1
|
Shi J, Zhang M, Hu Y, Liu J, Li K, Sun X, Chen S, Liu J, Ye L, Fan J, Jia J. Differences in transcriptome characteristics and drug repositioning of Alzheimer's disease according to sex. Neurobiol Dis 2025; 210:106909. [PMID: 40220916 DOI: 10.1016/j.nbd.2025.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Previous studies have shown significant sex differences in AD with regarding its epidemiology, pathophysiology, clinical presentation, and treatment response. However, the transcriptome variances associated with sex in AD remain unclear. METHODS RNA sequencing (RNA-seq) and transcriptomic analyses were performed on peripheral blood samples from total of 54 patients, including male AD patients (n = 15), female AD patients (n = 10), male MCI patients (n = 7), female MCI patients (n = 11), male healthy controls (n = 6), female healthy controls (n = 5). The snRNA-seq dataset (GSE167494, GSE157827) of prefrontal cortex tissues was obtained from the Gene Expression Omnibus (GEO). We conducted an investigation into differentially expressed genes and pathways in the peripheral blood cells as well as prefrontal cortex tissues of both male and female AD patients with consideration to sex-related factors. Additionally, we analyzed the distribution and characteristics of cells in the cerebral cortex as well as the interaction and communication between cells of male and female AD patients. Connectivity Map (CMap) was utilized for predicting and screening potential sex-specific drugs for AD. RESULTS The transcriptome profile and associated biological processes in the peripheral blood of male and female AD and MCI patients exhibit discernible differences, including upregulation of BASP1 in AD male patients and arousing TNS1 in AD female patients. The distribution of various cell types in the prefrontal cortex tissues differs between male and female AD patients, like neuron and oligodendrocyte decreased and endothelial cell and astrocyte increased in female compared with male, while a multitude of genes exhibit significant differential expression. The results of cell communication analysis, such as collagen signaling pathway, suggest that sex disparities impact intercellular interactions within prefrontal cortex tissues among individuals with AD. By drug repositioning, several drugs, including torin-2 and YM-298198, might have the potential to therapeutic value of MCI or AD, while drugs like homoharringtonine and teniposide have potential opposite effects in different sexes. CONCLUSION The characteristics of the transcriptome in peripheral blood and single-cell transcriptome in the prefrontal cortex exhibit significant differences between male and female patients with AD, which providing a basis for future sex stratified treatment of AD.
Collapse
Affiliation(s)
- Jingqi Shi
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Minghua Zhang
- Medical Supplies Center of PLA General Hospital, Beijing 100853, China
| | - Yazhuo Hu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ke Li
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xuan Sun
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianwei Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ling Ye
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China.
| | - Jianjun Jia
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Tsaplina O. Interaction of Serratia proteamaculans with Integrins Activates Invasion-Promoting Signaling Pathways. Int J Mol Sci 2025; 26:3955. [PMID: 40362195 PMCID: PMC12071730 DOI: 10.3390/ijms26093955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
The opportunistic bacteria Serratia proteamaculans are able to penetrate human cells. It was previously shown that the bacterial surface protein OmpX promotes bacterial adhesion. In addition, infection with bacteria that synthesize the OmpX protein enhances the expression of EGFR and β1 integrin involved in the invasion of S. proteamaculans. Therefore, this work was aimed at determining the mechanism of interaction of S. proteamaculans with receptors of eukaryotic cells. Both integrin-linked kinase (ILK) and EGFR tyrosine kinase have been shown to be involved in the invasion of these bacteria. During infection, EGFR is first phosphorylated at Tyr845, which is carried out by c-Src kinase transmitting a signal from nearby receptors. The S. proteamaculans invasion depends on c-Src and focal adhesion kinase (FAK), which can both transmit a signal between β1 integrin and EGFR and participate in cytoskeletal rearrangements. These bacteria have been shown to interact with integrin not through the RGD binding site, and integrin binding to the RGD peptide enhances adhesion, invasion, and expression of α5 and β1 integrin subunits in response to infection. On the other hand, bacterial adhesion and increased expression of integrins during infection are caused by OmpX. Thus, OmpX interacts with integrins, and the participation of the α5 and β1 integrin subunits in the S. proteamaculans invasion allows us to assume that the receptor of OmpX is α5β1 integrin.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
3
|
Bi S, Yang R, Ju H, Liu Y. Dynamic Nanostructure-Based DNA Logic Gates for Cancer Diagnosis and Therapy. Chembiochem 2025; 26:e202400754. [PMID: 39429047 DOI: 10.1002/cbic.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
DNA logic gates with dynamic nanostructures have made a profound impact on cancer diagnosis and treatment. Through programming the dynamic structure changes of DNA nanodevices, precise molecular recognition with signal amplification and smart therapeutic strategies have been reported. This enhances the specificity and sensitivity of cancer theranostics, and improves diagnosis precision and treatment outcomes. This review explores the basic components of dynamic DNA nanostructures and corresponding DNA logic gates, as well as their applications for cancer diagnosis and therapies. The dynamic DNA nanostructures would contribute to cancer early detection and personalized treatment.
