1
|
Loera-Lopez AL, Lord MN, Noble EE. Astrocytes of the hippocampus and responses to periprandial neuroendocrine hormones. Physiol Behav 2025; 295:114913. [PMID: 40209869 PMCID: PMC12066093 DOI: 10.1016/j.physbeh.2025.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Astrocytes have risen as stars in the field of energy homeostasis and neurocognitive function, acting as a bridge of communication between the periphery and the brain, providing metabolic support, signaling via gliotransmitters, and altering synaptic communication. Dietary factors and energy state have a profound influence on hippocampal function, and the hippocampus is critical for appropriate behavioral responses associated with feeding and internal hunger cues (being in the fasted or full state), but how the hippocampus senses periprandial status and is impacted by diet is largely unknown. Periprandial hormones act within the hippocampus to modulate processes involved in hippocampal-dependent learning and memory function and astrocytes likely play an important role in modulating this signaling. In addition to periprandial hormones, astrocytes are positioned to respond to changes in circulating nutrients like glucose. Here, we review literature investigating how astrocytes mediate changes in hippocampal function, highlighting astrocyte location, morphology, and function in the context of integrating glucose metabolism, neuroendocrine hormone action, and/or cognitive function in the hippocampus. Specifically, we discuss research findings on the effects of insulin, ghrelin, leptin, and GLP-1 on glucose homeostasis, neural activity, astrocyte function, and behavior in the hippocampus. Because obesogenic diets impact neuroendocrine hormones, astrocytes, and cognitive function, we also discuss the effects of diet and diet-induced obesity on these parameters.
Collapse
Affiliation(s)
- Ana L Loera-Lopez
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Magen N Lord
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Emily E Noble
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA.
| |
Collapse
|
2
|
Morath V, Maurer S, Feuchtinger A, Walser R, Schlapschy M, Bolze F, Metzler T, Bruder J, Steiger K, Walch A, Klingenspor M, Skerra A. Long-Acting Human PASylated Leptin Reaches the Murine Central Nervous System and Offers Potential for Optimized Replacement Therapy. Mol Pharm 2025. [PMID: 40335095 DOI: 10.1021/acs.molpharmaceut.4c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Despite the multifaceted role of leptin for energy homeostasis and its broad therapeutic potential, the FDA/EMA-approved metreleptin constitutes the only leptin drug to date. To translate the promising results from previous studies on murine PASylated leptin with improved solubility and extended plasma half-life using PASylation technology─a biological alternative to PEGylation─we have developed a second-generation human leptin drug candidate and tested it rigorously in vitro and in vivo. To this end, the exposed hydrophobic Trp residue at position 100 in human leptin was replaced by Gln, which, together with the genetic fusion with a 600-residue PAS polypeptide, yielded a protein with high solubility, folding stability and receptor-stimulatory activity. In a pharmacokinetic (PK) study with wild-type mice, this modified human leptin showed an extended plasma half-life of 18.8 ± 3.6 h after subcutaneous (s.c.) injection. Furthermore, leptin-deficient mice were dosed s.c. with the modified human leptin carrying two different PAS fusion tags, PAS#1 or P/A#1, each comprising 600 residues. After only four doses, the disease phenotype, including morbid adiposity, hyperphagia, and hepatic steatosis, was completely reversed by both PASylated leptin versions, but not by the non-PASylated leptin if administered at the same dose. To assess its tissue distribution, P/A(200)-huLeptinW100Q was doubly labeled with two fluorescent dyes, which were specifically attached to the leptin and the PAS moiety, respectively. Analysis of relevant mouse organs by light sheet fluorescence microscopy after clearance revealed colocalized signals in the kidney and liver, thus indicating general stability of the PAS-leptin fusion protein in vivo. However, discrete signals were observed in the hypothalamic region, only with leptin detectable in the choroid plexus, which implies cleavage of the PAS tag during transcytosis across the physiological barriers. This study should pave the way toward a second-generation leptin drug enabling prolonged dosing intervals.
Collapse
Affiliation(s)
- Volker Morath
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Department of Nuclear Medicine, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Stefanie Maurer
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
- EKFZ─Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich 81675, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Rebecca Walser
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Martin Schlapschy
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Florian Bolze
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
- EKFZ─Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich 81675, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Johanna Bruder
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
- EKFZ─Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich 81675, Germany
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
- EKFZ─Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich 81675, Germany
| | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
3
|
Chilamakuri SN, N M, Thalla M, Velayutham R, Lee Y, Cho SM, Jung H, Natesan S. Role of Microneedles for Improved Treatment of Obesity: Progress and Challenges. Mol Pharm 2025; 22:2350-2371. [PMID: 40167034 DOI: 10.1021/acs.molpharmaceut.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Obesity is a global metabolic health epidemic characterized by excessive lipid and fat accumulation, leading to severe conditions such as diabetes, cancer, and cardiovascular disease. Immediate attention and management of obesity-related health risks are most warranted. The imbalance between fat absorption, metabolic rate, and environmental and genetic factors is responsible for obesity. Treatment typically involves lifestyle modifications, pharmacotherapy, and surgery. While lifestyle changes are crucial, effective treatment often necessitates medication as a preferred adjunct strategy. However, medications commonly used, such as oral pharmacotherapy, often show side effects due to systemic exposure and, thus, may not effectively target the intended areas, leading to drug loss. On the other hand, transdermal administration of drugs with microneedle (MN)-based technologies, a painless drug delivery approach with patient compliance, is gaining interest as an alternative obesity treatment, as it directly targets adipose tissue via local delivery, minimizing system exposure and dose reduction. This Review addresses the pathophysiology of obesity, current treatment strategies, challenges in the treatment of obesity using conventional formulations, the importance of the use of nano-based medications through transdermal delivery, and the use of MNs as a promising platform for the effective delivery of nanoparticle-based anti-obesity medications. The potential of combining MNs with stimuli-responsive and non-responsive adjuvant therapies to enhance treatment efficacy and patient outcomes is explored. In addition, the limitations and future perspectives related to the use of MNs for obesity are addressed to highlight the transformative potential of this technology for obesity management. MNs hold promise in precisely delivering anti-obesity drugs while requiring lower dosages and minimizing side effects compared to conventional oral or injectable therapies and ultimately improving the quality of life for individuals struggling with obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Sudarshan Naidu Chilamakuri
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| | - Manasa N
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| | - Maharshi Thalla
- Department of Pharmaceutical Sciences, Texas A&M University, Kingsville, Texas 78363, United States
| | - Ravichandiran Velayutham
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| | - Youjin Lee
- Department of Integrative Biotechnology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Sung Min Cho
- Department of Integrative Biotechnology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 08389, Republic of Korea
- Department of Integrative Biotechnology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Subramanian Natesan
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| |
Collapse
|
4
|
Moura-Assis A, Velloso LA. Leptin 30 years - A chat with Jeffrey M. Friedman. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 68:e240413. [PMID: 40215468 PMCID: PMC11967189 DOI: 10.20945/2359-4292-2024-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 04/15/2025]
Affiliation(s)
| | - Licio A. Velloso
- Centro de Pesquisa em Obesidade e Comorbidades, Universidade Estadual de
Campinas, Campinas, SP, Brasil
- Instituto Nacional de Ciência e Tecnologia em
Neuroimunomodulação, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
5
|
Lin Z, Xuan Y, Zhang Y, Zhou Q, Qiu W. Hypothalamus and brainstem circuits in the regulation of glucose homeostasis. Am J Physiol Endocrinol Metab 2025; 328:E588-E598. [PMID: 40047236 DOI: 10.1152/ajpendo.00474.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/03/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
The central nervous system (CNS) senses and integrates blood glucose status, regulating its levels through communication with peripheral organs. Since traditional wisdom holds that the hypothalamus primarily controls glucose homeostasis, the brainstem, although less studied, has been emerging as a key player in blood glucose metabolism. Although the brainstem is reciprocally wired with the hypothalamus, their interactions are crucial for glucose control. Here, we focus on classic discoveries and recent advancements of hypothalamic and brainstem nodes that regulate glucose homeostasis. Based on the current progress and development for central regulation of blood sugar, we propose that the circuitry and cellular mechanisms for how hypothalamus and brainstem coordinate in blood sugar regulation are crucial; hence, a deeper understanding of both nuclei could shed light on a future cure for diabetes.
Collapse
Affiliation(s)
- Zitian Lin
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yunxin Xuan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yingshi Zhang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Qirui Zhou
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Weiwei Qiu
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| |
Collapse
|
6
|
Szczesna M, Kirsz K, Zieba DA. Pregnancy-induced mechanisms regulating central and peripheral leptin sensitivity: lessons from sheep. Domest Anim Endocrinol 2025; 91:106910. [PMID: 39729914 DOI: 10.1016/j.domaniend.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
This review describes various aspects of the leptin resistance phenomenon and related physiological mechanisms that occur in pregnant sheep. Its main aim is to analyze the mechanisms that determine the occurrence of pregnancy-induced leptin resistance and to investigate the accompanying processes that affect the physiology of pregnancy and lactation in livestock. The main purpose of this analysis was to comprehensively understand the phenomenon of leptin resistance, including the causes of its emergence and its effects on nonrodent organisms.
