1
|
Patel KR, Patel HD. p53: An Attractive Therapeutic Target for Cancer. Curr Med Chem 2020; 27:3706-3734. [PMID: 31223076 DOI: 10.2174/1573406415666190621094704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a leading cause of death worldwide. It initiates when cell cycle regulatory genes lose their function either by environmental and/or by internal factors. Tumor suppressor protein p53, known as "Guardian of genome", plays a central role in maintaining genomic stability of the cell. Mutation of TP53 is documented in more than 50% of human cancers, usually by overexpression of negative regulator protein MDM2. Hence, reactivation of p53 by blocking the protein-protein interaction between the murine double minute 2 (MDM2) and the tumor suppressor protein p53 has become the most promising therapeutic strategy in oncology. Several classes of small molecules have been identified as potent, selective and efficient p53-MDM2 inhibitors. Herein, we review the druggability of p53-MDM2 inhibitors and their optimization approaches as well as clinical candidates categorized by scaffold type.
Collapse
Affiliation(s)
- Krupa R Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
2
|
Stindl R. Defining the steps that lead to cancer: replicative telomere erosion, aneuploidy and an epigenetic maturation arrest of tissue stem cells. Med Hypotheses 2008; 71:126-40. [PMID: 18294777 DOI: 10.1016/j.mehy.2008.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 01/21/2023]
Abstract
Recently, an influential sequencing study found that more than 1700 genes had non-silent mutations in either a breast or colorectal cancer, out of just 11 breast and 11 colorectal tumor samples. This is not surprising given the fact that genomic instability is the hallmark of cancer cells. The plethora of genomic alterations found in every carcinoma does not obey the 'law of genotype-phenotype correlation', since the same histological subtype of cancer harbors different gene mutations and chromosomal aberrations in every patient. In an attempt to make sense out of the observed genetic and chromosomal chaos in cancer, I propose a cascade model. According to this model, tissue regeneration depends on the proliferation and serial activation of stem cells. Replicative telomere erosion limits the proliferative life span of adult stem cells and results in the Hayflick limit (M1). However, local tissue exhaustion or old age might promote the activation of M1-deficient tissue stem cells. Extended proliferation of these cells leads to telomere-driven chromosomal instability and aneuploidy (abnormal balance of chromosomes and/or chromosome material). Several of the aforementioned steps have been already described in the literature. However, in contrast to common theories, it is proposed here that the genomic damage blocks the epigenetic differentiation switch. As a result of aneuploidy, differentiation-specific genes cannot be activated by modification of methylation patterns. Consequently, the phenotype of cancer tissue is largely determined by the epigenetic maturation arrest of tissue stem cells, which in addition enables a fraction of cancer cells to proliferate, invade and metastasize, as normal adult stem cells do. The new model combines genetic and epigenetic alterations of cancer cells in one causative cascade and offers an explanation for why identical histologic cancer types harbor a confusing variety of chromosomal and gene aberrations. The Viennese Cascade, as presented here, may end the debate on if and how 'tumor-unspecific' aneuploidy leads to cancer.
Collapse
Affiliation(s)
- Reinhard Stindl
- Department of Molecular and Cell Biology, 353 Donner Hall, University of California at Berkeley, Berkeley, CA 94720-3206, USA.
| |
Collapse
|
3
|
Abstract
Complex living organisms possess qualities that cannot be reduced to the simple addition of quantities. Among such qualities are a specific form and a specific organization. Thinking about morphological aspects is a prime example of the qualitative approach to biological matters. Such a morphogenetic perspective has been continuously developed, both theoretically and experimentally, along the past century, even though it is now rather marginal within a mainstream dominated by molecular biology. However, the morphogenetic outlook can be applied to the understanding of complex biological phenomena, such as cancer. This phenomenon is currently explained as a cellular problem caused by specific gene mutations and/or specific loss of gene regulation. Nevertheless, cancer is a problem that affects the whole organism. Contemporary research based on the genetic paradigm of cancer causation has led to paradoxes and anomalies that cannot be explained within such a reductionist paradigm. Here it is proposed that real, non-experimental, sporadic cancer may be understood as a conflict between an organized morphology (the organism) and a part of such a morphology that drifts towards an amorphous state (the tumour). Thus, rare, sporadic cancer in children can be the result of early disruption of the developmental constraints before the organism has achieved its morphological maturity. While common sporadic cancer in aged individuals may ensue as a result of the weakening or exhaustion of the developmental constraints that determine the morphological stability of the organism, once the organism is past its reproductive prime.