Collapse
Affiliation(s)
- Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruowen Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Li Z, Shao R, Xin H, Zhu Y, Jiang S, Wu J, Yan H, Jia T, Ge M, Shi X. Paxillin and Kindlin: Research Progress and Biological Functions. Biomolecules 2025; 15:173. [PMID: 40001476 PMCID: PMC11853175 DOI: 10.3390/biom15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Paxillin and kindlin are essential regulatory proteins involved in cell adhesion, migration, and signal transduction. Paxillin influences cytoskeletal dynamics by interacting with multiple signaling proteins, while kindlin regulates integrin activation, affecting adhesion and motility. This review examines the structures and functions of these proteins, focusing on their roles in cancer progression, immune response, and therapeutic potential. The cooperation between paxillin and kindlin in integrin activation and focal adhesion dynamics offers valuable insights into tumor metastasis, immune function, and tissue repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaofeng Shi
- The Second Affiliated Hospital of Nanjing Medical University, No.262, North Zhongshan Road, Nanjing 210003, China; (Z.L.)
| |
Collapse
|
5
|
Fioretto L, Ziaco M, Mercogliano M, Gallo C, Nuzzo G, d'Ippolito G, Castiglia D, Fontana A, Manzo E. The Janus effect of colloidal self-assembly on the biological response of amphiphilic drugs. Pharmacol Res 2024; 208:107400. [PMID: 39251100 DOI: 10.1016/j.phrs.2024.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
In aqueous environment amphiphilic molecules organize themselves into supramolecular structures deeply affecting the chemo-physical properties. Supramolecular assemby is also crucial in the pharmaceutical development of bioactive lipophilic molecules whose attitude to self-aggregate is a recognized factor affecting the in vivo pharmacokinetic, but can also play a crucial role in the interaction with the biological targets in in vitro tests. In aqueous solution, amphiphilic drugs exist in a complex equilibrium involving free monomers, oligomers and larger supramolecular aggregates held together by noncovalent bonds. In this review we focus our attention on the dual effect of drugs self-assembly, which can both reduce the availability of active compounds and create multivalent scaffolds, potentially improving binding affinity and avidity to cellular targets. We examine the effect of aggregation on different classes of amphiphatic molecules with significant biological activities, such as immunomodulatory, anti-tumor, antiviral, and antibiotic. Our purpose is to provide a comprehensive overview of how supramolecular chemistry influences the pharmacological and biological responses of amphiphilic molecules, emphasizing the need to consider these effects in early-stage drug development and in vitro testing. By elucidating these phenomena, this review aims to offer insights into optimizing drug design and formulation to overcome challenges posed by self-aggregation.
Collapse
Affiliation(s)
- Laura Fioretto
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, Catania 95126, Italy
| | - Marcello Ziaco
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Marcello Mercogliano
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; University of Naples Federico II, Dept. of Chemical Science, Via Cinthia, Napoli 80126, Italy
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Giuliana d'Ippolito
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Daniela Castiglia
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; University of Naples Federico II, Dept. of Biology, Via Cinthia, Napoli 80126, Italy.