Collapse
Affiliation(s)
- Malgorzata Szczesna
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture in Krakow, Mickiewicza 21 31-120, Krakow, Poland.
| | - Katarzyna Kirsz
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture in Krakow, Mickiewicza 21 31-120, Krakow, Poland.
| | - Dorota A Zieba
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture in Krakow, Mickiewicza 21 31-120, Krakow, Poland.
| |
Collapse
|
7
|
McLeod K, Datta V, Fuller S. Adipokines as Cardioprotective Factors: BAT Steps Up to the Plate. Biomedicines 2025; 13:710. [PMID: 40149686 PMCID: PMC11940801 DOI: 10.3390/biomedicines13030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiovascular disease is the leading cause of death throughout most of the industrialized world. Metabolic syndrome (MetS) and its associated pathologies are underlying factors in the etiology of cardiovascular disease, as well as a plethora of other maladies which cause excess morbidity and mortality. Adipose tissue (AT) has come to be regarded as a bona fide endocrine organ which secretes specific molecular entities constituting part of a complex web of inter-organ crosstalk that functions as a key determinant of whole-body metabolic phenotype. Brown adipose tissue (BAT) has classically been regarded as a thermogenic tissue exerting its metabolic effects primarily through its capacity to oxidize substrates decoupled from ATP resynthesis, thereby resulting in increased energy expenditure (EE) and heat production. However, in recent years, BAT has begun to receive attention as a secretory organ in its own right. The molecules secreted specifically by BAT have been termed "batokines", and currently available evidence supports the notion that batokines exert favorable metabolic effects on multiple organ systems. While maintenance of healthy body composition by conferring resistance to excessive adiposity is a rather obvious mechanism by which BAT operates via increased EE, effects on critical organs such as the heart remain unclear. This narrative review focuses on four types of batokines (FGF21, neuregulin 4, 12,13-diHOME, and BAT-derived microRNAs) for which evidence of modulation of cardiovascular function exists in the context of pathological states such as hypertension, atherosclerosis, and ischemia/reperfusion injury. Given the overwhelming burden of cardiometabolic disease, further study of the functions of BAT and its secretome is warranted and will intensify in the future.
Collapse
Affiliation(s)
- Keely McLeod
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA; (K.M.); (V.D.)
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Victoria Datta
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA; (K.M.); (V.D.)
| | - Scott Fuller
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA; (K.M.); (V.D.)
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| |
Collapse
|
8
|
Tan B, Hedbacker K, Kelly L, Zhang Z, Moura-Assis A, Luo JD, Rabinowitz JD, Friedman JM. A cellular and molecular basis of leptin resistance. Cell Metab 2025; 37:723-741.e6. [PMID: 40043692 DOI: 10.1016/j.cmet.2025.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 05/13/2025]
Abstract
Similar to most humans with obesity, diet-induced obese (DIO) mice have high leptin levels and fail to respond to the exogenous hormone, suggesting that their obesity is caused by leptin resistance, the pathogenesis of which is unknown. We found that leptin treatment reduced plasma levels of leucine and methionine, mTOR-activating ligands, leading us to hypothesize that chronic mTOR activation might reduce leptin signaling. Rapamycin, an mTOR inhibitor, reduced fat mass and increased leptin sensitivity in DIO mice but not in mice with defects in leptin signaling. Rapamycin restored leptin's actions on POMC neurons and failed to reduce the weight of mice with defects in melanocortin signaling. mTOR activation in POMC neurons caused leptin resistance, whereas POMC-specific mutations in mTOR activators decreased weight gain of DIO mice. Thus, increased mTOR activity in POMC neurons is necessary and sufficient for the development of leptin resistance in DIO mice, establishing a key pathogenic mechanism leading to obesity.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Kristina Hedbacker
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Leah Kelly
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Zhaoyue Zhang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alexandre Moura-Assis
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
9
|
Friedman JM. On the causes of obesity and its treatment: The end of the beginning. Cell Metab 2025; 37:570-577. [PMID: 40043689 DOI: 10.1016/j.cmet.2025.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 05/13/2025]
Abstract
Over the last 30 years, our understanding of the causes of obesity has been transformed, and new, highly effective medicines for reducing weight have been developed. This remarkable progress marks an end and a beginning. By establishing that obesity is a biologic disorder amenable to scientific inquiry and rational drug development, simplistic notions about its causes and treatment should be laid to rest. The future holds the promise that additional therapeutic approaches for inducing or maintaining weight loss will be developed, and that these treatments will be tailored to different subgroups to potentially address the pathogenic mechanisms.
Collapse
Affiliation(s)
- Jeffrey M Friedman
- Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
10
|
Park HK, Shim YS. Hypertension prevalence in Korean adolescents according to parental hypertension: data from the Korea National Health and Nutrition Survey. Hypertens Res 2025; 48:1003-1011. [PMID: 39578643 DOI: 10.1038/s41440-024-02000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024]
Abstract
The prevalence of hypertension among children and adolescents has risen to 4% globally in recent decades, presenting a significant public health challenge due to its association with increased cardiovascular risks. Existing research on the transmission of hypertension risk between parents and offspring lacks comprehensive data from general population-based samples with clinically collected measurements spanning generations. This study utilized nationally representative data to assess the risk of developing hypertension in offspring based on parental hypertension status, employing standardized blood pressure measurements rather than relying solely on historical data. A positive correlation exists between the increasing number of hypertensive parents and the risk of hypertension development in offspring. The prevalence of hypertension among individuals aged 10 to 18 years did not substantially increase with age. Adolescents whose parents were affected by hypertension exhibited a 2-fold greater prevalence of hypertension compared to the general population with the same age, with approximately a quarter of boys with both hypertensive parents having hypertension. Among nonobese individuals, the risk of hypertension associated with parental hypertension was comparable to that observed in obese subjects. Blood pressure monitoring from the early stage of life would benefit adolescents with hypertensive parents.
Collapse
Affiliation(s)
- Hong Kyu Park
- Department of Pediatrics, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Young Suk Shim
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
11
|
Flores-Cordero JA, Aranaz-Murillo A, Vilariño-García T, Pérez-Pérez A, Izquierdo G, Flores-Campos R, Hontecillas-Prieto L, García-Domínguez DJ, Sánchez-Margalet V. Leptin and Leptin Signaling in Multiple Sclerosis: A Narrative Review. Neuromolecular Med 2025; 27:19. [PMID: 40019662 PMCID: PMC11870953 DOI: 10.1007/s12017-025-08842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Obesity, a pandemic health problem, is now considered as a chronic inflammatory state, related to many autoimmune diseases, such as multiple sclerosis. Thus, adipokines, inflammatory mediators secreted by adipose tissue, play an important role modulating the immune response. In this context, obesity, especially during adolescent age, seems to be a key factor for the development of multiple sclerosis. Leptin, the main pro-inflammatory adipokine secreted by the adipose tissue, has been found increased in patients with multiple sclerosis and is able to regulate the immune system promoting a pro-inflammatory response. Leptin signaling in both innate and adaptative immune cells might have immunomodulatory effects in the context of multiple sclerosis. In this way, leptin has been found to produce a Th1 and Th17 response, increasing M1 macrophages and decreasing regulatory T cells and Th2 response. Moreover, circulating inflammatory adipokines, such as leptin, have been found in people with multiple sclerosis. In the present work, we are reviewing literature to update the body of knowledge regarding the role of obesity and leptin in multiple sclerosis.
Collapse
Affiliation(s)
- Juan Antonio Flores-Cordero
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Medical School, University of Seville, Seville, Spain
| | - Amalia Aranaz-Murillo
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Medical School, University of Seville, Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Medical School, Virgen del Rocio University Hospital, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Medical School, University of Seville, Seville, Spain
| | - Guillermo Izquierdo
- Neurology Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Rocío Flores-Campos
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Medical School, University of Seville, Seville, Spain
- Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Medical School, University of Seville, Seville, Spain
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío-Virgen Macarena University Hospital/CSIC/University of Seville, Seville, Spain
| | - Daniel J García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Medical School, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío-Virgen Macarena University Hospital/CSIC/University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Medical School, University of Seville, Seville, Spain.
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain.
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío-Virgen Macarena University Hospital/CSIC/University of Seville, Seville, Spain.
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Av. Sánchez Pizjuan 4, 41009, Seville, Spain.
| |
Collapse
|
12
|
Fu W, Lai Y, Li K, Yang Y, Guo X, Gong Q, Zhou X, Zhou L, Liu C, Zhang Z, So J, Zhang Y, Huang L, Lu G, Yi C, Wang Q, Fan C, Liu C, Wang J, Yu H, Zhao Y, Huang T, Roh HC, Liu T, Tang H, Qi J, Xu M, Zheng Y, Huang H, Li J. Neurotensin-neurotensin receptor 2 signaling in adipocytes suppresses food intake through regulating ceramide metabolism. Cell Res 2025; 35:117-131. [PMID: 39748047 PMCID: PMC11770130 DOI: 10.1038/s41422-024-01038-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025] Open
Abstract
Neurotensin (NTS) is a secretory peptide produced by lymphatic endothelial cells. Our previous study revealed that NTS suppressed the activity of brown adipose tissue via interactions with NTSR2. In the current study, we found that the depletion of Ntsr2 in white adipocytes upregulated food intake, while the local treatment of NTS suppressed food intake. Our mechanistic study revealed that suppression of NTS-NTSR2 signaling enhanced the phosphorylation of ceramide synthetase 2, increased the abundance of its products ceramides C20-C24, and downregulated the production of GDF15 in white adipose tissues, which was responsible for the elevation of food intake. We discovered a potential causal and positive correlation between serum C20-C24 ceramide levels and human food intake in four populations with different ages and ethnic backgrounds. Together, our study shows that NTS-NTSR2 signaling in white adipocytes can regulate food intake via its direct control of lipid metabolism and production of GDF15. The ceramides C20-C24 are key factors regulating food intake in mammals.