Collapse
Affiliation(s)
- A Aranda-Anzaldo
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico.
| |
Collapse
|
4
|
Duesberg P, Li R, Rasnick D, Rausch C, Willer A, Kraemer A, Yerganian G, Hehlmann R. Aneuploidy precedes and segregates with chemical carcinogenesis. CANCER GENETICS AND CYTOGENETICS 2000; 119:83-93. [PMID: 10867141 DOI: 10.1016/s0165-4608(99)00236-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A century ago, Boveri proposed that cancer is caused by aneuploidy, an abnormal balance of chromosomes, because aneuploidy correlates with cancer and because experimental aneuploidy generates "pathological" phenotypes. Half a century later, when cancers were found to be nonclonal for aneuploidy, but clonal for somatic gene mutations, this hypothesis was abandoned. As a result, aneuploidy is now generally viewed as a consequence, and mutated genes as a cause of cancer. However, we have recently proposed a two-stage mechanism of carcinogenesis that resolves the discrepancy between clonal mutation and nonclonal karyotypes. The proposal is as follows: in stage 1, a carcinogen "initiates" carcinogenesis by generating a preneoplastic aneuploidy; in stage 2, aneuploidy causes asymmetric mitosis because it biases balance-sensitive spindle and chromosomal proteins and alters centrosomes both numerically and structurally (in proportion to the degree of aneuploidy). Therefore, the karyotype of an initiated cell evolves autocatalytically, generating ever-new chromosome combinations, including neoplastic ones. Accordingly, the heterogeneous karyotypes of "clonal" cancers are an inevitable consequence of the karyotypic instability of aneuploid cells. The notorious long latent periods, of months to decades, from carcinogen to carcinogenesis, would reflect the low probability of evolving by chance karyotypes that compete favorably with normal cells, in principle analagous to natural evolution. Here, we have confirmed experimentally five predictions of the aneuploidy hypothesis: (1) the carcinogens dimethylbenzanthracene and cytosine arabinoside induced aneuploidy in a fraction of treated Chinese hamster embryo cells; (2) aneuploidy preceded malignant transformation; (3) transformation of carcinogen-treated cells occurred only months after carcinogen treatment, i.e., autocatalytically; (4) preneoplastic aneuploidy segregated with malignant transformation in vitro and with 14 of 14 tumors in animals; and (5) karyotypes of tumors were heterogeneous. We conclude that, with the carcinogens studied, aneuploidy precedes cancer and is necessary for carcinogenesis.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/pharmacology
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Aneuploidy
- Animals
- Carcinogens/pharmacology
- Carcinogens/toxicity
- Cell Line, Transformed
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured/drug effects
- Cells, Cultured/ultrastructure
- Cricetinae
- Cricetulus
- Cytarabine/pharmacology
- Cytarabine/toxicity
- DNA Mutational Analysis
- Humans
- Karyotyping
- Male
- Methylcholanthrene/pharmacology
- Methylcholanthrene/toxicity
- Models, Biological
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/genetics
- Precancerous Conditions/chemically induced
- Precancerous Conditions/genetics
- Time Factors
Collapse
Affiliation(s)
- P Duesberg
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci U S A 2000; 97. [PMID: 10725343 PMCID: PMC16222 DOI: 10.1073/pnas.040529797] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For nearly a century, cancer has been blamed on somatic mutation. But it is still unclear whether this mutation is aneuploidy, an abnormal balance of chromosomes, or gene mutation. Despite enormous efforts, the currently popular gene mutation hypothesis has failed to identify cancer-specific mutations with transforming function and cannot explain why cancer occurs only many months to decades after mutation by carcinogens and why solid cancers are aneuploid, although conventional mutation does not depend on karyotype alteration. A recent high-profile publication now claims to have solved these discrepancies with a set of three synthetic mutant genes that "suffices to convert normal human cells into tumorigenic cells." However, we show here that even this study failed to explain why it took more than "60 population doublings" from the introduction of the first of these genes, a derivative of the tumor antigen of simian virus 40 tumor virus, to generate tumor cells, why the tumor cells were clonal although gene transfer was polyclonal, and above all, why the tumor cells were aneuploid. If aneuploidy is assumed to be the somatic mutation that causes cancer, all these results can be explained. The aneuploidy hypothesis predicts the long latent periods and the clonality on the basis of the following two-stage mechanism: stage one, a carcinogen (or mutant gene) generates aneuploidy; stage two, aneuploidy destabilizes the karyotype and thus initiates an autocatalytic karyotype evolution generating preneoplastic and eventually neoplastic karyotypes. Because the odds are very low that an abnormal karyotype will surpass the viability of a normal diploid cell, the evolution of a neoplastic cell species is slow and thus clonal, which is comparable to conventional evolution of new species.
