1
|
Shapiro JG, Changela N, Jang JK, Joshi JN, McKim KS. Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608908. [PMID: 39229242 PMCID: PMC11370425 DOI: 10.1101/2024.08.21.608908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Evidence of a SAC response by several of these proteins is found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes does not induce a SAC response. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is silenced. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal, or "streaming", is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that dynein adaptor Spindly is also required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.
Collapse
Affiliation(s)
- Joanatta G Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jay N Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
2
|
Joshi JN, Changela N, Mahal L, Jang J, Defosse T, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. Mol Biol Cell 2024; 35:ar105. [PMID: 38865189 PMCID: PMC11321039 DOI: 10.1091/mbc.e24-02-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and coorientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that the SPC105R C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for lateral microtubule attachments and biorientation of homologues, which are critical for accurate chromosome segregation in meiosis I.
Collapse
Affiliation(s)
- Jay N. Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lia Mahal
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Janet Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Tyler Defosse
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Arunika Das
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Joanatta G. Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Kim McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
3
|
Joshi JN, Changela N, Mahal L, Defosse T, Jang J, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585003. [PMID: 38559067 PMCID: PMC10980020 DOI: 10.1101/2024.03.14.585003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and co-orientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that SPC105R's C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for two activities that are critical for accurate chromosome segregation in meiosis I, lateral microtubule attachments and bi-orientation of homologs.
Collapse
|
4
|
A Brief History of Drosophila (Female) Meiosis. Genes (Basel) 2022; 13:genes13050775. [PMID: 35627159 PMCID: PMC9140851 DOI: 10.3390/genes13050775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
Drosophila has been a model system for meiosis since the discovery of nondisjunction. Subsequent studies have determined that crossing over is required for chromosome segregation, and identified proteins required for the pairing of chromosomes, initiating meiotic recombination, producing crossover events, and building a spindle to segregate the chromosomes. With a variety of genetic and cytological tools, Drosophila remains a model organism for the study of meiosis. This review focusses on meiosis in females because in male meiosis, the use of chiasmata to link homologous chromosomes has been replaced by a recombination-independent mechanism. Drosophila oocytes are also a good model for mammalian meiosis because of biological similarities such as long pauses between meiotic stages and the absence of centrosomes during the meiotic divisions.
Collapse
|
5
|
Smith GR, Nambiar M. New Solutions to Old Problems: Molecular Mechanisms of Meiotic Crossover Control. Trends Genet 2020; 36:337-346. [PMID: 32294414 PMCID: PMC7162993 DOI: 10.1016/j.tig.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/25/2023]
Abstract
During scientific investigations, the explanation of remarkably interesting phenomena must often await development of new methods or accrual of new observations that in retrospect can lead to lucid answers to the initial problem. A case in point is the control of genetic recombination during meiosis, which leads to crossovers between chromosomes critical for production of healthy offspring. Crossovers must be properly placed along meiotic chromosomes for their accurate segregation. Here, we review observations on two aspects of meiotic crossover control - crossover interference and repression of crossovers near centromeres, both observed more than 85 years ago. Only recently have relatively simple molecular mechanisms for these phenomena become clear through advances in both methods and understanding the molecular basis of meiotic recombination.
Collapse
Affiliation(s)
- Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
6
|
Hughes SE, Hemenway E, Guo F, Yi K, Yu Z, Hawley RS. The E3 ubiquitin ligase Sina regulates the assembly and disassembly of the synaptonemal complex in Drosophila females. PLoS Genet 2019; 15:e1008161. [PMID: 31107865 PMCID: PMC6544331 DOI: 10.1371/journal.pgen.1008161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/31/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
During early meiotic prophase, homologous chromosomes are connected along their entire lengths by a proteinaceous tripartite structure known as the synaptonemal complex (SC). Although the components that comprise the SC are predominantly studied in this canonical ribbon-like structure, they can also polymerize into repeated structures known as polycomplexes. We find that in Drosophila oocytes, the ability of SC components to assemble into canonical tripartite SC requires the E3 ubiquitin ligase Seven in absentia (Sina). In sina mutant oocytes, SC components assemble into large rod-like polycomplexes instead of proper SC. Thus, the wild-type Sina protein inhibits the polymerization of SC components, including those of the lateral element, into polycomplexes. These polycomplexes persist into meiotic stages when canonical SC has been disassembled, indicating that Sina also plays a role in controlling SC disassembly. Polycomplexes induced by loss-of-function sina mutations associate with centromeres, sites of double-strand breaks, and cohesins. Perhaps as a consequence of these associations, centromere clustering is defective and crossing over is reduced. These results suggest that while features of the polycomplexes can be recognized as SC by other components of the meiotic nucleus, polycomplexes nonetheless fail to execute core functions of canonical SC.
Collapse
Affiliation(s)
- Stacie E. Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Elizabeth Hemenway
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
7
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
8
|
A Simplified Strategy for Introducing Genetic Variants into Drosophila Compound Autosome Stocks. G3 (BETHESDA, MD.) 2016; 6:3749-3755. [PMID: 27672111 PMCID: PMC5100873 DOI: 10.1534/g3.116.035634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drosophila stocks bearing compound chromosomes, single molecules of DNA that carry the genomic complement of two chromosomes, are useful tools for studying meiosis and mitosis. However, these stocks cannot easily be crossed to stocks with regular chromosomes, due to the lethality of the resulting whole-chromosome aneuploidy. This prevents the examination of interesting genetic variants in a compound chromosome background. Methods to circumvent this difficulty have included the use of triploid females or nondisjunction (caused by either cold-induced microtubule depolymerization or meiotic mutants). Here, we present a new approach for crossing compound chromosomes that takes advantage of the nonhomologous segregations that result when multiple chromosomes in the same genome are prevented from meiotic crossing over by heterozygosity for balancer chromosomes. This approach gives higher yields of the desired progeny in fewer generations of crossing. Using this technique, we have created and validated stocks carrying both a compound-X and compound-2, as well as compound-2 stocks carrying the meiotic mutant nod.