Collapse
Affiliation(s)
- Wei Fu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology, The First Affiliated Hospital and Clinical Medicine College, Henan University of Science and Technology, Luoyang, Henan, China
- National Center for Clinical Research of Metabolic Diseases, Luoyang Center for Endocrinology and Metabolism, Luoyang, Henan, China
- Diabetic Nephropathy Academician Workstation of Henan Province, Luoyang, Henan, China
| | - Yuanting Lai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kexin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qifan Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liying Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cenxi Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jisun So
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yufeng Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangxing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyou Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qichu Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenyu Fan
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Chao Liu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Jiaxing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Haiyi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Yimin Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianping Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - He Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Jabbarli M, Senkal N, Tuncel FC, Oyaci Y, Guzel Dirim M, Kose M, Pehlivan S, Medetalibeyoglu A. LEP rs7799039 and LEPR rs1137101 gene variants are not associated with clinical features in patients with metabolic syndrome in the Turkish population. Lab Med 2025; 56:37-43. [PMID: 39136228 DOI: 10.1093/labmed/lmae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVES Genetic predisposition plays a role in the etiology of metabolic syndrome (MetS), an important health problem worldwide. Leptin (LEP), produced by adipose tissue, plays a crucial role in the development of MetS. In this study, we evaluated the effects of LEP and LEP receptor (LEPR) variants on clinical findings and risk of developing MetS in the Turkish population. METHODS A total of 320 patients were included in the study, of whom 150 were patients with MetS and 170 were healthy controls. DNA was extracted from blood samples. LEP rs7799039 and LEPR rs1137101 variants were genotyped using the polymerase chain reaction-based restriction fragment length polymorphism method. The genotype distributions of these variants and clinical and laboratory findings were compared. RESULTS The LEP rs7799039 GA and AA genotypes and A allele frequencies were higher in participants with MetS than in the control group. For LEP rs7799039, the genotype AA-GA was higher in males, and the GG genotype was higher in females. On analyzing the clinical outcomes associated with these variants, it was observed that individuals possessing LEP rs7799039 GA and AA genotypes displayed elevated levels of triglycerides. In addition, those with the AG-GG genotype of LEPR rs1137101 had lower mean hemoglobin levels. CONCLUSION Our results showed that the LEP rs7799039 and LEPR rs1137101 variants may be associated with both the risk of MetS development and clinical findings. Among the various contributors to MetS, a genetic predisposition is commonly recognized as the primary cause.
Collapse
Affiliation(s)
- Marjan Jabbarli
- Istanbul University, Istanbul Medical Faculty, Department of Internal Medicine, Istanbul, Turkey
| | - Naci Senkal
- Istanbul University, Istanbul Medical Faculty, Department of Internal Medicine, Istanbul, Turkey
- Istanbul University, Institute of Graduate Studies in Health Sciences, Molecular Medicine, Istanbul, Turkey
| | - Fatima Ceren Tuncel
- Istanbul University, Istanbul Medical Faculty, Department of Medical Biology, Istanbul, Turkey
| | - Yasemin Oyaci
- Istanbul University, Istanbul Medical Faculty, Department of Medical Biology, Istanbul, Turkey
| | - Merve Guzel Dirim
- Istanbul University, Istanbul Medical Faculty, Department of Internal Medicine, Istanbul, Turkey
| | - Murat Kose
- Istanbul University, Istanbul Medical Faculty, Department of Internal Medicine, Istanbul, Turkey
| | - Sacide Pehlivan
- Istanbul University, Istanbul Medical Faculty, Department of Medical Biology, Istanbul, Turkey
| | - Alpay Medetalibeyoglu
- Istanbul University, Istanbul Medical Faculty, Department of Internal Medicine, Istanbul, Turkey
- Northwestern University, Feinberg School of Medicine, Chicago, IL, US
| |
Collapse
|
14
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Nath D, Barbhuiya PA, Sen S, Pathak MP. A Review on In-vivo and In-vitro Models of Obesity and Obesity-Associated Co-Morbidities. Endocr Metab Immune Disord Drug Targets 2025; 25:458-478. [PMID: 39136512 DOI: 10.2174/0118715303312932240801073903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Obesity is becoming a global pandemic with pandemic proportions. According to the WHO estimates, there were over 1.9 billion overweight individuals and over 650 million obese adults in the globe in 2016. In recent years, scientists have encountered difficulties in choosing acceptable animal models, leading to a multitude of contradicting aspects and incorrect outcomes. This review comprehensively evaluates different screening models of obesity and obesity-associated comorbidities to reveal the advantages and disadvantages/limitations of each model while also mentioning the time duration each model requires to induce obesity. METHODS For this review, the authors have gone through a vast number of article sources from different scientific databases, such as Google Scholar, Web of Science, Medline, and PubMed. RESULTS In-vivo models used to represent a variety of obesity-inducing processes, such as diet-induced, drug-induced, surgical, chemical, stress-induced, and genetic models, are discussed. Animal cell models are examined with an emphasis on their use in understanding the molecular causes of obesity, for which we discussed in depth the important cell lines, including 3T3-L1, OP9, 3T3-F442A, and C3H10T1/2. Screening models of obesity-associated co-morbidities like diabetes, asthma, cardiovascular disorders, cancer, and polycystic ovarian syndrome (PCOS) were discussed, which provided light on the complex interactions between obesity and numerous health problems. CONCLUSION Mimicking obesity in an animal model reflects multifactorial aspects is a matter of challenge. Future studies could address the ethical issues surrounding the use of animals in obesity research as well as investigate newly developed models, such as non-mammalian models. In conclusion, improving our knowledge and management of obesity and related health problems will require ongoing assessment and improvement of study models.
Collapse
Affiliation(s)
- Digbijoy Nath
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Pervej Alom Barbhuiya
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| |
Collapse
|
17
|
Polex-Wolf J, Deibler K, Hogendorf WFJ, Bau S, Glendorf T, Stidsen CE, Tornøe CW, Tiantang D, Lundh S, Pyke C, Tomlinson AJ, Kernodle S, Magrisso IJ, Conde-Frieboes KW, Myers MG, Knudsen LB, Seeley RJ. Glp1r-Lepr coexpressing neurons modulate the suppression of food intake and body weight by a GLP-1/leptin dual agonist. Sci Transl Med 2024; 16:eadk4908. [PMID: 39630884 DOI: 10.1126/scitranslmed.adk4908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/20/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) and leptin signal recent feeding and long-term energy stores, respectively, and play complementary roles in the modulation of energy balance. Previous work using single-cell techniques in mice revealed the existence of a population of leptin receptor (Lepr)-containing dorsomedial hypothalamus (DMH) neurons marked by the expression of GLP-1 receptor (Glp1r; LepRGlp1r neurons) that play important roles in the control of feeding and body weight by leptin. Here, we demonstrate the existence of a population of LepRGlp1r neurons in the DMHs of nonhuman primates (NHPs), suggesting the potential translational relevance of these neurons. Consequently, we developed a GLP-1R/LepR dual agonist and demonstrated the physiological activity of both components in vivo using leptin-deficient and Lepr-deficient murine models. We further found roles for LepRGlp1r neurons in mediating the dual agonist's efficacy on food intake and body weight loss. Ablating Lepr in Glp1r-expressing neurons (LeprGlp1rKO mice) abrogated the suppression of food intake by the dual agonist. Furthermore, reactivation of Glp1r expression in Lepr neurons on an otherwise Glp1r-null background (Glp1rLeprRe mice) was sufficient to permit the suppression of food intake and body weight by the dual agonist. Hence, LepRGlp1r neurons represent targets for a GLP-1R/LepR dual agonist that potently reduces food intake and body weight.