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
6
|
Yang Y, Ivanov DG, Levin MD, Olenyuk B, Cordova-Robles O, Cederstrom B, Schnitzer JE, Kaltashov IA. Characterization of Large Immune Complexes with Size Exclusion Chromatography and Native Mass Spectrometry Supplemented with Gas Phase Ion Chemistry. Anal Chem 2024. [PMID: 38319243 DOI: 10.1021/acs.analchem.3c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Large immune complexes formed by the cross-linking of antibodies with polyvalent antigens play critical roles in modulating cell-mediated immunity. While both the size and the shape of immune complexes are important determinants in Fc receptor-mediated signaling responsible for phagocytosis, degranulation, and, in some instances, autoimmune pathologies, their characterization remains extremely challenging due to their large size and structural heterogeneity. We use native mass spectrometry (MS) supplemented with limited charge reduction in the gas phase to determine the stoichiometry of immune complexes formed by a bivalent (homodimeric) antigen, a 163 kDa aminopeptidase P2 (APP2), and a monoclonal antibody (mAb) to APP2. The observed (APP2·mAb)n complexes populate a wide range of stoichiometries (n = 1-4) with the largest detected species exceeding 1 MDa, although the gas-phase dissociation products are also evident in the mass spectra. While frequently considering a nuisance that complicates interpretation of native MS data, limited dissociation provides an additional dimension for characterization of the immune complex quaternary structure. APP2/mAb associations with identical composition but slightly different elution times in size exclusion chromatography exhibit notable differences in their spontaneous fragmentation profiles. The latter indicates the presence of both extended linear and cyclized (APP2·mAb)n configurations. The unique ability of MS to distinguish between such isomeric structures will be invaluable for a variety of applications where the biological effects of immune complexes are determined by their ability to assemble Fc receptor clusters of certain density on cell surfaces, such as platelet activation by clustering the low-affinity receptors FcγRIIa on their surface.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Michael D Levin
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Oscar Cordova-Robles
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
7
|
Chen Y, Li Z, Kong F, Ju LA, Zhu C. Force-Regulated Spontaneous Conformational Changes of Integrins α 5β 1 and α Vβ 3. ACS NANO 2024; 18:299-313. [PMID: 38105535 PMCID: PMC10786158 DOI: 10.1021/acsnano.3c06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Integrins are cell surface nanosized receptors crucial for cell motility and mechanosensing of the extracellular environment, which are often targeted for the development of biomaterials and nanomedicines. As a key feature of integrins, their activity, structure and behavior are highly mechanosensitive, which are regulated by mechanical forces down to pico-Newton scale. Using single-molecule biomechanical approaches, we compared the force-modulated ectodomain bending/unbending conformational changes of two integrin species, α5β1 and αVβ3. It was found that the conformation of integrin α5β1 is determined by a threshold head-to-tail tension. By comparison, integrin αVβ3 exhibits bistability even without force and can spontaneously transition between the bent and extended conformations with an apparent transition time under a wide range of forces. Molecular dynamics simulations observed almost concurrent disruption of ∼2 hydrogen bonds during integrin α5β1 unbending, but consecutive disruption of ∼7 hydrogen bonds during integrin αVβ3 unbending. Accordingly, we constructed a canonical energy landscape for integrin α5β1 with a single energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to allow the conformational transition. In contrast, the energy landscape of integrin αVβ3 conformational changes was constructed with hexa-stable intermediate states and intermediate energy barriers that segregate the conformational change process into multiple small steps. Our study elucidates the different biomechanical inner workings of integrins α5β1 and αVβ3 at the submolecular level, helps understand their mechanosignaling processes and how their respective functions are facilitated by their distinctive mechanosensitivities, and provides useful design principles for the engineering of protein-based biomechanical nanomachines.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Biochemistry and Molecular Biology and Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Zhenhai Li
- Shanghai
Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute
of Applied Mathematics and Mechanics, School of Mechanics and Engineering
Science, Shanghai University, Shanghai 200072, China
| | - Fang Kong
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Biological Science, Nanyang Technological
University, Singapore 637551, Singapore
| | - Lining Arnold Ju
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Biomedical Engineering, The University