Collapse
|
9
|
Laver JD, Marsolais AJ, Smibert CA, Lipshitz HD. Regulation and Function of Maternal Gene Products During the Maternal-to-Zygotic Transition in Drosophila. Curr Top Dev Biol 2015; 113:43-84. [PMID: 26358870 DOI: 10.1016/bs.ctdb.2015.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drosophila late-stage oocytes and early embryos are transcriptionally silent. Thus, control of gene expression during these developmental periods is posttranscriptional and posttranslational. Global changes in the transcriptome and proteome occur during oocyte maturation, after egg activation and fertilization, and upon zygotic genome activation. We review the scale, content, and dynamics of these global changes; the factors that regulate these changes; and the mechanisms by which they are accomplished. We highlight the intimate relationship between the clearance of maternal gene products and the activation of the embryo's own genome, and discuss the fact that each of these complementary components of the maternal-to-zygotic transition can be subdivided into several phases that serve different biological roles and are regulated by distinct factors.
Collapse
Affiliation(s)
- John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
DAVIS GREGORYK. Cyclical Parthenogenesis and Viviparity in Aphids as Evolutionary Novelties. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:448-59. [DOI: 10.1002/jez.b.22441] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 11/09/2022]
Affiliation(s)
- GREGORY K. DAVIS
- Department of Biology; Bryn Mawr College; Bryn Mawr; Pennsylvania
| |
Collapse
|
11
|
Von Stetina JR, Orr-Weaver TL. Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 2011; 3:a005553. [PMID: 21709181 DOI: 10.1101/cshperspect.a005553] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Production of functional eggs requires meiosis to be coordinated with developmental signals. Oocytes arrest in prophase I to permit oocyte differentiation, and in most animals, a second meiotic arrest links completion of meiosis to fertilization. Comparison of oocyte maturation and egg activation between mammals, Caenorhabditis elegans, and Drosophila reveal conserved signaling pathways and regulatory mechanisms as well as unique adaptations for reproductive strategies. Recent studies in mammals and C. elegans show the role of signaling between surrounding somatic cells and the oocyte in maintaining the prophase I arrest and controlling maturation. Proteins that regulate levels of active Cdk1/cyclin B during prophase I arrest have been identified in Drosophila. Protein kinases play crucial roles in the transition from meiosis in the oocyte to mitotic embryonic divisions in C. elegans and Drosophila. Here we will contrast the regulation of key meiotic events in oocytes.
Collapse
Affiliation(s)
- Jessica R Von Stetina
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
12
|
Lake CM, Nielsen RJ, Hawley RS. The Drosophila zinc finger protein trade embargo is required for double strand break formation in meiosis. PLoS Genet 2011; 7:e1002005. [PMID: 21383963 PMCID: PMC3044681 DOI: 10.1371/journal.pgen.1002005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination in meiosis is initiated by the programmed induction of double strand breaks (DSBs). Although the Drosophila Spo11 ortholog Mei-W68 is required for the induction of DSBs during meiotic prophase, only one other protein (Mei-P22) has been shown to be required for Mei-W68 to exert this function. We show here that the chromatin-associated protein Trade Embargo (Trem), a C2H2 zinc finger protein, is required to localize Mei-P22 to discrete foci on meiotic chromosomes, and thus to promote the formation of DSBs, making Trem the earliest known function in the process of DSB formation in Drosophila oocytes. We speculate that Trem may act by either directing the binding of Mei-P22 to preferred sites of DSB formation or by altering chromatin structure in a manner that allows Mei-P22 to form foci.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.
| | | | | |
Collapse
|
13
|
Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:350412. [PMID: 21637374 PMCID: PMC3101788 DOI: 10.1155/2011/350412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/01/2010] [Indexed: 01/12/2023]
Abstract
In many cell types, the mitogen-activated protein kinase (MAPK) also named extracellular signal-regulated kinase (ERK) is activated in response to a variety of extracellular growth factor-receptor interactions and leads to the transcriptional activation of immediate early genes, hereby influencing a number of tissue-specific biological activities, as cell proliferation, survival and differentiation. In one specific cell type however, the female germ cell, MAPK does not follow this canonical scheme. In oocytes, MAPK is activated independently of growth factors and tyrosine kinase receptors, acts independently of transcriptional regulation, plays a crucial role in controlling meiotic divisions, and is under the control of a peculiar upstream regulator, the kinase Mos. Mos was originally identified as the transforming gene of Moloney murine sarcoma virus and its cellular homologue was the first proto-oncogene to be molecularly cloned. What could be the specific roles of Mos that render it necessary for meiosis? Which unique functions could explain the evolutionary cost to have selected one gene to only serve for few hours in one very specific cell type? This review discusses the original features of MAPK activation by Mos and the roles of this module in oocytes.
Collapse
|
14
|
Meyer RE, Delaage M, Rosset R, Capri M, Aït-Ahmed O. A single mutation results in diploid gamete formation and parthenogenesis in a Drosophila yemanuclein-alpha meiosis I defective mutant. BMC Genet 2010; 11:104. [PMID: 21080953 PMCID: PMC2998452 DOI: 10.1186/1471-2156-11-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual reproduction relies on two key events: formation of cells with a haploid genome (the gametes) and restoration of diploidy after fertilization. Therefore the underlying mechanisms must have been evolutionary linked and there is a need for evidence that could support such a model. RESULTS We describe the identification and the characterization of yem1, the first yem-alpha mutant allele (V478E), which to some extent affects diploidy reduction and its restoration. Yem-alpha is a member of the Ubinuclein/HPC2 family of proteins that have recently been implicated in playing roles in chromatin remodeling in concert with HIRA histone chaperone. The yem1 mutant females exhibited disrupted chromosome behavior in the first meiotic division and produced very low numbers of viable progeny. Unexpectedly these progeny did not display paternal chromosome markers, suggesting that they developed from diploid gametes that underwent gynogenesis, a form of parthenogenesis that requires fertilization. CONCLUSIONS We focus here on the analysis of the meiotic defects exhibited by yem1 oocytes that could account for the formation of diploid gametes. Our results suggest that yem1 affects chromosome segregation presumably by affecting kinetochores function in the first meiotic division. This work paves the way to further investigations on the evolution of the mechanisms that support sexual reproduction.