Collapse
Affiliation(s)
- Joseph Polex-Wolf
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Kristine Deibler
- Novo Nordisk Research Center Seattle, Novo Nordisk A/S, 530 Fairview Ave N #5000, Seattle, WA 98109, USA
| | | | - Sarah Bau
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Tine Glendorf
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | | | | | - Dong Tiantang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Shengmingyuan West Ring Rd, Changping District, Beijing, 102206 China
| | - Sofia Lundh
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Charles Pyke
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Abigail J Tomlinson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stace Kernodle
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lotte Bjerre Knudsen
- Chief Scientific Advisor Office, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
do Carmo JM, Hall JE, Furukawa LNS, Woronik V, Dai X, Ladnier E, Wang Z, Omoto ACM, Mouton A, Li X, Luna-Suarez EM, da Silva AA. Chronic central nervous system leptin administration attenuates kidney dysfunction and injury in a model of ischemia/reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F957-F966. [PMID: 39361725 PMCID: PMC11687842 DOI: 10.1152/ajprenal.00158.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
In the present study, we examined whether chronic intracerebroventricular (ICV) leptin administration protects against ischemia/reperfusion (I/R)-induced acute kidney injury (AKI). Twelve-week-old male rats were implanted with an ICV cannula into the right lateral ventricle, and 8-10 days after surgery, leptin (0.021 µg/h, n = 8) or saline vehicle (0.5 µL/h, n = 8) was infused via osmotic minipump connected to the ICV cannula for 12 days. On day 8 of leptin or vehicle infusion, rats were submitted to unilateral ischemia/reperfusion (UIR) by clamping the left pedicle for 30 min. To control for leptin-induced reductions in food intake, the vehicle-treated group was pair-fed (UIR-PF) to match the same amount of food consumed by leptin-treated (UIR-Leptin) rats. On the 12th day of leptin or vehicle infusion (fourth day after AKI), single-left kidney glomerular filtration rate (GFR) was measured, blood samples were collected to quantify white blood cells, and kidneys were collected for histological assessment of injury. UIR-Leptin-treated rats showed reduced right and left kidney weights (right: 1,040 ± 24 vs. 1,281 ± 36 mg; left: 1,127 ± 71 vs. 1,707 ± 45 mg, for UIR-Leptin and UIR-PF, respectively). ICV leptin infusion improved GFR (0.50 ± 0.06 vs. 0.13 ± 0.03 mL/min/g kidney wt) and reduced kidney injury scores. ICV leptin treatment also attenuated the reduction in circulating adiponectin levels that was observed in UIR-PF rats and increased the circulating white blood cells count compared with UIR-PF rats (16.3 ± 1.3 vs. 9.8 ± 0.6 k/µL). Therefore, we show that leptin, via its actions on the central nervous system, confers significant protection against major kidney dysfunction and injury in a model of ischemia/reperfusion-induced AKI.NEW & NOTEWORTHY A major new finding of this study is that chronic activation of leptin receptors in the CNS markedly attenuates acute kidney injury and protects against severe renal dysfunction after ischemia/reperfusion, independently of leptin's anorexic effects.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - John E Hall
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Luzia N S Furukawa
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Viktoria Woronik
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Xuemei Dai
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Emily Ladnier
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zhen Wang
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ana C M Omoto
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alan Mouton
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Xuan Li
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Emilio M Luna-Suarez
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
19
|
Perakakis N, Mantzoros CS. Evidence from clinical studies of leptin: current and future clinical applications in humans. Metabolism 2024; 161:156053. [PMID: 39490439 DOI: 10.1016/j.metabol.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (REDS), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Christos S Mantzoros
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Maxwell ND, Smiley CE, Sadek AT, Loyo-Rosado FZ, Giles DC, Macht VA, Woodruff JL, Taylor DL, Glass VM, Wilson SP, Reagan LP, Fadel JR, Grillo CA. Leptin Activation of Dorsal Raphe Neurons Inhibits Feeding Behavior. Diabetes 2024; 73:1821-1831. [PMID: 39167681 PMCID: PMC11493758 DOI: 10.2337/db24-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Leptin is a homeostatic regulatory element that signals the presence of adipocyte energy stores, reduces food intake, and increases energy expenditure. Similarly, serotonin (5-HT), a signaling molecule found in both the central and peripheral nervous systems, also controls food intake. Using neuronal tract tracing, pharmacologic and optogenetic approaches, and in vivo microdialysis, combined with behavioral end points, we tested the hypothesis that leptin controls food intake not only by activating hypothalamic leptin receptors (LepRs) but also through activation of LepRs expressed by serotonergic raphe neurons that send projections to the arcuate (ARC). We showed that microinjection of leptin directly into the dorsal raphe nucleus (DRN) reduced food intake in rats. This effect was mediated by LepR-expressing neurons in the DRN, because selective optogenetic activation of these neurons at either their DRN cell bodies or their ARC terminals reduced food intake. Anatomically, we identified a unique population of serotonergic raphe neurons expressing LepRs that send projections to the ARC. Finally, by using in vivo microdialysis, we showed that leptin administration to the DRN increased 5-HT efflux into the ARC, and specific antagonism of the 5-HT2C receptors in the ARC diminished the leptin anorectic effect. Overall, this study identified a novel circuit for leptin-mediated control of food intake through a DRN-ARC pathway, identifying a new level of interaction between leptin and serotonin to control food intake. Characterization of this new pathway creates opportunities for understanding how the brain controls eating behavior and opens alternative routes for the treatment of eating disorders. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Nicholas David Maxwell
- School of Medicine, University of South Carolina, Columbia, SC
- School of Medicine, Duke University, Durham, NC
| | - Cora Erin Smiley
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | | | | | | | | | | | | | | | | | - Lawrence Patrick Reagan
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | | | - Claudia Alejandra Grillo
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| |
Collapse
|
21
|
Xu W, Wang Z, Tao Z, Li K, Lu L. Discover QTLs for the level of blood components in Shaoxing duck using GWAS and haplotype sharing analysis. Anim Biotechnol 2024; 35:2390940. [PMID: 39137276 DOI: 10.1080/10495398.2024.2390940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Blood composition is indicative of health-related traits such as immunity and metabolism. The use of molecular genetics to investigate alterations in these attributes in laying ducks is a novel approach. Our objective was to employ genome - wide association studies (GWAS) and haplotype - sharing analysis to identify genomic regions and potential genes associated with 11 blood components in Shaoxing ducks. Our findings revealed 35 SNPs and 1 SNP associated with low-density lipoprotein cholesterol (LDL) and globulin (GLB), respectively. We identified 36 putative candidate genes for the LDL trait in close proximity to major QTLs and key loci. Based on their biochemical and physiological properties, TRA2A, NPY, ARHGEF26, DHX36, and AADAC are the strongest putative candidate genes. Through linkage disequilibrium analysis and haplotype sharing analysis, we identified three haplotypes and one haplotype, respectively, that were significantly linked with LDL and GLB. These haplotypes could be selected as potential candidate haplotypes for molecular breeding of Shaoxing ducks. Additionally, we utilized a bootstrap test to verify the reliability of GWAS with small experimental samples. The test can be accessed at https://github.com/xuwenwu24/Bootstrap-test.
Collapse
Affiliation(s)
- Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenzhen Wang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zeng Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kui Li
- Zhejiang Animal Husbandry Technology Extension and Breeding Livestock & Poultry Testing Station, Hangzhou, Zhejiang, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
22
|
Friedman MI, Sørensen TIA, Taubes G, Lund J, Ludwig DS. Trapped fat: Obesity pathogenesis as an intrinsic disorder in metabolic fuel partitioning. Obes Rev 2024; 25:e13795. [PMID: 38961319 DOI: 10.1111/obr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Our understanding of the pathophysiology of obesity remains at best incomplete despite a century of research. During this time, two alternative perspectives have helped shape thinking about the etiology of the disorder. The currently prevailing view holds that excessive fat accumulation results because energy intake exceeds energy expenditure, with excessive food consumption being the primary cause of the imbalance. The other perspective attributes the initiating cause of obesity to intrinsic metabolic defects that shift fuel partitioning from pathways for mobilization and oxidation to those for synthesis and storage. The resulting reduction in fuel oxidation and trapping of energy in adipose tissue drives a compensatory increase in energy intake and, under some conditions, a decrease in expenditure. This theory of obesity pathogenesis has historically garnered relatively less attention despite its pedigree. Here, we present an updated comprehensive formulation of the fuel partitioning theory, focused on evidence gathered over the last 80 years from major animal models of obesity showing a redirection of fuel fluxes from oxidation to storage and accumulation of excess body fat with energy intake equal to or even less than that of lean animals. The aim is to inform current discussions about the etiology of obesity and by so doing, help lay new foundations for the design of more efficacious approaches to obesity research, treatment and prevention.
Collapse
Affiliation(s)
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Center for Childhood Health, Copenhagen, Denmark
| | | | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
23
|
Appenroth D, Cázarez-Márquez F. Seasonal food intake and energy balance: Neuronal and non-neuronal control mechanisms. Neuropharmacology 2024; 257:110050. [PMID: 38914372 DOI: 10.1016/j.neuropharm.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Animals inhabiting temperate and high latitudes undergo drastic seasonal changes in energy storage, facilitated by changes in food intake and body mass. Those seasonal changes in the animal's biology are not mere consequences of environmental energy availability but are anticipatory responses to the energetic requirements of the upcoming season and are actively timed by tracking the annual progression in photoperiod. In this review, we discuss how photoperiod is used to control energy balance seasonally and how this is distinct from energy homeostasis. Most notably, we suggest that photoperiodic control of food intake and body mass does not originate from the arcuate nucleus, as for homeostatic appetite control, but is rather to be found in hypothalamic tanycytes. Tanycytes are specialized ependymal cells lining the third ventricle, which can sense metabolites from the cerebrospinal fluid (e.g. glucose) and can control access of circulating signals to the brain. They are also essential in conveying time-of-year information by integrating photoperiod and altering hypothalamic thyroid metabolism, a feature that is conserved in seasonal vertebrates and connects to seasonal breeding and metabolism. We also discuss how homeostatic feedback signals are handled during times of rapid energetic transitions. Studies on leptin in seasonal mammals suggest a seasonal shift in central sensitivity and blood-brain transport, which might be facilitated by tanycytes. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Fernando Cázarez-Márquez
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
24
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
25
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
26
|
Angelidi AM, Stefanakis K, Chou SH, Valenzuela-Vallejo L, Dipla K, Boutari C, Ntoskas K, Tokmakidis P, Kokkinos A, Goulis DG, Papadaki HA, Mantzoros CS. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr Rev 2024; 45:676-708. [PMID: 38488566 DOI: 10.1210/endrev/bnae011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 09/18/2024]
Abstract
Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on nonpharmacological, behavioral, and lifestyle modifications that target its underlying cause-energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Sharon H Chou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Serres 62100, Greece
| | - Chrysoula Boutari
- Second Propaedeutic Department of Internal Medicine, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Konstantinos Ntoskas
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Panagiotis Tokmakidis
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Alexander Kokkinos
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion 71500, Greece
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Farooqi IS, Xu Y. Translational potential of mouse models of human metabolic disease. Cell 2024; 187:4129-4143. [PMID: 39067442 DOI: 10.1016/j.cell.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Obesity causes significant morbidity and mortality globally. Research in the last three decades has delivered a step-change in our understanding of the fundamental mechanisms that regulate energy homeostasis, building on foundational discoveries in mouse models of metabolic disease. However, not all findings made in rodents have translated to humans, hampering drug discovery in this field. Here, we review how studies in mice and humans have informed our current framework for understanding energy homeostasis, discuss their challenges and limitations, and offer a perspective on how human studies may play an increasingly important role in the discovery of disease mechanisms and identification of therapeutic targets in the future.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Rusu CC, Kacso I, Moldovan D, Potra A, Tirinescu D, Ticala M, Orasan R, Budurea C, Anton F, Valea A, Bondor CI, Carsote M. Leptin Is Associated with Testosterone, Nutritional Markers, and Vascular Muscular Dysfunction in Chronic Kidney Disease. Int J Mol Sci 2024; 25:7646. [PMID: 39062887 PMCID: PMC11277084 DOI: 10.3390/ijms25147646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic kidney disease (CKD) causes specific hormonal disturbances, such as variations in leptin and testosterone levels and function. These disturbances can promote errors in signaling interaction and cellular information processing and can be implicated in the pathogenesis of atherosclerosis. This study investigates the factors that affect leptin in CKD patients and examines how leptin is related to markers of vascular disease. We conducted a cross-sectional study of 162 patients with CKD in pre-dialysis and dialysis stages. We recorded clinical and laboratory data, including leptin, testosterone, and subclinical atherosclerosis markers like brachial-ankle pulse wave velocity (ba PWV) in pre-dialysis CKD patients and flow-mediated vasodilation (FMD) and nitroglycerin-mediated vasodilation (NMD) in hemodialysis (HD) patients. Leptin was significantly correlated with testosterone in CKD pre-dialysis stages (p < 0.001) and also in HD (p = 0.026), with adipose tissue mass in pre-dialysis stages (p < 0.001), and also in HD (p < 0.001). In women HD patients, leptin correlated with NMD (p = 0.039; r = -0.379); in all HD patients, leptin correlated with C reactive protein (p = 0.007; r = 0.28) and parathormone (p = 0.039; r = -0.220). Our research emphasizes the connection between leptin, adipose tissue, and testosterone in all stages of CKD. Leptin was associated with NMD in HD women and correlated with inflammatory syndrome and parathyroid hormone in all HD patients.