of Sydney, Darlington, New South Wales 2008, Australia
- Charles
Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Isomursu A, Alanko J, Hernández-Pérez S, Saukkonen K, Saari M, Mattila PK, Ivaska J. Dynamic Micropatterning Reveals Substrate-Dependent Differences in the Geometric Control of Cell Polarization and Migration. SMALL METHODS 2024; 8:e2300719. [PMID: 37926786 DOI: 10.1002/smtd.202300719] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Cells are highly dynamic and adopt variable shapes and sizes. These variations are biologically important but challenging to investigate in a spatiotemporally controlled manner. Micropatterning, confining cells on microfabricated substrates with defined geometries and molecular compositions, is a powerful tool for controlling cell shape and interactions. However, conventional binary micropatterns are static and fail to address dynamic changes in cell polarity, spreading, and migration. Here, a method for dynamic micropatterning is reported, where the non-adhesive surface surrounding adhesive micropatterns is rapidly converted to support specific cell-matrix interactions while allowing simultaneous imaging of the cells. The technique is based on ultraviolet photopatterning of biotinylated polyethylene glycol-grafted poly-L-lysine, and it is simple, inexpensive, and compatible with a wide range of streptavidin-conjugated ligands. Experiments using biotinylation-based dynamic micropatterns reveal that distinct extracellular matrix ligands and bivalent integrin-clustering antibodies support different degrees of front-rear polarity in human glioblastoma cells, which correlates to altered directionality and persistence upon release and migration on fibronectin. Unexpectedly, however, neither an asymmetric cell shape nor centrosome orientation can fully predict the future direction of migration. Taken together, biotinylation-based dynamic micropatterns allow easily accessible and highly customizable control over cell morphology and motility.
Collapse
Affiliation(s)
- Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Jonna Alanko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Sara Hernández-Pérez
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, 20014, Finland
- Department of Life Technologies, University of Turku, Turku, 20520, Finland
| | - Karla Saukkonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Markku Saari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Pieta K Mattila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, 20014, Finland
- Department of Life Technologies, University of Turku, Turku, 20520, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
- Department of Life Technologies, University of Turku, Turku, 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, 20520, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, 20520, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, 00014, Finland
| |
Collapse
|
9
|
Zhang X, Karagöz Z, Swapnasrita S, Habibovic P, Carlier A, van Rijt S. Development of Mesoporous Silica Nanoparticle-Based Films with Tunable Arginine-Glycine-Aspartate Peptide Global Density and Clustering Levels to Study Stem Cell Adhesion and Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38171-38184. [PMID: 37527490 PMCID: PMC10436245 DOI: 10.1021/acsami.3c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Stem cell adhesion is mediated via the binding of integrin receptors to adhesion motifs present in the extracellular matrix (ECM). The spatial organization of adhesion ligands plays an important role in stem cell integrin-mediated adhesion. In this study, we developed a series of biointerfaces using arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles (MSN-RGD) to study the effect of RGD adhesion ligand global density (ligand coverage over the surface), spacing, and RGD clustering levels on stem cell adhesion and differentiation. To prepare the biointerface, MSNs were chemically functionalized with RGD peptides via an antifouling poly(ethylene glycol) (PEG) linker. The RGD surface functionalization ratio could be controlled to create MSNs with high and low RGD ligand clustering levels. MSN films with varying RGD global densities could be created by blending different ratios of MSN-RGD and non-RGD-functionalized MSNs together. A computational simulation study was performed to analyze nanoparticle distribution and RGD spacing on the resulting surfaces to determine experimental conditions. Enhanced cell adhesion and spreading were observed when RGD global density increased from 1.06 to 5.32 nmol cm-2 using highly clustered RGD-MSN-based films. Higher RGD ligand clustering levels led to larger cell spreading and increased formation of focal adhesions. Moreover, a higher RGD ligand clustering level promoted the expression of alkaline phosphatase in hMSCs. Overall, these findings indicate that both RGD global density and clustering levels are crucial variables in regulating stem cell behaviors. This study provides important information about ligand-integrin interactions, which could be implemented into biomaterial design to achieve optimal performance of adhesive functional peptides.