Collapse
Affiliation(s)
- Régis E Meyer
- Institut de Génétique Humaine (IGH), Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 141 Rue de la Cardonille, 34396 Montpellier cedex 5, France
| | | | | | | | | |
Collapse
|
15
|
Takeo S, Hawley RS, Aigaki T. Calcineurin and its regulation by Sra/RCAN is required for completion of meiosis in Drosophila. Dev Biol 2010; 344:957-67. [PMID: 20561515 DOI: 10.1016/j.ydbio.2010.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 11/15/2022]
Abstract
Ca(2+) signaling pathways play important roles to complete meiosis from metaphase II arrest in vertebrate oocytes. However, less is known about the molecular mechanism of completion of meiosis in Drosophila females. Here, we provide direct evidence that calcineurin, a Ca(2+)/calmodulin (CaM)-dependent phosphatase, is essential for meiotic progression beyond metaphase I in Drosophila oocytes. Oocytes from germline clones lacking CanB2, a calcineurin regulatory subunit B, failed to complete meiosis after egg activation, and laid eggs exhibited a meiotic arrested anaphase I chromosome configuration. Genetic analyses suggest that calcineurin activity is regulated by Sarah (Sra), a family member of regulators of calcineurin (RCANs), through a Sra phosphorylation-dependent mechanism. Our results support a view in which the phosphorylation of Sra not only acts to relieve the inhibitory effects of Sra, but also acts to activate calcineurin, thus explaining the role of RCAN proteins as positive regulators of calcineurin.
Collapse
Affiliation(s)
- Satomi Takeo
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|
16
|
Gilliland WD, Hughes SF, Vietti DR, Hawley RS. Congression of achiasmate chromosomes to the metaphase plate in Drosophila melanogaster oocytes. Dev Biol 2008; 325:122-8. [PMID: 18977343 DOI: 10.1016/j.ydbio.2008.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/20/2008] [Accepted: 10/02/2008] [Indexed: 11/26/2022]
Abstract
Chiasmata established by recombination are normally sufficient to ensure accurate chromosome segregation during meiosis by physically interlocking homologs until anaphase I. Drosophila melanogaster female meiosis is unusual in that it is both exceptionally tolerant of nonexchange chromosomes and competent in ensuring their proper segregation. As first noted by Puro and Nokkala [Puro, J., Nokkala, S., 1977. Meiotic segregation of chromosomes in Drosophila melanogaster oocytes. A cytological approach. Chromosoma 63, 273-286], nonexchange chromosomes move precociously towards the poles following formation of a bipolar spindle. Indeed, metaphase arrest has been previously defined as the stage at which nonexchange homologs are symmetrically positioned between the main chromosome mass and the poles of the spindle. Here we use studies of both fixed images and living oocytes to show that the stage in which achiasmate chromosomes are separated from the main mass does not in fact define metaphase arrest, but rather is a component of an extended prometaphase. At the end of prometaphase, the nonexchange chromosomes retract into the main chromosome mass, which is tightly repackaged with properly co-oriented centromeres. This repackaged state is the true metaphase arrest configuration in Drosophila female meiosis.
Collapse
|
17
|
Gilliland WD, Hughes SE, Cotitta JL, Takeo S, Xiang Y, Hawley RS. The multiple roles of mps1 in Drosophila female meiosis. PLoS Genet 2008; 3:e113. [PMID: 17630834 PMCID: PMC1914070 DOI: 10.1371/journal.pgen.0030113] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 05/23/2007] [Indexed: 12/02/2022] Open
Abstract
The Drosophila gene ald encodes the fly ortholog of mps1, a conserved kinetochore-associated protein kinase required for the meiotic and mitotic spindle assembly checkpoints. Using live imaging, we demonstrate that oocytes lacking Ald/Mps1 (hereafter referred to as Ald) protein enter anaphase I immediately upon completing spindle formation, in a fashion that does not allow sufficient time for nonexchange homologs to complete their normal partitioning to opposite half spindles. This observation can explain the heightened sensitivity of nonexchange chromosomes to the meiotic effects of hypomorphic ald alleles. In one of the first studies of the female meiotic kinetochore, we show that Ald localizes to the outer edge of meiotic kinetochores after germinal vesicle breakdown, where it is often observed to be extended well away from the chromosomes. Ald also localizes to numerous filaments throughout the oocyte. These filaments, which are not observed in mitotic cells, also contain the outer kinetochore protein kinase Polo, but not the inner kinetochore proteins Incenp or Aurora-B. These filaments polymerize during early germinal vesicle breakdown, perhaps as a means of storing excess outer kinetochore kinases during early embryonic development. Female meiosis is the process that ensures developing eggs (called oocytes) receive the proper complement of chromosomes. The failure to accurately segregate chromosomes results in aneuploidy, which is the leading cause of birth defects in humans. Cells contain checkpoints that help ensure proper chromosome segregation. Here, we present a study of the Drosophila homolog of monopolar spindles 1 (mps1), which is a key checkpoint component. Mutants in mps1 produce oocytes with the wrong number of chromosomes. Using live imaging of female meiosis, we find that mps1 mutants do not delay the cell cycle as is normally observed in wild-type flies. This delay gives chromosomes the time needed to properly align before cell division, and therefore the defect caused by mps1 mutants is due to chromosomes being forced to segregate before they have had time to properly align. Additionally, we find that mps1 as well as two other checkpoint proteins localize to numerous filaments throughout the oocyte. These filaments appear to form when the nuclear envelope breaks down, and disappear late in meiosis. While the function of these structures is not known, they appear similar to filaments seen in female meiosis in nematodes, and may be required to regulate these proteins.
Collapse
Affiliation(s)
- William D Gilliland
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Stacie E Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jeffrey L Cotitta
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Satomi Takeo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Youbin Xiang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Horner VL, Wolfner MF. Transitioning from egg to embryo: Triggers and mechanisms of egg activation. Dev Dyn 2008; 237:527-44. [DOI: 10.1002/dvdy.21454] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Archambault V, Zhao X, White-Cooper H, Carpenter ATC, Glover DM. Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase. PLoS Genet 2007; 3:e200. [PMID: 17997611 PMCID: PMC2065886 DOI: 10.1371/journal.pgen.0030200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
Polo is a conserved kinase that coordinates many events of mitosis and meiosis, but how it is regulated remains unclear. Drosophila females having only one wild-type allele of the polo kinase gene and the dominant Scant mutation produce embryos in which one of the centrosomes detaches from the nuclear envelope in late prophase. We show that Scant creates a hyperactive form of Greatwall (Gwl) with altered specificity in vitro, another protein kinase recently implicated in mitotic entry in Drosophila and Xenopus. Excess Gwl activity in embryos causes developmental failure that can be rescued by increasing maternal Polo dosage, indicating that coordination between the two mitotic kinases is crucial for mitotic progression. Revertant alleles of Scant that restore fertility to polo-Scant heterozygous females are recessive alleles or deficiencies of gwl; they show chromatin condensation defects and anaphase bridges in larval neuroblasts. One recessive mutant allele specifically disrupts a Gwl isoform strongly expressed during vitellogenesis. Females hemizygous for this allele are sterile, and their oocytes fail to arrest in metaphase I of meiosis; both homologues and sister chromatids separate on elongated meiotic spindles with little or no segregation. This allelic series of gwl mutants highlights the multiple roles of Gwl in both mitotic and meiotic progression. Our results indicate that Gwl activity antagonizes Polo and thus identify an important regulatory interaction of the cell cycle.