Collapse
Affiliation(s)
- Crina Claudia Rusu
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ina Kacso
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Diana Moldovan
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alina Potra
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Dacian Tirinescu
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Maria Ticala
- Department of Nephrology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Remus Orasan
- Nefromed Dialysis Center, 40 Ana Aslan Street, 400528 Cluj-Napoca, Romania
| | - Cristian Budurea
- Nefromed Dialysis Center, 40 Ana Aslan Street, 400528 Cluj-Napoca, Romania
| | - Florin Anton
- Department of Cardiology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
| | - Ana Valea
- Department of Endocrinology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
| | - Cosmina Ioana Bondor
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Mara Carsote
- Department of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, Dionisie Lupu Street, Number 37, Sector 1, 020021 Bucharest, Romania
- Department of Clinical Endocrinology V, "C.I. Parhon" National Institute of Endocrinology, Aviatorilor Ave 34-36, Sector 1, 011863 Bucharest, Romania
| |
Collapse
|
29
|
Chu NHS, Chow E, Chan JCN. The Therapeutic Potential of the Specific Intestinal Microbiome (SIM) Diet on Metabolic Diseases. BIOLOGY 2024; 13:498. [PMID: 39056692 PMCID: PMC11273990 DOI: 10.3390/biology13070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Exploring the intricate crosstalk between dietary prebiotics and the specific intestinal microbiome (SIM) is intriguing in explaining the mechanisms of current successful dietary interventions, including the Mediterranean diet and high-fiber diet. This knowledge forms a robust basis for developing a new natural food therapy. The SIM diet can be measured and evaluated to establish a reliable basis for the management of metabolic diseases, such as diabetes, metabolic (dysfunction)-associated fatty liver disease (MAFLD), obesity, and metabolic cardiovascular disease. This review aims to delve into the existing body of research to shed light on the promising developments of possible dietary prebiotics in this field and explore the implications for clinical practice. The exciting part is the crosstalk of diet, microbiota, and gut-organ interactions facilitated by producing short-chain fatty acids, bile acids, and subsequent metabolite production. These metabolic-related microorganisms include Butyricicoccus, Akkermansia, and Phascolarctobacterium. The SIM diet, rather than supplementation, holds the promise of significant health consequences via the prolonged reaction with the gut microbiome. Most importantly, the literature consistently reports no adverse effects, providing a strong foundation for the safety of this dietary therapy.
Collapse
Affiliation(s)
- Natural H. S. Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
30
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
31
|
Pignet AL, Schellnegger M, Hecker A, Kamolz LP, Kotzbeck P. Modeling Wound Chronicity In Vivo: The Translational Challenge to Capture the Complexity of Chronic Wounds. J Invest Dermatol 2024; 144:1454-1470. [PMID: 38483357 DOI: 10.1016/j.jid.2023.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 06/24/2024]
Abstract
In an aging society with common lifestyle-associated health issues such as obesity and diabetes, chronic wounds pose a frequent challenge that physicians face in everyday clinical practice. Therefore, nonhealing wounds have attracted much scientific attention. Several in vitro and in vivo models have been introduced to deepen our understanding of chronic wound pathogenesis and amplify therapeutic strategies. Understanding how wounds become chronic will provide insights to reverse or avoid chronicity. Although choosing a suitable model is of utmost importance to receive valuable outcomes, an ideal in vivo model capturing the complexity of chronic wounds is still missing and remains a translational challenge. This review discusses the most relevant mammalian models for wound healing studies and provides guidance on how to implement the hallmarks of chronic wounds. It highlights the benefits and pitfalls of established models and maps out future avenues for research.
Collapse
Affiliation(s)
- Anna-Lisa Pignet
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Marlies Schellnegger
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria.
| | - Andrzej Hecker
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria
| | - Petra Kotzbeck
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| |
Collapse
|
32
|
Vijayashankar U, Ramashetty R, Rajeshekara M, Vishwanath N, Yadav AK, Prashant A, Lokeshwaraiah R. Leptin and ghrelin dynamics: unraveling their influence on food intake, energy balance, and the pathophysiology of type 2 diabetes mellitus. J Diabetes Metab Disord 2024; 23:427-440. [PMID: 38932792 PMCID: PMC11196531 DOI: 10.1007/s40200-024-01418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/12/2024] [Indexed: 06/28/2024]
Abstract
Purpose Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and impaired glucose homeostasis. In recent years, there has been growing interest in the role of hunger and satiety hormones such as ghrelin and leptin in the development and progression of T2DM. In this context, the present literature review aims to provide a comprehensive overview of the current understanding of how ghrelin and leptin influences food intake and maintain energy balance and its implications in the pathophysiology of T2DM. Methods A thorough literature search was performed using PubMed and Google Scholar to choose the studies that associated leptin and ghrelin with T2DM. Original articles and reviews were included, letters to editors and case reports were excluded. Results This narrative review article provides a comprehensive summary on mechanism of action of leptin and ghrelin, its association with obesity and T2DM, how they regulate energy and glucose homeostasis and potential therapeutic implications of leptin and ghrelin in managing T2DM. Conclusion Ghrelin, known for its appetite-stimulating effects, and leptin, a hormone involved in the regulation of energy balance, have been implicated in insulin resistance and glucose metabolism. Understanding the complexities of ghrelin and leptin interactions in the context of T2DM may offer insights into novel therapeutic strategies for this prevalent metabolic disorder. Further research is warranted to elucidate the molecular mechanisms underlying these hormone actions and to explore their clinical implications for T2DM prevention and management.
Collapse
Affiliation(s)
- Uma Vijayashankar
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| | - Rajalakshmi Ramashetty
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| | - Mahesh Rajeshekara
- Department of Surgical Gastroenterology, Bangalore Medical College and Research Institute, Bangalore, 560002 India
| | - Nagashree Vishwanath
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| | - Anshu Kumar Yadav
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru-15, Mysuru, 570015 India
| | - Akila Prashant
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru-15, Mysuru, 570015 India
| | - Rajeshwari Lokeshwaraiah
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| |
Collapse
|
33
|
Męczekalski B, Niwczyk O, Battipaglia C, Troia L, Kostrzak A, Bala G, Maciejewska-Jeske M, Genazzani AD, Luisi S. Neuroendocrine disturbances in women with functional hypothalamic amenorrhea: an update and future directions. Endocrine 2024; 84:769-785. [PMID: 38062345 PMCID: PMC11208264 DOI: 10.1007/s12020-023-03619-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of both primary and secondary amenorrhea in women of reproductive age. It is characterized by chronic anovulation and the absence of menses that appear as a result of stressors such as eating disorders, excessive exercise, or psychological distress. FHA is presumed to be a functional disruption in the pulsatile secretion of hypothalamic gonadotropin-releasing hormone, which in turn impairs the release of gonadotropin. Hypoestrogenism is observed due to the absence of ovarian follicle recruitment. Numerous neurotransmitters have been identified which play an important role in the regulation of the hypothalamic-pituitary-ovarian axis and of which the impairment would contribute to developing FHA. In this review we summarize the most recent advances in the identification of contributing neuroendocrine disturbances and relevant contributors to the development of FHA.
Collapse
Affiliation(s)
- Błażej Męczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Libera Troia
- Department of Gynecology and Obstetrics, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Gregory Bala
- UCD School of Medicine University College Dublin, D04 V1W8, Dublin, Ireland
| | | | - Alessandro D Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Luisi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
34
|
Vigouroux C, Mosbah H, Vatier C. Leptin replacement therapy in the management of lipodystrophy syndromes. ANNALES D'ENDOCRINOLOGIE 2024; 85:201-204. [PMID: 38871500 DOI: 10.1016/j.ando.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Lipodystrophy syndromes are rare diseases of genetic or acquired origin, characterized by quantitative and qualitative defects in adipose tissue. The metabolic consequences of lipodystrophy syndromes, such as insulin resistant diabetes, hypertriglyceridemia and hepatic steatosis, are frequently very difficult to treat, resulting in significant risks of acute and/or chronic complications and of decreased quality of life. The production of leptin by lipodystrophic adipose tissue is decreased, more severely in generalized forms of lipodystrophy, where adipose tissue is absent from almost all body fat depots, than in partial forms of the disease, where lipoatrophy affects only some parts of the body and can be associated with increased body fat in other anatomical regions. Several lines of evidence in preclinical and clinical models have shown that leptin replacement therapy could improve the metabolic complications of lipodystrophy syndromes. Metreleptin, a recombinant leptin analogue, was approved as an orphan drug to treat the metabolic complications of leptin deficiency in patients with generalized lipodystrophy in the USA or with either generalized or partial lipodystrophy in Japan and Europe. In this brief review, we will discuss the benefits and limitations of this therapy, and the new expectations arising from the recent development of a therapeutic monoclonal antibody able to activate the leptin receptor.