Collapse
Affiliation(s)
- Xingzhen Zhang
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Zeynep Karagöz
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sangita Swapnasrita
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Aurélie Carlier
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
10
|
Bachmann M, Su B, Rahikainen R, Hytönen VP, Wu J, Wehrle-Haller B. ConFERMing the role of talin in integrin activation and mechanosignaling. J Cell Sci 2023; 136:jcs260576. [PMID: 37078342 PMCID: PMC10198623 DOI: 10.1242/jcs.260576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Talin (herein referring to the talin-1 form), is a cytoskeletal adapter protein that binds integrin receptors and F-actin, and is a key factor in the formation and regulation of integrin-dependent cell-matrix adhesions. Talin forms the mechanical link between the cytoplasmic domain of integrins and the actin cytoskeleton. Through this linkage, talin is at the origin of mechanosignaling occurring at the plasma membrane-cytoskeleton interface. Despite its central position, talin is not able to fulfill its tasks alone, but requires help from kindlin and paxillin to detect and transform the mechanical tension along the integrin-talin-F-actin axis into intracellular signaling. The talin head forms a classical FERM domain, which is required to bind and regulate the conformation of the integrin receptor, as well as to induce intracellular force sensing. The FERM domain allows the strategic positioning of protein-protein and protein-lipid interfaces, including the membrane-binding and integrin affinity-regulating F1 loop, as well as the interaction with lipid-anchored Rap1 (Rap1a and Rap1b in mammals) GTPase. Here, we summarize the structural and regulatory features of talin and explain how it regulates cell adhesion and force transmission, as well as intracellular signaling at integrin-containing cell-matrix attachment sites.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | - Baihao Su
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Rolle Rahikainen
- Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere University, FI-33520 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere University, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| |
Collapse
|
11
|
Chen Y, Kong F, Li Z, Ju LA, Zhu C. Force-regulated spontaneous conformational changes of integrins α 5 β 1 and α V β 3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523308. [PMID: 36712101 PMCID: PMC9881988 DOI: 10.1101/2023.01.09.523308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Force can modulate the properties and functions of macromolecules by inducing conformational changes, such as coiling/uncoiling, zipping/unzipping, and folding/unfolding. Here we compared force-modulated bending/unbending of two purified integrin ectodomains, α 5 β 1 and α V β 3 , using single-molecule approaches. Similar to previously characterized mechano-sensitive macromolecules, the conformation of α 5 β 1 is determined by a threshold head-to-tail tension, suggesting a canonical energy landscape with a deep energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to accelerate transition to the extended state. By comparison, α V β 3 exhibits bi-stability even without force and can spontaneously transition between the bent and extended conformations in a wide range of forces without energy supplies. Molecular dynamics simulations revealed consecutive formation and disruption of 7 hydrogen bonds during α V β 3 bending and unbending, respectively. Accordingly, we constructed an energy landscape with hexa-stable intermediate states to break down the energy barrier separating the bent and extended states into smaller ones, making it possible for the thermal agitation energy to overcome them sequentially and to be accumulated and converted into mechanical work required for α V β 3 to bend against force. Our study elucidates the different inner workings of α 5 β 1 and α V β 3 at the sub-molecular level, sheds lights on how their respectively functions are facilitated by their distinctive mechano-sensitivities, helps understand their signal initiation processes, and provides critical concepts and useful design principles for engineering of protein-based biomechanical nanomachines.
