a bent DNA fragment containing short adenine tracts phased with the helix screw gives rise to an unusual cutting pattern. The hydroxyl radical cleavage rate decreases in the 5' to 3' direction along each adenine tract, with a minimum at the 3' end of each adenine tract. The cleavage of the matching thymine tract is similar, but the minimum in the pattern is offset in the 3' direction. This pattern on the autoradiograph of the gel is interpreted to indicate that bending is accompanied by a narrow minor groove in the DNA molecule. Furthermore, hydroxyl radical cleavage results in different cutting patterns for two similar sequences, (CGA4T4)5 and (CGT4A4)5, which have been shown to be bent and relatively straight, respectively. The hydroxyl radical method has also been used to determine the helical repeat of the metallothionein IIA gene to be about 10.5 base pairs per turn. Methods of optimizing the hydroxyl radical reaction for DNA-protein footprinting are discussed. Because individual gel bands give information about cutting frequency at particular positions in the backbone, gel resolution and clear autoradiographs are important to this work.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G E Shafer
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|