Collapse
Affiliation(s)
- Corinne Vigouroux
- Service d'endocrinologie, diabétologie et endocrinologie de la reproduction, centre national de référence des pathologies rares de l'insulino-secrétion et de l'insulino-sensibilité (PRISIS), hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France; Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France.
| | - Héléna Mosbah
- Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France; Service endocrinologie, diabétologie, nutrition, centre de compétence PRISIS, CHU La Milétrie, Poitiers, France; Université Paris Cité, ECEVE UMR 1123, Inserm, Paris, France
| | - Camille Vatier
- Service d'endocrinologie, diabétologie et endocrinologie de la reproduction, centre national de référence des pathologies rares de l'insulino-secrétion et de l'insulino-sensibilité (PRISIS), hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France; Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France
| |
Collapse
|
35
|
Neyens DM, Brenner L, Calkins R, Winzenried ET, Ritter RC, Appleyard SM. CCK-sensitive C fibers activate NTS leptin receptor-expressing neurons via NMDA receptors. Am J Physiol Regul Integr Comp Physiol 2024; 326:R383-R400. [PMID: 38105761 PMCID: PMC11381032 DOI: 10.1152/ajpregu.00238.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The hormone leptin reduces food intake through actions in the peripheral and central nervous systems, including in the hindbrain nucleus of the solitary tract (NTS). The NTS receives viscerosensory information via vagal afferents, including information from the gastrointestinal tract, which is then relayed to other central nervous system (CNS) sites critical for control of food intake. Leptin receptors (lepRs) are expressed by a subpopulation of NTS neurons, and knockdown of these receptors increases both food intake and body weight. Recently, we demonstrated that leptin increases vagal activation of lepR-expressing neurons via increased NMDA receptor (NMDAR) currents, thereby potentiating vagally evoked firing. Furthermore, chemogenetic activation of these neurons was recently shown to inhibit food intake. However, the vagal inputs these neurons receive had not been characterized. Here we performed whole cell recordings in brain slices taken from lepRCre × floxedTdTomato mice and found that lepR neurons of the NTS are directly activated by monosynaptic inputs from C-type afferents sensitive to the transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin. CCK administered onto NTS slices stimulated spontaneous glutamate release onto lepR neurons and induced action potential firing, an effect mediated by CCKR1. Interestingly, NMDAR activation contributed to the current carried by spontaneous excitatory postsynaptic currents (EPSCs) and enhanced CCK-induced firing. Peripheral CCK also increased c-fos expression in these neurons, suggesting they are activated by CCK-sensitive vagal afferents in vivo. Our results indicate that the majority of NTS lepR neurons receive direct inputs from CCK-sensitive C vagal-type afferents, with both peripheral and central CCK capable of activating these neurons and NMDARs able to potentiate these effects.
Collapse
Affiliation(s)
- Drew M Neyens
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Lynne Brenner
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Rowan Calkins
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Eric T Winzenried
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Robert C Ritter
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Suzanne M Appleyard
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| |
Collapse
|
36
|
Khant Aung Z, Ladyman SR, Brown RSE. Transient loss of satiety effects of leptin in middle-aged male mice. J Neuroendocrinol 2024; 36:e13386. [PMID: 38549242 DOI: 10.1111/jne.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Extensive research is undertaken in rodents to determine the mechanism underlying obesity-induced leptin resistance. While body weight is generally tightly controlled in these studies, the effect of age of experimental animals has received less attention. Specifically, there has been little investigation into leptin regulation of food intake in middle-aged animals, which is a period of particular relevance for weight gain in humans. We investigated whether the satiety effects of leptin remained constant in young (3 months), middle-aged (12 months) or aged (18-22 months) male mice. Although mean body weight increased with age, leptin concentrations did not significantly increase in male mice beyond 12 months of age. Exogenous leptin administration led to a significant reduction in food intake in young mice but had no effect on food intake in middle-aged male mice. This loss of the satiety effect of leptin appeared to be transient, with leptin administration leading to the greatest inhibition of food intake in the aged male mice. Subsequently, we investigated whether these differences were due to changes in leptin transport into the brain with ageing. No change in leptin clearance from the blood or transport into the brain was observed, suggesting the emergence of central resistance to leptin in middle age. These studies demonstrate the presence of dynamic and age-specific changes in the satiety effects of leptin in male mice and highlight the requirement for age to be carefully considered when undertaking metabolic studies in rodents.
Collapse
Affiliation(s)
- Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Choi S, Kang JG, Tran YTH, Jeong SH, Park KY, Shin H, Kim YH, Park M, Nahmgoong H, Seol T, Jeon H, Kim Y, Park S, Kim HJ, Kim MS, Li X, Bou Sleiman M, Lee E, Choi J, Eisenbarth D, Lee SH, Cho S, Moore DD, Auwerx J, Kim IY, Kim JB, Park JE, Lim DS, Suh JM. Hippo-YAP/TAZ signalling coordinates adipose plasticity and energy balance by uncoupling leptin expression from fat mass. Nat Metab 2024; 6:847-860. [PMID: 38811804 PMCID: PMC11136666 DOI: 10.1038/s42255-024-01045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/10/2024] [Indexed: 05/31/2024]
Abstract
Adipose tissues serve as an energy reservoir and endocrine organ, yet the mechanisms that coordinate these functions remain elusive. Here, we show that the transcriptional coregulators, YAP and TAZ, uncouple fat mass from leptin levels and regulate adipocyte plasticity to maintain metabolic homeostasis. Activating YAP/TAZ signalling in adipocytes by deletion of the upstream regulators Lats1 and Lats2 results in a profound reduction in fat mass by converting mature adipocytes into delipidated progenitor-like cells, but does not cause lipodystrophy-related metabolic dysfunction, due to a paradoxical increase in circulating leptin levels. Mechanistically, we demonstrate that YAP/TAZ-TEAD signalling upregulates leptin expression by directly binding to an upstream enhancer site of the leptin gene. We further show that YAP/TAZ activity is associated with, and functionally required for, leptin regulation during fasting and refeeding. These results suggest that adipocyte Hippo-YAP/TAZ signalling constitutes a nexus for coordinating adipose tissue lipid storage capacity and systemic energy balance through the regulation of adipocyte plasticity and leptin gene transcription.
Collapse
Affiliation(s)
- Sungwoo Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ju-Gyeong Kang
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yen T H Tran
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sun-Hye Jeong
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kun-Young Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyemi Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young Hoon Kim
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Myungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hahn Nahmgoong
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Taejun Seol
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Haeyon Jeon
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Sanghee Park
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hee-Joo Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Min-Seob Kim
- Department of Fundamental Environment Research, Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eries Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jinhyuk Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - David Eisenbarth
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang Heon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Suhyeon Cho
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - David D Moore
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Il-Young Kim
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
38
|
Akindehin S, Liskiewicz A, Liskiewicz D, Bernecker M, Garcia-Caceres C, Drucker DJ, Finan B, Grandl G, Gutgesell R, Hofmann SM, Khalil A, Liu X, Cota P, Bakhti M, Czarnecki O, Bastidas-Ponce A, Lickert H, Kang L, Maity G, Novikoff A, Parlee S, Pathak E, Schriever SC, Sterr M, Ussar S, Zhang Q, DiMarchi R, Tschöp MH, Pfluger PT, Douros JD, Müller TD. Loss of GIPR in LEPR cells impairs glucose control by GIP and GIP:GLP-1 co-agonism without affecting body weight and food intake in mice. Mol Metab 2024; 83:101915. [PMID: 38492844 PMCID: PMC10973979 DOI: 10.1016/j.molmet.2024.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the β-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.
Collapse
Affiliation(s)
- Seun Akindehin
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Helmholtz Diabetes School, Helmholtz Diabetes Center, Munich, Germany
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Poland
| | - Daniela Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Miriam Bernecker
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Helmholtz Diabetes School, Helmholtz Diabetes Center, Munich, Germany; Neurobiology of Diabetes Research Unit, Germany
| | - Cristina Garcia-Caceres
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert Gutgesell
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; Medical Clinic and Polyclinic IV, Ludwig-Maximilians University of München, Munich, Germany
| | - Ahmed Khalil
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xue Liu
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Perla Cota
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Oliver Czarnecki
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Lingru Kang
- German Center for Diabetes Research (DZD), Neuherberg, Germany; RU Adipocytes & Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Gandhari Maity
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Parlee
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Ekta Pathak
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; Neurobiology of Diabetes Research Unit, Germany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; Neurobiology of Diabetes Research Unit, Germany
| | - Michael Sterr
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Siegfried Ussar
- German Center for Diabetes Research (DZD), Neuherberg, Germany; RU Adipocytes & Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Qian Zhang
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Matthias H Tschöp
- Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany; Helmholtz Munich, Neuherberg, Germany
| | - Paul T Pfluger
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; Neurobiology of Diabetes Research Unit, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology, Ludgwig-Maximilians-University Munich, Germany.
| |
Collapse
|
39
|
Park JH, Kim JW, Ryu DS, Lee H, Na HK, Noh JH, Kim DH, Lee S, Na K, Jung HY. Repeated photodynamic therapy using a chlorin e6-embedded device to prolong the therapeutic effects on obesity. Obesity (Silver Spring) 2024; 32:911-922. [PMID: 38558513 DOI: 10.1002/oby.23958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 04/04/2024]
Abstract
OBJECTIVE This study aimed to investigate the efficacy and safety of repeated photodynamic therapy (PDT) with a chlorin e6 (Ce6)-embedded intragastric satiety-inducing device (ISD) to maintain therapeutic effects of obesity in a juvenile pig. METHODS The Ce6-embedded ISD was fabricated with a dipping method. Twelve pigs were divided into four groups of three and were administered control, single, biweekly, or weekly PDT, respectively. The therapeutic effects were assessed by comparing the results of phototoxicity, endoscopy, fluoroscopy, hormone and weight changes, and histological examination. RESULTS The percentage of total body weight gain was significantly suppressed in PDT-treated pigs compared with control pigs (all p < 0.001). This suppression persisted in the repeated PDT groups, but percentage of total body weight gain gradually increased when PDT was stopped. Ghrelin levels in the PDT-treated groups were significantly lower and leptin levels were significantly higher than those in the control group (all p < 0.05). Inflammatory cell infiltration, collagen, TUNEL, and anti-ghrelin-positive deposition in the weekly group were significantly higher than those in the control, single, and biweekly groups (all p < 0.01). CONCLUSIONS Repeated and periodic PDT was technically feasible and safe and successfully maintained the therapeutic effects against obesity while eliminating the indwelling time and reducing ISD-related complications in pigs.