Collapse
Affiliation(s)
- Vincent Archambault
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Xinbei Zhao
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Helen White-Cooper
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Adelaide T. C Carpenter
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David M Glover
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Doubilet S, McKim KS. Spindle assembly in the oocytes of mouse and Drosophila--similar solutions to a problem. Chromosome Res 2007; 15:681-96. [PMID: 17674154 DOI: 10.1007/s10577-007-1148-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the oocytes of many organisms a bipolar spindle is assembled in the absence of centrosomes. In this article we review how this occurs in two model organisms, Drosophila melanogaster and Mus musculus. Common themes include an important role for the chromosomes but paradoxically, organization of a bipolar spindle may not involve kinetochore microtubules. Some comparisons are not yet possible, however, since the same genes have usually not been studied in both systems.
Collapse
Affiliation(s)
- Susan Doubilet
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | |
Collapse
|
21
|
A graphical chain model for inferring regulatory system networks from gene expression profiles. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.stamet.2005.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Zhang XH, Axton JM, Drinjákovic J, Lorenz L, White-Cooper H, Renault AD. Spatial and temporal control of mitotic cyclins by the Gnu regulator of embryonic mitosis in Drosophila. J Cell Sci 2004; 117:3571-8. [PMID: 15226379 DOI: 10.1242/jcs.01240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutation of the Drosophila maternal cell cycle regulator, Gnu, results in loss of embryonic mitosis and the onset of excessive nuclear DNA replication. The Gnu phosphoprotein is normally synthesized in nurse cells and transported to the developing oocyte. We created a gnuGFP-bcd3'UTR transgene using the gnu promoter and bicoid 3'UTR, that translates GnuGFP only on egg activation from a localized anterior source. This transgene was able to rescue the sterility of gnu mutant females. Gnu is therefore first required after egg activation for polar body condensation and zygotic mitoses. Embryos containing pronounced anterior-posterior gradients of Gnu activity demonstrate that Gnu regulates mitotic activity by promoting cyclin B stability. Our gnuGFP-bcd3'UTR vector provides a novel experimental strategy to analyse the temporal requirement and role of cell cycle regulators including potential sperm-supplied factors in eggs and embryos.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | | | |
Collapse
|
23
|
Ivanovska I, Lee E, Kwan KM, Fenger DD, Orr-Weaver TL. The Drosophila MOS ortholog is not essential for meiosis. Curr Biol 2004; 14:75-80. [PMID: 14711418 DOI: 10.1016/j.cub.2003.12.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In metazoan oocytes, a metaphase arrest coordinates the completion of meiosis with fertilization. Vertebrate mos maintains the metaphase II arrest of mature oocytes and prevents DNA replication between the meiotic divisions. We identified a Drosophila homolog of mos and showed it to be the mos ortholog by two additional criteria. The dmos transcripts are present in Drosophila oocytes but not embryos, and injection of dmos into Xenopus embryos blocks mitosis and elevates active MAPK levels. In Drosophila, MAPK is activated in oocytes, consistent with a role in meiosis. We generated deletions of dmos and found that, as in vertebrates, dmos is responsible for the majority of MAPK activation. Unexpectedly, the oocytes that do mature complete meiosis normally and produce fertilized embryos that develop, although there is a reduction in female fertility and loss of some oocytes by apoptosis. Therefore, Drosophila contains a mos ortholog that activates a MAPK cascade during oogenesis and is nonessential for meiosis. This could be because there are redundant pathways regulating meiosis, because residual, low levels of active MAPK are sufficient, or because active MAPK is dispensable for meiosis in Drosophila. These results highlight the complexity of meiotic regulation that evolved to ensure accurate control over the reproductive process.
Collapse
Affiliation(s)
- Irena Ivanovska
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
In this review, we describe the pathway for generating meiotic crossovers in Drosophila melanogaster females and how these events ensure the segregation of homologous chromosomes. As appears to be common to meiosis in most organisms, recombination is initiated with a double-strand break (DSB). The interesting differences between organisms appear to be associated with what chromosomal events are required for DSBs to form. In Drosophila females, the synaptonemal complex is required for most DSB formation. The repair of these breaks requires several DSB repair genes, some of which are meiosis-specific, and defects at this stage can have effects downstream on oocyte development. This has been suggested to result from a checkpoint-like signaling between the oocyte nucleus and gene products regulating oogenesis. Crossovers result from genetically controlled modifications to the DSB repair pathway. Finally, segregation of chromosomes joined by a chiasma requires a bipolar spindle. At least two kinesin motor proteins are required for the assembly of this bipolar spindle, and while the meiotic spindle lacks traditional centrosomes, some centrosome components are found at the spindle poles.
Collapse
Affiliation(s)
- Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8020, USA.
| | | | | |
Collapse
|
25
|
Renault AD, Zhang XH, Alphey LS, Frenz LM, Glover DM, Saunders RDC, Axton JM. giant nuclei is essential in the cell cycle transition from meiosis to mitosis. Development 2003; 130:2997-3005. [PMID: 12756181 DOI: 10.1242/dev.00501] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the transition from meiosis to cleavage mitoses, Drosophila requires the cell cycle regulators encoded by the genes, giant nuclei (gnu), plutonium (plu) and pan gu (png). Embryos lacking Gnu protein undergo DNA replication and centrosome proliferation without chromosome condensation or mitotic segregation. We have identified the gnu gene encoding a novel phosphoprotein dephosphorylated by Protein phosphatase 1 at egg activation. Gnu is normally expressed in the nurse cells and oocyte of the ovary and is degraded during the embryonic cleavage mitoses. Ovarian death and sterility result from gnu gain of function. gnu function requires the activity of pan gu and plu.