Collapse
|
6
|
Li R, Sonik A, Stindl R, Rasnick D, Duesberg P. Aneuploidy vs. gene mutation hypothesis of cancer: Recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci U S A 2000; 97:3236-41. [PMID: 10725343 PMCID: PMC16222 DOI: 10.1073/pnas.97.7.3236] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For nearly a century, cancer has been blamed on somatic mutation. But it is still unclear whether this mutation is aneuploidy, an abnormal balance of chromosomes, or gene mutation. Despite enormous efforts, the currently popular gene mutation hypothesis has failed to identify cancer-specific mutations with transforming function and cannot explain why cancer occurs only many months to decades after mutation by carcinogens and why solid cancers are aneuploid, although conventional mutation does not depend on karyotype alteration. A recent high-profile publication now claims to have solved these discrepancies with a set of three synthetic mutant genes that "suffices to convert normal human cells into tumorigenic cells." However, we show here that even this study failed to explain why it took more than "60 population doublings" from the introduction of the first of these genes, a derivative of the tumor antigen of simian virus 40 tumor virus, to generate tumor cells, why the tumor cells were clonal although gene transfer was polyclonal, and above all, why the tumor cells were aneuploid. If aneuploidy is assumed to be the somatic mutation that causes cancer, all these results can be explained. The aneuploidy hypothesis predicts the long latent periods and the clonality on the basis of the following two-stage mechanism: stage one, a carcinogen (or mutant gene) generates aneuploidy; stage two, aneuploidy destabilizes the karyotype and thus initiates an autocatalytic karyotype evolution generating preneoplastic and eventually neoplastic karyotypes. Because the odds are very low that an abnormal karyotype will surpass the viability of a normal diploid cell, the evolution of a neoplastic cell species is slow and thus clonal, which is comparable to conventional evolution of new species.
Collapse
Affiliation(s)
- R Li
- Department of Molecular and Cell Biology, Stanley Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
7
|
Rizos E, Sourvinos G, Arvanitis DA, Velegrakis G, Spandidos DA. Low incidence of H-, K- and N-ras oncogene mutations in cytological specimens of laryngeal tumours. Oral Oncol 1999; 35:561-3. [PMID: 10705090 DOI: 10.1016/s1368-8375(99)00032-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Laryngeal cancer is a rare type of neoplasia, constituting approximately 2% of all human cancers. Mutations of the ras gene family is one of the main activating mechanisms in human cancer. Their involvement in head and neck cancer has been mainly demonstrated at the level of the overexpression whereas ras mutations in these cancers are rare in the Western world. In the present study we explored the incidence of codon 12-point mutation in the H-, K- and N-ras genes, in 41 laryngeal cytological specimens. These specimens corresponded to 19 benign and 22 malignant lesions of the larynx. Only two specimens carried a codon 12-point mutation in the K-ras gene (4.8%) while no mutation was detected in the H- and N-ras genes. K-ras mutations were detected in one benign and one malignant specimen. These results indicate low incidence of ras oncogene mutations in laryngeal cytological specimens.