Collapse
Affiliation(s)
- Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Won Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Sung Ryu
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeonseung Lee
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Hee Kyong Na
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Hee Noh
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Do Hoon Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sanghee Lee
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Kun Na
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Hwoon-Yong Jung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Pena-Leon V, Perez-Lois R, Villalon M, Prida E, Muñoz-Moreno D, Fernø J, Quiñones M, Al-Massadi O, Seoane LM. Novel mechanisms involved in leptin sensitization in obesity. Biochem Pharmacol 2024; 223:116129. [PMID: 38490517 DOI: 10.1016/j.bcp.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Leptin is a hormone that is secreted by adipocytes in proportion to adipose tissue size, and that informs the brain about the energy status of the body. Leptin acts through its receptor LepRb, expressed mainly in the hypothalamus, and induces a negative energy balance by potent inhibition of feeding and activation of energy expenditure. These actions have led to huge expectations for the development of therapeutic targets for metabolic complications based on leptin-derived compounds. However, the majority of patients with obesity presents elevated leptin production, suggesting that in this setting leptin is ineffective in the regulation of energy balance. This resistance to the action of leptin in obesity has led to the development of "leptin sensitizers," which have been tested in preclinical studies. Much research has focused on generating combined treatments that act on multiple levels of the gastrointestinal-brain axis. The gastrointestinal-brain axis secretes a variety of different anorexigenic signals, such as uroguanylin, glucagon-like peptide-1, amylin, or cholecystokinin, which can alleviate the resistance to leptin action. Moreover, alternative mechanism such as pharmacokinetics, proteostasis, the role of specific kinases, chaperones, ER stress and neonatal feeding modifications are also implicated in leptin resistance. This review will cover the current knowledge regarding the interaction of leptin with different endocrine factors from the gastrointestinal-brain axis and other novel mechanisms that improve leptin sensitivity in obesity.
Collapse
Affiliation(s)
- Veronica Pena-Leon
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Raquel Perez-Lois
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Maria Villalon
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Eva Prida
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Diego Muñoz-Moreno
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, 5201 Bergen, Norway
| | - Mar Quiñones
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Omar Al-Massadi
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
41
|
Guan D, Men Y, Bartlett A, Hernández MAS, Xu J, Yi X, Li HS, Kong D, Mazitschek R, Ozcan U. Central inhibition of HDAC6 re-sensitizes leptin signaling during obesity to induce profound weight loss. Cell Metab 2024; 36:857-876.e10. [PMID: 38569472 DOI: 10.1016/j.cmet.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/02/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Leptin resistance during excess weight gain significantly contributes to the recidivism of obesity to leptin-based pharmacological therapies. The mechanisms underlying the inhibition of leptin receptor (LepR) signaling during obesity are still elusive. Here, we report that histone deacetylase 6 (HDAC6) interacts with LepR, reducing the latter's activity, and that pharmacological inhibition of HDAC6 activity disrupts this interaction and augments leptin signaling. Treatment of diet-induced obese mice with blood-brain barrier (BBB)-permeable HDAC6 inhibitors profoundly reduces food intake and leads to potent weight loss without affecting the muscle mass. Genetic depletion of Hdac6 in Agouti-related protein (AgRP)-expressing neurons or administration with BBB-impermeable HDAC6 inhibitors results in a lack of such anti-obesity effect. Together, these findings represent the first report describing a mechanistically validated and pharmaceutically tractable therapeutic approach to directly increase LepR activity as well as identifying centrally but not peripherally acting HDAC6 inhibitors as potent leptin sensitizers and anti-obesity agents.
Collapse
Affiliation(s)
- Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuqin Men
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Bartlett
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jie Xu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinchi Yi
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hu-Song Li
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dong Kong
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ralph Mazitschek
- Massachusetts General Hospital, Center for Systems Biology, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Zeng Q, Song J, Sun X, Wang D, Liao X, Ding Y, Hu W, Jiao Y, Mai W, Aini W, Wang F, Zhou H, Xie L, Mei Y, Tang Y, Xie Z, Wu H, Liu W, Deng T. A negative feedback loop between TET2 and leptin in adipocyte regulates body weight. Nat Commun 2024; 15:2825. [PMID: 38561362 PMCID: PMC10985112 DOI: 10.1038/s41467-024-46783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Ten-eleven translocation (TET) 2 is an enzyme that catalyzes DNA demethylation to regulate gene expression by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, functioning as an essential epigenetic regulator in various biological processes. However, the regulation and function of TET2 in adipocytes during obesity are poorly understood. In this study, we demonstrate that leptin, a key adipokine in mammalian energy homeostasis regulation, suppresses adipocyte TET2 levels via JAK2-STAT3 signaling. Adipocyte Tet2 deficiency protects against high-fat diet-induced weight gain by reducing leptin levels and further improving leptin sensitivity in obese male mice. By interacting with C/EBPα, adipocyte TET2 increases the hydroxymethylcytosine levels of the leptin gene promoter, thereby promoting leptin gene expression. A decrease in adipose TET2 is associated with obesity-related hyperleptinemia in humans. Inhibition of TET2 suppresses the production of leptin in mature human adipocytes. Our findings support the existence of a negative feedback loop between TET2 and leptin in adipocytes and reveal a compensatory mechanism for the body to counteract the metabolic dysfunction caused by obesity.
Collapse
Affiliation(s)
- Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiyan Liao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanyu Hu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yayi Jiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wuqian Mai
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wufuer Aini
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fanqi Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hui Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Limin Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ying Mei
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yuan Tang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Liu
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
43
|
Supti DA, Akter F, Rahman MI, Munim MA, Tonmoy MIQ, Tarin RJ, Afroz S, Reza HA, Yeasmin R, Alam MR, Hossain MS. Meta-analysis investigating the impact of the LEPR rs1137101 (A>G) polymorphism on obesity risk in Asian and Caucasian ethnicities. Heliyon 2024; 10:e27213. [PMID: 38496879 PMCID: PMC10944198 DOI: 10.1016/j.heliyon.2024.e27213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/12/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Obesity is a chronic condition which is identified by the buildup of excess body fat caused by a combination of various factors, including genetic predisposition and lifestyle choices. rs1137101 (A > G) polymorphism in the CHR1 domain of LEPR protein linked to different diseases including obesity. Nevertheless, the connection between this polymorphism and the likelihood of developing obesity has not been determined definitively. Therefore, a meta-analysis was conducted to assess the relationship between rs1137101 and the risk of obesity. The meta-analysis included all studies meeting pre-defined criteria, found through searching databases up until February 2023. A combined odds ratio with a 95% confidence interval was estimated as overall and in continent subgroups for homozygous, heterozygous, recessive, dominant and allelic models using the fixed or the random-effects model. The meta-analysis identified 39 eligible studies with cases and controls (6099 cases/6711 controls) in 38 articles under different ethnic backgrounds. The results indicated a significant relationship between rs1137101 and the likelihood of developing obesity in each of the genetic models [the homozygous model (GG vs. AA: 95% Confidence Interval = 1.12-1.73, Odds Ratio = 1.39, P value = 0.003); the heterozygous model (AG vs. AA: 95% Confidence Interval = 1.07-1.42, Odds Ratio = 1.23, P value = 0.005); the dominant model (AG/GG vs AA: 95% Confidence Interval = 1.10-1.49, Odds Ratio = 1.28, P value = 0.001); the recessive model (GG vs AA/AG: 95% Confidence Interval = 1.02-1.45, Odds Ratio = 1.21, P value = 0.03); and the allelic model (G vs A; 95% Confidence Interval = 1.07-1.33, Odds Ratio = 1.19, P value = 0.002)] tested. Additionally, with an FDR <0.05, all genotypic models demonstrated statistical significance. The association remained significant among subgroups of Asian and Caucasian populations, although analysis in some genetic models did not show a significant association. Begg's and Egger's tests did not show publication biases. In sensitivity analysis, one particular study was found to have an impact on the Recessive model's significance, but other models remained unaffected. The current meta-analysis found significant indications supporting the association between rs1137101 and obesity. To avail a deeper understanding of this association, future research should include large-scale studies conducted in diverse ethnic populations.