Collapse
Affiliation(s)
- Andrew D Renault
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Bickel SE, Orr-Weaver TL, Balicky EM. The sister-chromatid cohesion protein ORD is required for chiasma maintenance in Drosophila oocytes. Curr Biol 2002; 12:925-9. [PMID: 12062057 DOI: 10.1016/s0960-9822(02)00846-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Accurate chromosome partitioning during cell division requires that cohesion hold sister chromatids together until kinetochores correctly attach to spindle microtubules. In 1932, Darlington noted that sister-chromatid cohesion distal to the site of exchange also could play a vital role in maintaining the association of chiasmate homologs during meiosis. Cohesion linking a recombinant chromatid with a sister of each homologous pair would resist spindle forces that separate kinetochores of homologous chromosomes (see Figure 1). Although centromeric cohesion must be retained to ensure proper segregation during meiosis II, dissolution of arm cohesion would be required for anaphase I to occur. This hypothesis is supported by recent evidence in yeast and C. elegans that separase activity is essential for the segregation of recombinant homologs during meiosis I. We present evidence that Drosophila oocytes require sister-chromatid cohesion to maintain a physical attachment between recombinant chromosomes. Using FISH to monitor cohesion directly, we confirm that oocytes lacking ORD activity exhibit cohesion defects, consistent with previous genetic results. We also show that ord(null) oocytes that have undergone recombination are unable to arrest at metaphase I, indicating that chiasmata are unstable in the absence of cohesion. Our results support the model that arm cohesion provides a conserved mechanism that ensures physical attachment between recombinant homologs until anaphase I.
Collapse
Affiliation(s)
- Sharon E Bickel
- Department of Biological Sciences, Dartmouth College, 6044 Gilman, Hanover, NH 03755, USA.
| | | | | |
Collapse
|
27
|
Bosco G, Orr-Weaver TL. The cell cycle during oogenesis and early embryogenesis in Drosophila. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12026-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Chu T, Henrion G, Haegeli V, Strickland S. Cortex, a Drosophila gene required to complete oocyte meiosis, is a member of the Cdc20/fizzy protein family. Genesis 2001; 29:141-52. [PMID: 11252055 DOI: 10.1002/gene.1017] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in cortex and grauzone cause abnormal arrest in Drosophila female meiosis. cortex was mapped to a 14 kb interval in 26F-27A by the male recombination mapping method. While these experiments mapped the gene accurately, they also illustrated some complexities of this method. Rescue results showed that a 2.8 kb genomic fragment from this interval was able to fully rescue the cortex phenotype. The 2.8 kb rescuing fragment contains a single open reading frame. The predicted amino acid sequence indicates that cortex encodes a WD-repeat protein and is a distant member of the Cdc20 protein family. Results from a developmental Northern analysis showed that the cortex transcript is expressed at high levels during oogenesis and early embryogenesis. Interestingly, the meiotic metaphase-anaphase II arrest defect in embryos laid by cortex homozygous females resembles the mitotic metaphase-anaphase defects observed in yeast cdc20 mutants. The predicted nature of the Cortex protein, together with the observed meiotic phenotype in cortex mutants, suggest that a similar pathway to the cdc20 dependent APC-mediated proteolysis pathway, which governs the metaphase-anaphase transition in mitosis, is also important in regulating oocyte meiosis.
Collapse
Affiliation(s)
- T Chu
- Department of Pharmacology, Program in Molecular Biology and Biochemistry, University at Stony Brook, Stony Brook, New York, USA
| | | | | | | |
Collapse
|
29
|
Woods LM, Hodges CA, Baart E, Baker SM, Liskay M, Hunt PA. Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh1 mutant mice. J Cell Biol 1999; 145:1395-406. [PMID: 10385520 PMCID: PMC2133173 DOI: 10.1083/jcb.145.7.1395] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/1999] [Revised: 05/14/1999] [Indexed: 11/22/2022] Open
Abstract
In mouse oocytes, the first meiotic spindle is formed through the action of multiple microtubule organizing centers rather than a pair of centrosomes. Although the chromosomes are thought to play a major role in organizing the meiotic spindle, it remains unclear how a stable bipolar spindle is established. We have studied the formation of the first meiotic spindle in murine oocytes from mice homozygous for a targeted disruption of the DNA mismatch repair gene, Mlh1. In the absence of the MLH1 protein meiotic recombination is dramatically reduced and, as a result, the vast majority of chromosomes are present as unpaired univalents at the first meiotic division. The orientation of these univalent chromosomes at prometaphase suggests that they are unable to establish stable bipolar spindle attachments, presumably due to the inability to differentiate functional kinetochore domains on individual sister chromatids. In the presence of this aberrant chromosome behavior a stable first meiotic spindle is not formed, the spindle poles continue to elongate, and the vast majority of cells never initiate anaphase. These results suggest that, in female meiotic systems in which spindle formation is based on the action of multiple microtubule organizing centers, the chromosomes not only promote microtubule polymerization and organization but their attachment to opposite spindle poles acts to stabilize the forming spindle poles.
Collapse
Affiliation(s)
- L M Woods
- Department of Genetics and Center for Human Genetics, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
30
|
Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 1998; 2:65-73. [PMID: 9702192 DOI: 10.1016/s1097-2765(00)80114-8] [Citation(s) in RCA: 1516] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Progression through the eukaryotic cell cycle is known to be both regulated and accompanied by periodic fluctuation in the expression levels of numerous genes. We report here the genome-wide characterization of mRNA transcript levels during the cell cycle of the budding yeast S. cerevisiae. Cell cycle-dependent periodicity was found for 416 of the 6220 monitored transcripts. More than 25% of the 416 genes were found directly adjacent to other genes in the genome that displayed induction in the same cell cycle phase, suggesting a mechanism for local chromosomal organization in global mRNA regulation. More than 60% of the characterized genes that displayed mRNA fluctuation have already been implicated in cell cycle period-specific biological roles. Because more than 20% of human proteins display significant homology to yeast proteins, these results also link a range of human genes to cell cycle period-specific biological functions.
Collapse
Affiliation(s)
- R J Cho
- Department of Genetics, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sekelsky JJ, Burtis KC, Hawley RS. Damage control: the pleiotropy of DNA repair genes in Drosophila melanogaster. Genetics 1998; 148:1587-98. [PMID: 9560378 PMCID: PMC1460071 DOI: 10.1093/genetics/148.4.1587] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- J J Sekelsky
- Department of Genetics, Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
32
|
Bascom-Slack CA, Ross LO, Dawson DS. Chiasmata, crossovers, and meiotic chromosome segregation. ADVANCES IN GENETICS 1997; 35:253-84. [PMID: 9348650 DOI: 10.1016/s0065-2660(08)60452-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Meiotic recombination events are probably critical for the completion of several meiotic processes. In addition, recombination is likely to be involved in the events that lead up to synapsis of homologues in meiotic prophase. Recombination events that ultimately become resolved as exchanges are needed for the formation of chiasmata. Chiasmata maintain the association of paired homologues following loss of the synaptonemal complex and participate in the mechanism that signals that the bivalent has attached to the spindle in a bipolar orientation that will result in meiosis I disjunction.