Collapse
Affiliation(s)
- E Rizos
- Laboratory of Virology, Medical School, University of Crete, PO Box 1393, Heraklion 71409, Crete, Greece
| | | | | | | | | |
Collapse
|
8
|
Duesberg P, Rausch C, Rasnick D, Hehlmann R. Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc Natl Acad Sci U S A 1998; 95:13692-7. [PMID: 9811862 PMCID: PMC24881 DOI: 10.1073/pnas.95.23.13692] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic and phenotypic instability are hallmarks of cancer cells, but their cause is not clear. The leading hypothesis suggests that a poorly defined gene mutation generates genetic instability and that some of many subsequent mutations then cause cancer. Here we investigate the hypothesis that genetic instability of cancer cells is caused by aneuploidy, an abnormal balance of chromosomes. Because symmetrical segregation of chromosomes depends on exactly two copies of mitosis genes, aneuploidy involving chromosomes with mitosis genes will destabilize the karyotype. The hypothesis predicts that the degree of genetic instability should be proportional to the degree of aneuploidy. Thus it should be difficult, if not impossible, to maintain the particular karyotype of a highly aneuploid cancer cell on clonal propagation. This prediction was confirmed with clonal cultures of chemically transformed, aneuploid Chinese hamster embryo cells. It was found that the higher the ploidy factor of a clone, the more unstable was its karyotype. The ploidy factor is the quotient of the modal chromosome number divided by the normal number of the species. Transformed Chinese hamster embryo cells with a ploidy factor of 1.7 were estimated to change their karyotype at a rate of about 3% per generation, compared with 1.8% for cells with a ploidy factor of 0.95. Because the background noise of karyotyping is relatively high, the cells with low ploidy factor may be more stable than our method suggests. The karyotype instability of human colon cancer cell lines, recently analyzed by Lengnauer et al. [Lengnauer, C., Kinzler, K. W. & Vogelstein, B. (1997) Nature (London) 386, 623-627], also corresponds exactly to their degree of aneuploidy. We conclude that aneuploidy is sufficient to explain genetic instability and the resulting karyotypic and phenotypic heterogeneity of cancer cells, independent of gene mutation. Because aneuploidy has also been proposed to cause cancer, our hypothesis offers a common, unique mechanism of altering and simultaneously destabilizing normal cellular phenotypes.
Collapse
Affiliation(s)
- P Duesberg
- III Medizinische Klinik Mannheim of the University of Heidelberg, Wiesbadener Strasse 7-11, Mannheim, D 68305 Germany.
| | | | | | | |
Collapse
|
9
|
Bera TK, Tsukamoto T, Panda DK, Huang T, Guzman RC, Hwang SI, Nandi S. Defective retrovirus insertion activates c-Ha-ras protooncogene in an MNU-induced rat mammary carcinoma. Biochem Biophys Res Commun 1998; 248:835-40. [PMID: 9704014 DOI: 10.1006/bbrc.1998.9059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous retrovirus sequences are present in the genome of a wide variety of animal species. The activation of the proto-oncogenes of the ras family, particularly c-Ha-ras, by either point mutation or overexpression, has been shown to be associated with a vast number, of different cancers. here we report that the insertion of a defective retrovirus in the -1 intron of rat c-Ha-ras is responsible for the activation of the gene by over 10-fold overexpression in an MNU-induced rat mammary cancer. A portion of the 3' end of the retroviral sequence is expressed as a part of the c-Ha-ras transcript in the carcinoma tissue, indicating the direct involvement of this element in the transcription of the c-Ha-ras gene. The c-Ha-ras structural gene transcribed by the promoter of the defective retroviral element can neoplastically transform the NIH 3T3 cell line upon transfection.