Collapse
Affiliation(s)
- Dilara Akhter Supti
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Imranur Rahman
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Adnan Munim
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Rabia Jahan Tarin
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sumaiya Afroz
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Roksana Yeasmin
- Department of Biochemistry, Ibrahim Medical College, Dhaka, Bangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
44
|
Aguiar APN, Mendonça PDS, Lima Junior RCP, Mota AGDM, Wong DVT, Oliveira RTGD, Ribeiro-Júnior HL, Pinheiro RF, Magalhães SMM. The role of adiposity, adipokines and polymorphisms of leptin and adiponectin in myelodysplastic syndromes. Br J Nutr 2024; 131:737-748. [PMID: 37855224 DOI: 10.1017/s0007114523002283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The aim of the present study was to investigate the relationship between leptin and adiponectin gene polymorphisms, circulating levels of leptin and adiponectin, adiposity and clinical markers in patients with myelodysplastic syndrome (MDS). This cross-sectional study was conducted with 102 adults and elderly MDS patients and 102 age- and sex-matched controls. Clinical characteristics, co-morbidities, anthropometric data, laboratory evaluation and genetic analysis (polymorphisms -2548G > A/rs7799039 of the LEP gene and +276G > T/rs1501299 of the ADIPOQ gene) were investigated. Serum leptin was higher and adiponectin lower in MDS when compared with controls. There was a significant positive correlation between serum leptin levels and BMI (r = 0·264, P = 0·025), waist circumference (r = 0·235, P = 0·047), body fat percentage (BF %) (r = 0·373, P = 0·001) and the fat mass index (FMI) (r = 0·371, P < 0·001). A lower mean adiponectin was found among patients with high BF %, higher visceral adiposity index and metabolic syndrome. A significant association was found between the AA genotype (mutant) of the LEP polymorphism rs7799039 and male sex and blast excess (≥ 5 %). In addition, a significant association was observed between the TT genotype (mutant) of the ADIPOQ rs1501299 polymorphism and Fe overload. These results demonstrate the importance of a comprehensive and systematic evaluation in patients with MDS in order to identify and control negative factors not related to the disease at an early stage.
Collapse
Affiliation(s)
- Ana Patrícia Nogueira Aguiar
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Priscila da Silva Mendonça
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- University Hospital Walter Cantidio, Brazilian Company of Hospital Services (EBSERH), Fortaleza, CE, Brazil
| | - Roberto Cesar Pereira Lima Junior
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Anacelia Gomes de Matos Mota
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Deysi Viviana Tenazoa Wong
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Roberta Tatiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Howard Lopes Ribeiro-Júnior
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
45
|
Bustraan S, Bennett J, Whilding C, Pennycook BR, Smith D, Barr AR, Read J, Carling D, Pollard A. AMP-activated protein kinase activation suppresses leptin expression independently of adipogenesis in primary murine adipocytes. Biochem J 2024; 481:345-362. [PMID: 38314646 PMCID: PMC11088909 DOI: 10.1042/bcj20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/06/2024]
Abstract
Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis. Primary murine adipose-derived stem cells were treated with a small molecule AMPK activator (BI-9774) during key phases of adipogenesis, to determine the effect of AMPK activation on adipocyte commitment, maturation and function. To determine the contribution of the repression of lipogenesis by AMPK in these processes, we compared the effect of pharmacological inhibition of acetyl-CoA carboxylase (ACC). We show that AMPK activation inhibits adipogenesis in a time- and concentration-dependent manner. Transient AMPK activation during adipogenic commitment leads to a significant, ACC-independent, repression of adipogenic transcription factor expression. Furthermore, we identify a striking, previously unexplored inhibition of leptin gene expression in response to both short-term and chronic AMPK activation irrespective of adipogenesis. These findings reveal that in addition to its effect on adipogenesis, AMPK activation switches off leptin gene expression in primary mouse adipocytes independently of adipogenesis. Our results identify leptin expression as a novel target of AMPK through mechanisms yet to be identified.
Collapse
Affiliation(s)
- Sophia Bustraan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Jane Bennett
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Chad Whilding
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | | | - David Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Jon Read
- Mechanistic and Structural Biology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, U.K
| | - David Carling
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Alice Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
46
|
Singh R, Gholipourmalekabadi M, Shafikhani SH. Animal models for type 1 and type 2 diabetes: advantages and limitations. Front Endocrinol (Lausanne) 2024; 15:1359685. [PMID: 38444587 PMCID: PMC10912558 DOI: 10.3389/fendo.2024.1359685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Diabetes mellitus, commonly referred to as diabetes, is a group of metabolic disorders characterized by chronic elevation in blood glucose levels, resulting from inadequate insulin production, defective cellular response to extracellular insulin, and/or impaired glucose metabolism. The two main types that account for most diabetics are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), each with their own pathophysiological features. T1D is an autoimmune condition where the body's immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to lack of insulin, a vital hormone for regulating blood sugar levels and cellular glucose uptake. As a result, those with T1D depend on lifelong insulin therapy to control their blood glucose level. In contrast, T2DM is characterized by insulin resistance, where the body's cells do not respond effectively to insulin, coupled with a relative insulin deficiency. This form of diabetes is often associated with obesity, sedentary lifestyle, and/or genetic factors, and it is managed with lifestyle changes and oral medications. Animal models play a crucial role in diabetes research. However, given the distinct differences between T1DM and T2DM, it is imperative for researchers to employ specific animal models tailored to each condition for a better understanding of the impaired mechanisms underlying each condition, and for assessing the efficacy of new therapeutics. In this review, we discuss the distinct animal models used in type 1 and type 2 diabetes mellitus research and discuss their strengths and limitations.
Collapse
Affiliation(s)
- Raj Singh
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sasha H Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
- Cancer Center, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
47
|
Vilariño-García T, Polonio-González ML, Pérez-Pérez A, Ribalta J, Arrieta F, Aguilar M, Obaya JC, Gimeno-Orna JA, Iglesias P, Navarro J, Durán S, Pedro-Botet J, Sánchez-Margalet V. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int J Mol Sci 2024; 25:2338. [PMID: 38397015 PMCID: PMC10888594 DOI: 10.3390/ijms25042338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus (DM) is a highly prevalent disease worldwide, estimated to affect 1 in every 11 adults; among them, 90-95% of cases are type 2 diabetes mellitus. This is partly attributed to the surge in the prevalence of obesity, which has reached epidemic proportions since 2008. In these patients, cardiovascular (CV) risk stands as the primary cause of morbidity and mortality, placing a substantial burden on healthcare systems due to the potential for macrovascular and microvascular complications. In this context, leptin, an adipocyte-derived hormone, plays a fundamental role. This hormone is essential for regulating the cellular metabolism and energy balance, controlling inflammatory responses, and maintaining CV system homeostasis. Thus, leptin resistance not only contributes to weight gain but may also lead to increased cardiac inflammation, greater fibrosis, hypertension, and impairment of the cardiac metabolism. Understanding the relationship between leptin resistance and CV risk in obese individuals with type 2 DM (T2DM) could improve the management and prevention of this complication. Therefore, in this narrative review, we will discuss the evidence linking leptin with the presence, severity, and/or prognosis of obesity and T2DM regarding CV disease, aiming to shed light on the potential implications for better management and preventive strategies.
Collapse
Affiliation(s)
- Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen del Rocio University Hospital, University of Seville, Seville 41013, Spain;
| | - María L. Polonio-González
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Josep Ribalta
- Departament de Medicina i Cirurgia, University Rovira i Vigili, IISPV, CIBERDEM, 43007 Tarragona, Spain;
| | - Francisco Arrieta
- Endocrinology and Nutrition Service, Ramón y Cajal University Hospital, 28034 Madrid, Spain;
| | - Manuel Aguilar
- Endocrinology and Nutrition Service, Puerta del Mar University Hospital, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz University (UCA), 11001 Cádiz, Spain;
| | - Juan C. Obaya
- Chopera Helath Center, Alcobendas Primary Care,Alcobendas 28100 Madrid, Spain;
| | - José A. Gimeno-Orna
- Endocrinology and Nutrition Department, Hospital Clinico Universitario Lozano Blesa, 15 50009 Zaragoza, Spain;
| | - Pedro Iglesias
- Endocrinology and Nutrition Service, Puerta de Hierro University Hospital, Majadahonda, 28220 Madrid, Spain;
| | - Jorge Navarro
- Hospital Clínico Universitario de Valencia,46011 Valencia, Spain;
| | - Santiago Durán
- Endodiabesidad Clínica Durán & Asociados,41018 Seville, Spain;
| | - Juan Pedro-Botet
- Lipids and Cardiovascular Risk Unit, Hospital del Mar, Autonomous University of Barcelona, 08003 Barcelona, Spain;
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
- Institute of Biomedicine of Seville (IBIS), Hospital Universitario Virgen del Rocío/Virgen Macarena, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
48
|
Takei Y. Metabolic Water As a Route for Water Acquisition in Vertebrates Inhabiting Dehydrating Environments. Zoolog Sci 2024; 41:132-139. [PMID: 38587526 DOI: 10.2108/zs230085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/15/2024] [Indexed: 04/09/2024]
Abstract
Vertebrates have expanded their habitats during evolution, which accompanies diversified routes for water acquisition. Water is acquired by oral intake and subsequent absorption by the intestine in terrestrial and marine animals which are subjected to constant dehydration, whereas most water is gained osmotically across body surfaces in freshwater animals. In addition, a significant amount of water, called metabolic water, is produced within the body by the oxidation of hydrogen in organic substrates. The importance of metabolic water production as a strategy for water acquisition has been well documented in desert animals, but its role has attracted little attention in marine animals which also live in a dehydrating environment. In this article, the author has attempted to reevaluate the role of metabolic water production in body fluid regulation in animals inhabiting desiccating environments. Because of the exceptional ability of their kidney, marine mammals are thought to typically gain water by drinking environmental seawater and excreting excess NaCl in the urine. On the other hand, it is established that marine teleosts drink seawater to enable intestinal water and ion absorption, and the excess NaCl is excreted by branchial ionocytes. In addition to the oral route, we suggest through experiments using eels that water production by lipid metabolism is an additional route for water acquisition when they encounter seawater. It seems that metabolic water production contributes to counteract dehydration before mechanisms for water regulation are reversed from excretion in freshwater to acquisition in seawater.
Collapse
Affiliation(s)
- Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan,
| |
Collapse
|
49
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
50
|
Flier JS, Ahima RS. Leptin physiology and pathophysiology: knowns and unknowns 30 years after its discovery. J Clin Invest 2024; 134:e174595. [PMID: 38165042 PMCID: PMC10760948 DOI: 10.1172/jci174595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Affiliation(s)
- Jeffrey S. Flier
- Department of Medicine and Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|