Collapse
Affiliation(s)
- C A Bascom-Slack
- Department of Microbiology and Molecular Biology, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
33
|
LeMaire-Adkins R, Radke K, Hunt PA. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol 1997; 139:1611-9. [PMID: 9412457 PMCID: PMC2132649 DOI: 10.1083/jcb.139.7.1611] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/1997] [Revised: 10/10/1997] [Indexed: 02/05/2023] Open
Abstract
A checkpoint mechanism operates at the metaphase/anaphase transition to ensure that a bipolar spindle is formed and that all the chromosomes are aligned at the spindle equator before anaphase is initiated. Since mistakes in the segregation of chromosomes during meiosis have particularly disastrous consequences, it seems likely that the meiotic cell division would be characterized by a stringent metaphase/ anaphase checkpoint. To determine if the presence of an unaligned chromosome activates the checkpoint and delays anaphase onset during mammalian female meiosis, we investigated meiotic cell cycle progression in murine oocytes from XO females and control siblings. Despite the fact that the X chromosome failed to align at metaphase in a significant proportion of cells, we were unable to detect a delay in anaphase onset. Based on studies of cell cycle kinetics, the behavior and segregation of the X chromosome, and the aberrant behavior and segregation of autosomal chromosomes in oocytes from XO females, we conclude that mammalian female meiosis lacks chromosome-mediated checkpoint control. The lack of this control mechanism provides a biological explanation for the high incidence of meiotic nondisjunction in the human female. Furthermore, since available evidence suggests that a stringent checkpoint mechanism operates during male meiosis, the lack of a comparable checkpoint in females provides a reason for the difference in the error rate between oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- R LeMaire-Adkins
- Department of Genetics and Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106-4955, USA
| | | | | |
Collapse
|
34
|
Tavormina PA, Wang Y, Burke DJ. Differential requirements for DNA replication in the activation of mitotic checkpoints in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:3315-22. [PMID: 9154830 PMCID: PMC232184 DOI: 10.1128/mcb.17.6.3315] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Checkpoints prevent inaccurate chromosome segregation by inhibiting cell division when errors in mitotic processes are encountered. We used a temperature-sensitive mutation, dbf4, to examine the requirement for DNA replication in establishing mitotic checkpoint arrest. We used gamma-irradiation to induce DNA damage and hydroxyurea to limit deoxyribonucleotides in cells deprived of DBF4 function to investigate the requirement for DNA replication in DNA-responsive checkpoints. In the absence of DNA replication, mitosis was not inhibited by these treatments, which normally activate the DNA damage and DNA replication checkpoints. Our results support a model that indicates that the assembly of replication structures is critical for cells to respond to defects in DNA metabolism. We show that activating the spindle checkpoint with nocodazole does not require prior progression through S phase but does require a stable kinetochore.
Collapse
Affiliation(s)
- P A Tavormina
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | | | |
Collapse
|
35
|
Abstract
An emerging view is that the formation of active centromeres is modulated in an epigenetic manner reflecting the association of centromeres with heterochromatin. Support for this comes from studies on fission yeast centromeres, the properties of human neocentromeres and dicentric chromosomes, and analyses of Drosophila minichromosome deletion derivatives. A link has been established between tension across kinetochores and the phosphorylation status of kinetochore components. Vertebrate homologues of yeast MAD2 have recently been isolated and localized to kinetochores, indicating that components of the spindle integrity checkpoint are conserved. The linkage between sister chromatids is only dissolved at anaphase during mitotic and meiotic divisions. Phenotypic and localization data combined with their pattern of rapid degradation at anaphase have implicated several yeast and Drosophila proteins in aspects of sister chromatid cohesion.
Collapse
Affiliation(s)
- R C Allshire
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
36
|
Abstract
Key meiotic events in many organisms are controlled at the translational level. In this study, we examine the role of translational regulation in the meiotic cell cycle of Drosophila. In order to address this question, we developed a system for activating Drosophila oocytes in vitro. With this method, hundreds of mature oocytes can be activated to resume and complete meiosis. The stages of meiosis are normal by cytological criteria, and the timing of the meiotic divisions is similar to that of eggs activated in vivo. We use this system to examine the role of protein synthesis in regulating the progression of meiosis and the maintenance of the metaphase I arrest. We find that synthesis of new proteins after metaphase I is not required for anaphase I, meiosis II, or the decondensation of the meiotic products. Also, continued protein synthesis is not required to maintain the metaphase I arrest. New protein synthesis is required, however, for proper chromatin recondensation after meiosis.
Collapse
Affiliation(s)
- A W Page
- Department of Biology, Massachusetts Institute of Technology, Cambridge, USA
| | | |
Collapse
|
37
|
Abstract
Cell cycle arrest in M phase can be induced by the failure of a single chromosome to attach properly to the mitotic spindle. The same cell cycle checkpoint mediates M phase arrest when cells are treated with drugs that either disrupt or hyperstabilize spindle microtubules. Study of yeast mutants that fail to arrest in the presence of microtubule disruptors identified a set of genes important in this checkpoint pathway. Two recent papers report the cloning of human and Xenopus homologues of one of these yeast genes, called MAD2 (for mitotic arrest deficient-2)(1,2). Introduction of antibodies to the MAD2 protein into living mammalian cells or Xenopus egg extracts abrogates the M phase arrest induced by microtubule inhibitors. This and other recent developments suggest a model for the M phase checkpoint in which unattached kinetochores inhibit the ubiquitination of proteins whose proteolysis is necessary for chromatid separation and exit from mitosis.
Collapse
Affiliation(s)
- G J Gorbsky
- Dept of Cell Biology, University of Virginia Health Sciences Center, Charlottesville 22908, USA.
| |
Collapse
|
38
|
Abstract
The meiotic cell cycle arrests in response to both perturbations and developmental signals. Recent research suggests that meiosis has checkpoints to monitor the completion of meiotic recombination and the attachment of chromosomes to the spindle. New insights have been gained into how meiosis resumes after normal developmental arrests, and new genes have been identified that are required for proper meiotic progression.