Collapse
Affiliation(s)
- T K Bera
- Cancer Research Laboratory, University of California at Berkeley 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Li R, Yerganian G, Duesberg P, Kraemer A, Willer A, Rausch C, Hehlmann R. Aneuploidy correlated 100% with chemical transformation of Chinese hamster cells. Proc Natl Acad Sci U S A 1997; 94:14506-11. [PMID: 9405643 PMCID: PMC25036 DOI: 10.1073/pnas.94.26.14506] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aneuploidy or chromosome imbalance is the most massive genetic abnormality of cancer cells. It used to be considered the cause of cancer when it was discovered more than 100 years ago. Since the discovery of the gene, the aneuploidy hypothesis has lost ground to the hypothesis that mutation of cellular genes causes cancer. According to this hypothesis, cancers are diploid and aneuploidy is secondary or nonessential. Here we reexamine the aneuploidy hypothesis in view of the fact that nearly all solid cancers are aneuploid, that many carcinogens are nongenotoxic, and that mutated genes from cancer cells do not transform diploid human or animal cells. By regrouping the gene pool-as in speciation-aneuploidy inevitably will alter many genetic programs. This genetic revolution can explain the numerous unique properties of cancer cells, such as invasiveness, dedifferentiation, distinct morphology, and specific surface antigens, much better than gene mutation, which is limited by the conservation of the existing chromosome structure. To determine whether aneuploidy is a cause or a consequence of transformation, we have analyzed the chromosomes of Chinese hamster embryo (CHE) cells transformed in vitro. This system allows (i) detection of transformation within 2 months and thus about 5 months sooner than carcinogenesis and (ii) the generation of many more transformants per cost than carcinogenesis. To minimize mutation of cellular genes, we have used nongenotoxic carcinogens. It was found that 44 out of 44 colonies of CHE cells transformed by benz[a]pyrene, methylcholanthrene, dimethylbenzanthracene, and colcemid, or spontaneously were between 50 and 100% aneuploid. Thus, aneuploidy originated with transformation. Two of two chemically transformed colonies tested were tumorigenic 2 months after inoculation into hamsters. The cells of transformed colonies were heterogeneous in chromosome number, consistent with the hypothesis that aneuploidy can perpetually destabilize the chromosome number because it unbalances the elements of the mitotic apparatus. Considering that all 44 transformed colonies analyzed were aneuploid, and the early association between aneuploidy, transformation, and tumorigenicity, we conclude that aneuploidy is the cause rather than a consequence of transformation.
Collapse
Affiliation(s)
- R Li
- Department of Molecular and Cell Biology, Stanley Hall, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Hua VY, Wang WK, Duesberg PH. Dominant transformation by mutated human ras genes in vitro requires more than 100 times higher expression than is observed in cancers. Proc Natl Acad Sci U S A 1997; 94:9614-9. [PMID: 9275171 PMCID: PMC23234 DOI: 10.1073/pnas.94.18.9614] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The gene-mutation-cancer hypothesis holds that mutated cellular protooncogenes, such as point-mutated proto-ras, "play a dominant part in cancer," because they are sufficient to transform transfected mouse cell lines in vitro [Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1994) Molecular Biology of the Cell (Garland, New York)]. However, in cells transformed in vitro mutated human ras genes are expressed more than 100-fold than in the cancers from which they are isolated. In view of the discrepancy between the very low levels of ras transcription in cancers and the very high levels in cells transformed in vitro, we have investigated the minimal level of human ras expression for transformation in vitro. Using point-mutated human ras genes recombined with different promoters from either human metallothionein-IIA or human fibronectin or from retroviruses we found dominant in vitro transformation of the mouse C3H cell line only with ras genes linked to viral promoters. These ras genes were expressed more than 120-fold higher than are native ras genes of C3H cells. The copy number of transfected ras genes ranged from 2-6 in our system. In addition, nondominant transformation was observed in a small percentage (2-7%) of C3H cells transfected with ras genes that are expressed less than 20 times higher than native C3H ras genes. Because over 90% of cells expressing ras at this moderately enhanced level were untransformed, transformation must follow either a nondominant ras mechanism or a non-ras mechanism. We conclude that the mutated, but normally expressed, ras genes found in human and animal cancers are not likely to "play a dominant part in cancer." The conclusion that mutated ras genes are not sufficient or dominant for cancer is directly supported by recent discoveries of mutated ras in normal animals, and in benign human tissue, "which has little potential to progress" [Jen, J., Powell, S. M., Papadopoulos, N., Smith, K. J., Hamilton, S. R., Vogelstein, B. & Kinzler, K. W. (1994) Cancer Res. 54, 5523-5526]. Even the view that mutated ras is necessary for cancer is hard to reconcile with (i) otherwise indistinguishable cancers with and without ras mutations, (ii) metastases of the same human cancers with and without ras mutations, (iii) retroviral ras genes that are oncogenic without point mutations, and (iv) human tumor cells having spontaneously lost ras mutation but not tumorigencity.