Collapse
|
12
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
13
|
Hu X, Roy SR, Jin C, Li G, Zhang Q, Asano N, Asahina S, Kajiwara T, Takahara A, Feng B, Aoki K, Xu C, Zhang Y. Control cell migration by engineering integrin ligand assembly. Nat Commun 2022; 13:5002. [PMID: 36008449 PMCID: PMC9411606 DOI: 10.1038/s41467-022-32686-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in mechanistic understanding of integrin-mediated adhesion highlight the importance of precise control of ligand presentation in directing cell migration. Top-down nanopatterning limited the spatial presentation to sub-micron placing restrictions on both fundamental study and biomedical applications. To break the constraint, here we propose a bottom-up nanofabrication strategy to enhance the spatial resolution to the molecular level using simple formulation that is applicable as treatment agent. Via self-assembly and co-assembly, precise control of ligand presentation is succeeded by varying the proportions of assembling ligand and nonfunctional peptide. Assembled nanofilaments fulfill multi-functions exerting enhancement to suppression effect on cell migration with tunable amplitudes. Self-assembled nanofilaments possessing by far the highest ligand density prevent integrin/actin disassembly at cell rear, which expands the perspective of ligand-density-dependent-modulation, revealing valuable inputs to therapeutic innovations in tumor metastasis.
Collapse
Affiliation(s)
- Xunwu Hu
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan, China
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chengzhi Jin
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Guangzhou Municipal and Guangdong Provincial Key of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qizheng Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | | | | | - Tomoko Kajiwara
- Research Center for Negative Emission Technology, Kyushu University, Fukuoka, Japan
| | - Atsushi Takahara
- Research Center for Negative Emission Technology, Kyushu University, Fukuoka, Japan
| | - Bolu Feng
- Fluid Mechanics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institute of Natural Sciences, Aichi, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- Department of Basic Biology, School of Science, SOKENDAI (The Graduate University for Advanced Studies), Aichi, Japan
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Ye Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan, China.
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
14
|
Application of piconewton forces to individual filopodia reveals mechanosensory role of L-type Ca 2+ channels. Biomaterials 2022; 284:121477. [PMID: 35395455 DOI: 10.1016/j.biomaterials.2022.121477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/02/2022]
Abstract
Filopodia are ubiquitous membrane projections that play crucial role in guiding cell migration on rigid substrates and through extracellular matrix by utilizing yet unknown mechanosensing molecular pathways. As recent studies show that Ca2+ channels localized to filopodia play an important role in regulation of their formation and since some Ca2+ channels are known to be mechanosensitive, force-dependent activity of filopodial Ca2+ channels might be linked to filopodia's mechanosensing function. We tested this hypothesis by monitoring changes in the intra-filopodial Ca2+ level in response to application of stretching force to individual filopodia of several cell types using optical tweezers. Results show that stretching forces of tens of pN strongly promote Ca2+ influx into filopodia, causing persistent Ca2+ oscillations that last for minutes even after the force is released. Several known mechanosensitive Ca2+ channels, such as Piezo 1, Piezo 2 and TRPV4, were found to be dispensable for the observed force-dependent Ca2+ influx, while L-type Ca2+ channels appear to be a key player in the discovered phenomenon. As previous studies have shown that intra-filopodial transient Ca2+ signals play an important role in guidance of cell migration, our results suggest that the force-dependent activation of L-type Ca2+ channels may contribute to this process. Overall, our study reveals an intricate interplay between mechanical forces and Ca2+ signaling in filopodia, providing novel mechanistic insights for the force-dependent filopodia functions in guidance of cell migration.