Collapse
Affiliation(s)
- A W Page
- Department of Biology, Massachusetts Institute of Technology and Whitehead Institute for Biomedical Research, 9 Cambridge Center Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
39
|
Abstract
During early development in many species, maternally supplied gene products permit the cell cycle to run at maximum velocity, subdividing the fertilized egg into smaller and smaller cells. As development proceeds, zygotic controls are activated that first limit divisions to defined spatial and temporal domains, coordinating them with morphogenesis, and then halt proliferation altogether, to allow cell differentiation. Analysis of the regulation of cyclin-dependent kinases (Cdks) in Drosophila has provided insights into how this embryonic program of cell proliferation is controlled at the molecular level and how it is linked to developmental cues. Recent studies have also begun to reveal how cell proliferation is controlled during the second phase of Drosophila development, which occurs in imaginal tissues. In contrast to their embryonic progenitors, imaginal cells proliferate with a cycle that requires cell growth and is linked to patterning processes controlled by secreted cell signaling molecules. The functions of these signaling molecules appear to be nearly as conserved between vertebrates and invertebrates as the cell cycle control apparatus itself, suggesting that the mechanisms that coordinate growth, patterning, and cell proliferation in developing tissues have ancient origins.
Collapse
Affiliation(s)
- B A Edgar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
40
|
Koehler KE, Boulton CL, Collins HE, French RL, Herman KC, Lacefield SM, Madden LD, Schuetz CD, Hawley RS. Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories. Nat Genet 1996; 14:406-14. [PMID: 8944020 DOI: 10.1038/ng1296-406] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies of human oocytes have demonstrated an enrichment for distal exchanges among meiosis I (MI) nondisjunction events and for proximal exchanges among meiosis II (MII) events. Our characterization of 103 cases of spontaneous X chromosome nondisjunction in Drosophila oocytes strongly parallels these observations. The recombinational histories of MI (97/103) and MII (6/103) nondisjunctional ova were strikingly different. MI nondisjunction occurred primarily in oocytes with non-exchange X chromosomes; of the new nondisjoining exchange bivalents, most carried distal crossovers. Thus, spontaneous MI nondisjunction reflects the failure of the achiasmate segregation systems. MII nondisjunction occurred only in oocytes with proximal exchanges. We propose several models to explain how very proximal exchanges might impair proper segregation.
Collapse
Affiliation(s)
- K E Koehler
- Department of Genetics, University of California at Davis 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The spindle assembly checkpoint monitors proper chromosome attachment to spindle microtubules and is conserved from yeast to humans. Checkpoint components reside on kinetochores of chromosomes and show changes in phosphorylation and localization as cells proceed through mitosis. Adaptation to prolonged checkpoint arrest can occur by inhibitory phosphorylation of Cdc2.
Collapse
Affiliation(s)
- A D Rudner
- Department of Physiology, Box 0444, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0444, USA.
| | | |
Collapse
|
42
|
Kaczanowski A, Kaczanowska J. Induction of blocks in nuclear divisions and overcondensation of meiotic chromosomes with cycloheximide during conjugation of Tetrahymena thermophila. J Eukaryot Microbiol 1996; 43:380-8. [PMID: 8822808 DOI: 10.1111/j.1550-7408.1996.tb05047.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During conjugation, the micronucleus of Tetrahymena thermophila undergoes five consecutive nuclear divisions: meiosis, third prezygotic division (pregamic mitosis) and two postzygotic mitoses of the synkaryon. The four products of the synkaryon differentiate into macronuclear anlagen and new micronuclei and the old macronucleus is resorbed. The protein synthesis inhibitor cycloheximide, applied during conjugation, induced several developmental blocks. Pairs shifted to the drug during early meiotic prophase (stages I-III) were arrested at prophase. Cycloheximide applied to cells at pachytene (stages IV-VI) to metaphase arrested the conjugants at the stage of modified prometaphase/metaphase with overcondensed, swollen bivalents. In contrast to other systems, in the presence of cycloheximide, separation of chromatids, decondensation of chromosomes and exit from metaphase I were inhibited in both diploid and haploid cells. Pairs shifted to the drug after metaphase I were arrested at postmeiotic interphase after completing one nuclear cycle. The same rule applied to the subsequent cycle; then cells were arrested at the stage of pronuclei, and those pairs with functional pronuclei and synkarya were arrested at the stage of two products of the first postzygotic division (pronuclei were not arrested in nuclear transfer and karyogamy). Only pairs with two products of the first postzygotic division were arrested at the same stage after the cycloheximide treatment. Pairs shifted to cycloheximide during the second postzygotic division were arrested in development of macronuclear anlagen and resorption of old macronuclei. The postmeiotic conjugants pulse-treated with cycloheximide (2 h) yielded heterokaryons retaining parental macronuclei (i.e. they exhibited macronuclear retention).
Collapse
Affiliation(s)
- A Kaczanowski
- Department of Cytophysiology, University of Warsaw, Poland
| | | |
Collapse
|
43
|
Abstract
A physical connection between homologs is required for reductional segregation at the first division of meiosis. This connection is usually provided by one or a few well-spaced crossovers. A speculative overview of processes leading to formation of these crossovers is presented.
Collapse
Affiliation(s)
- N Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
44
|
Page AW, Orr-Weaver TL. The Drosophila genes grauzone and cortex are necessary for proper female meiosis. J Cell Sci 1996; 109 ( Pt 7):1707-15. [PMID: 8832393 DOI: 10.1242/jcs.109.7.1707] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Drosophila, normal female meiosis arrests at metaphase I. After meiotic arrest is released by egg activation, the two meiotic divisions are rapidly completed, even in unfertilized eggs. Since little is known about the regulation of the meiotic cell cycle after the meiotic arrest, we screened for mutants that arrest in meiosis. Here we describe the phenotype of eggs laid by sterile mothers mutant for either grauzone or cortex. These eggs arrest in metaphase of meiosis II, and although they can enter into an aberrant anaphase II, they never exit meiosis. Prolonged sister-chromatid cohesion is not the cause of this arrest, since a premature release of sister cohesion does not rescue the meiotic arrest of cortex eggs. Aberrant chromosome segregation at meiosis I was the earliest observable defect, suggesting that grauzone and cortex are first required immediately after egg activation. The cortical microtubules are also defective, remaining in a pre-activated state in activated mutant eggs. The mutations had no observable effect on either male meiosis or mitosis. We believe these genes will provide insight into the developmental regulation of meiosis in a genetically tractable organism.