Collapse
Affiliation(s)
- V Y Hua
- Department of Molecular and Cell Biology, Stanley Hall, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
12
|
Gougopoulou DM, Kiaris H, Ergazaki M, Anagnostopoulos NI, Grigoraki V, Spandidos DA. Mutations and expression of the ras family genes in leukemias. Stem Cells 1996; 14:725-9. [PMID: 8948029 DOI: 10.1002/stem.140725] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The levels of expression and the incidence of codon 12 point mutations of the ras family genes were studied in 18 cases of leukemia, seven with acute myeloblastic leukemia (AML), three with acute lymphoblastic leukemia (ALL), four cases with chronic myelogenic leukemia (CML) and four cases with chronic lymphocytic leukemia (CLL). Elevated expression of the ras genes was found for 39%, 61% and 67% of the specimens for the H-ras, K-ras and N-ras, respectively. A trend was found between the overexpression of the N-ras gene and the acute leukemias: all 10 acute leukemias exhibited overexpression of the N-ras gene, while only two of the CML cases, both in blastic crisis, showed elevated levels of the N-ras gene. Codon 12 point mutations at the N-ras gene were found in two of seven cases (28%) with AML and one of four cases (25%) with CML. The only K-ras codon 12 point mutation was found in a patient with CLL. No mutations were found in the codon 12 of H-ras. Our data suggest that apart from the point mutations, overexpression of the ras family genes is important in the development of the disease.
Collapse
Affiliation(s)
- D M Gougopoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | |
Collapse
|
13
|
Li R, Zhou RP, Duesberg P. Host range restrictions of oncogenes: myc genes transform avian but not mammalian cells and mht/raf genes transform mammalian but not avian cells. Proc Natl Acad Sci U S A 1996; 93:7522-7. [PMID: 8755507 PMCID: PMC38778 DOI: 10.1073/pnas.93.15.7522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The host range of retroviral oncogenes is naturally limited by the host range of the retroviral vector. The question of whether the transforming host range of retroviral oncogenes is also restricted by the host species has not been directly addressed. Here we have tested in avian and murine host species the transforming host range of two retroviral onc genes, myc of avian carcinoma viruses MH2 and MC29 and mht/raf of avian carcinoma virus MH2 and murine sarcoma virus MSV 3611. Virus vector-mediated host restriction was bypassed by recombining viral oncogenes with retroviral vectors that can readily infect the host to be tested. It was found that, despite high expression, transforming function of retroviral myc genes is restricted to avian cells, and that of retroviral mht/raf genes is restricted to murine cells. Since retroviral oncogenes encode the same proteins as certain cellular genes, termed protooncogenes, our data must also be relevant to the oncogene hypothesis of cancer. According to this hypothesis, cancer is caused by mutation of protooncogenes. Because protooncogenes are conserved in evolution and are presumed to have conserved functions, the oncogene hypothesis assumes no host range restriction of transforming function. For example, mutated human proto-myc is postulated to cause Burkitt lymphoma, because avian retroviruses with myc genes cause cancer in birds. But there is no evidence that known mutated protooncogenes can transform human cells. The findings reported here indicate that host range restriction appears to be one of the reasons (in addition to insufficient transcriptional activation) why known, mutated protooncogenes lack transforming function in human cells.
Collapse
Affiliation(s)
- R Li
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720, USA
| | | | | |
Collapse
|