Collapse
Affiliation(s)
- A W Page
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA
| | | |
Collapse
|
45
|
Abstract
Chromosome ends have been implicated in the meiotic processes of the nematode Caenorhabditis elegans. Cytological observations have shown that chromosome ends attach to the nuclear membrane and adopt kinetochore functions. In this organism, centromeric activity is highly regulated, switching from multiple spindle attachments all along the chromosome during mitotic division to a single attachment during meiosis. C. elegans chromosomes are functionally monocentric during meiosis. Earlier genetic studies demonstrated that the terminal regions of the chromosomes are not equivalent in their meiotic potentials. There are asymmetries in the abilities of the ends to recombine when duplicated or deleted. In addition, mutations in single genes have been identified that mimic the meiotic effects of a terminal truncation of the X chromosome. The recent cloning and characterization of the C. elegans telomeres has provided a starting point for the study of chromosomal elements mediating the meiotic process.
Collapse
Affiliation(s)
- C Wicky
- University of British Columbia, Department of Medical Genetics, Vancouver, Canada
| | | |
Collapse
|
46
|
Abstract
Checkpoints reduce the frequency of errors in cell division by delaying the progress of the cell cycle until certain processes are complete. The spindle-assembly checkpoint prevents the onset of anaphase until a bipolar spindle is present and all chromosomes are attached to the spindle. Evidence from yeast and mammalian cells suggests that kinetochores are at least one source of the signal that stops the cell cycle. Recent studies in budding yeast have begun to define the signal-transduction pathway involved in the spindle-assembly checkpoint, but details of the endpoint of the pathway, where these signals interact with the cell-cycle machinery, remain to be characterized.
Collapse
Affiliation(s)
- W A Wells
- Dept of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA
| |
Collapse
|
47
|
Riparbelli MG, Callaini G. Meiotic spindle organization in fertilized Drosophila oocyte: presence of centrosomal components in the meiotic apparatus. J Cell Sci 1996; 109 ( Pt 5):911-8. [PMID: 8743938 DOI: 10.1242/jcs.109.5.911] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined spindle reorganization during the completion of meiosis in fertilized and unfertilized oocytes of Drosophila using indirect immunofluorescence and laser scanning confocal microscopy. The results defined a complex pathway of spindle assembly during resumption of meiosis, and revealed a transient array of microtubules radiating from the equatorial region of the spindle towards discrete foci in the egg cortex. A monastral array of microtubules was observed between twin metaphase II spindles in fertilized and unfertilized eggs. The microtubules originated from disk-shaped material stained with Rb188 antibody specific for an antigen associated with the centrosome of Drosophila embryos. The Drosophila egg, therefore, contains a maternal pool of centrosomal components undetectable in mature inactivated oocytes. These components nucleate microtubules in a monastral array after activation, but are unable to organize bipolar spindles.
Collapse
Affiliation(s)
- M G Riparbelli
- Department of Evolutionary Biology, University of Siena, Italy
| | | |
Collapse
|
48
|
Barton NR, Goldstein LS. Going mobile: microtubule motors and chromosome segregation. Proc Natl Acad Sci U S A 1996; 93:1735-42. [PMID: 8700828 PMCID: PMC39850 DOI: 10.1073/pnas.93.5.1735] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Proper chromosome segregation in eukaryotes depends upon the mitotic and meiotic spindles, which assemble at the time of cell division and then disassemble upon its completion. These spindles are composed in large part of microtubules, which either generate force by controlled polymerization and depolymerization or transduce force generated by molecular microtubule motors. In this review, we discuss recent insights into chromosome segregation mechanisms gained from the analyses of force generation during meiosis and mitosis. These analyses have demonstrated that members of the kinesin superfamily and the dynein family are essential in all organisms for proper chromosome and spindle behavior. It is also apparent that forces generated by microtubule polymerization and depolymerization are capable of generating forces sufficient for chromosome movement in vitro; whether they do so in vivo is as yet unclear. An important realization that has emerged is that some spindle activities can be accomplished by more than one motor so that functional redundancy is evident. In addition, some meiotic or mitotic movements apparently occur through the cooperative action of independent semiredundant processes. Finally, the molecular characterization of kinesin-related proteins has revealed that variations both in primary sequence and in associations with other proteins can produce motor complexes that may use a variety of mechanisms to transduce force in association with microtubules. Much remains to be learned about the regulation of these activities and the coordination of opposing and cooperative events involved in chromosome segregation; this set of problems represents one of the most important future frontiers of research.
Collapse
Affiliation(s)
- N R Barton
- Howard Hughes Medical Institute, Department of Pharmacology, University of California San Diego, La Jolla 92093-0683, USA
| | | |
Collapse
|
49
|
Abstract
Chromosomes have multiple roles both in controlling the cell assembly and structure of the spindle and in determining chromosomal position on the spindle in many meiotic cells and in some types of mitotic cells. Moreover, functionally significant chromosome-microtubule interactions are not limited to the kinetochore but are also mediated by proteins localized along the arms of chromosomes. Finally, chromosomes also play a crucial role in control of the cell cycle.
Collapse
Affiliation(s)
- K S McKim
- Department of Genetics, University of California at Davis 95616, USA
| | | |
Collapse
|
50
|
Abstract
Recently many exciting advances have been achieved in our understanding of Drosophila meiosis due to combined cytological and genetic approaches. New techniques have permitted the characterization of chromosome position and spindle formation in female meiosis I. The proteins encoded by the nod and ncd genes, two genes known to be needed for the proper partitioning of chromosomes lacking exchange events, have been identified and found to be kinesin-like motors. The effects of mutations in these genes on the spindle and chromosomes, together with the localization of the proteins, have yielded a model for the mechanism of female meiosis I. In male meiosis I, the chromosomal regions responsible for homolog pairing have been resolved to the level of specific DNA sequences. This provides a foundation for elucidating the molecular basis of meiotic pairing. The cytological techniques available in Drosophila also have permitted inroads into the regulation of sister-chromatid segregation. The products of two genes (mei-S332 and ord) essential for sister-chromatid cohesion have been identified recently. Additional advances in understanding Drosophila meiosis are the delineation of a functional centromere by using minichromosome derivatives and the identification of several regulatory genes for the meiotic cell cycle.
Collapse
Affiliation(s)
- T L Orr-Weaver
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge 02142, USA
| |
Collapse
|