Collapse
|
15
|
Using ELP Repeats as a Scaffold for De Novo Construction of Gadolinium-Binding Domains within Multifunctional Recombinant Proteins for Targeted Delivery of Gadolinium to Tumour Cells. Int J Mol Sci 2022; 23:ijms23063297. [PMID: 35328725 PMCID: PMC8949254 DOI: 10.3390/ijms23063297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023] Open
Abstract
Three artificial proteins that bind the gadolinium ion (Gd3+) with tumour-specific ligands were de novo engineered and tested as candidate drugs for binary radiotherapy (BRT) and contrast agents for magnetic resonance imaging (MRI). Gd3+-binding modules were derived from calmodulin. They were joined with elastin-like polypeptide (ELP) repeats from human elastin to form the four-centre Gd3+-binding domain (4MBS-domain) that further was combined with F3 peptide (a ligand of nucleolin, a tumour marker) to form the F3-W4 block. The F3-W4 block was taken alone (E2-13W4 protein), as two repeats (E1-W8) and as three repeats (E1-W12). Each protein was supplemented with three copies of the RGD motif (a ligand of integrin αvβ3) and green fluorescent protein (GFP). In contrast to Magnevist (a Gd-containing contrast agent), the proteins exhibited three to four times higher accumulation in U87MG glioma and A375 melanoma cell lines than in normal fibroblasts. The proteins remained for >24 h in tumours induced by Ca755 adenocarcinoma in C57BL/6 mice. They exhibited stability towards blood proteases and only accumulated in the liver and kidney. The technological advantages of using the engineered proteins as a basis for developing efficient and non-toxic agents for early diagnosis of tumours by MRI as well as part of BRT were demonstrated.
Collapse
|
16
|
Saddow SE. Silicon Carbide Technology for Advanced Human Healthcare Applications. MICROMACHINES 2022; 13:346. [PMID: 35334637 PMCID: PMC8949526 DOI: 10.3390/mi13030346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
Silicon carbide (SiC) is a highly robust semiconductor material that has the potential to revolutionize implantable medical devices for human healthcare, such as biosensors and neuro-implants, to enable advanced biomedical therapeutic applications for humans. SiC is both bio and hemocompatible, and is already commercially used for long-term human in vivo applications ranging from heart stent coatings and dental implants to short-term diagnostic applications involving neural implants and sensors. One challenge facing the medical community today is the lack of biocompatible materials which are inherently smart or, in other words, capable of electronic functionality. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it does not directly interact with biological tissue or has a short lifetime due to instabilities in vivo. Long-term, permanently implanted devices such as glucose sensors, neural interfaces, smart bone and organ implants, etc., require a more robust material that does not degrade over time and is not recognized and rejected as a foreign object by the inflammatory response. SiC has displayed these exceptional material properties, which opens up a whole new host of applications and allows for the development of many advanced biomedical devices never before possible for long-term use in vivo. This paper is a review of the state-of-the art and discusses cutting-edge device applications where SiC medical devices are poised to translate to the commercial marketplace.
Collapse
Affiliation(s)
- Stephen E. Saddow
- Electrical Engineering Department, University of South Florida, Tampa, FL 33620, USA; ; Tel.: +1-813-974-4773
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
17
|
Benk LT, Benk AS, Lira RB, Cavalcanti-Adam EA, Dimova R, Lipowsky R, Geiger B, Spatz JP. Integrin α
IIb
β
3
Activation and Clustering in Minimal Synthetic Cells. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lucia T. Benk
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Amelie S. Benk
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Rafael B. Lira
- Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Faculty of Science and Engineering Molecular Biophysics Zernike Institute for Advanced Materials 9747 AG Groningen The Netherlands
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
- Max Planck School Matter to Life Jahnstr. 29 69120 Heidelberg Germany
| | - Rumiana Dimova
- Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Reinhard Lipowsky
- Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Max Planck School Matter to Life Jahnstr. 29 69120 Heidelberg Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology Weizmann Institute of Science Rehovot 76100 Israel
| | - Joachim P. Spatz
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
- Max Planck School Matter to Life Jahnstr. 29 69120 Heidelberg Germany
- Institute for Molecular Systems Engineering (IMSE) Heidelberg University 69120 Heidelberg Germany
| |
Collapse
|
18
|
Shabanipour S, Jiao X, Rahimi-Balaei M, Aghanoori MR, Chung SH, Ghavami S, Consalez GG, Marzban H. Upregulation of Neural Cell Adhesion Molecule 1 and Excessive Migration of Purkinje Cells in Cerebellar Cortex. Front Neurosci 2022; 15:804402. [PMID: 35126044 PMCID: PMC8814629 DOI: 10.3389/fnins.2021.804402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Purkinje cells (PCs) are large GABAergic projection neurons of the cerebellar cortex, endowed with elaborate dendrites that receive a multitude of excitatory inputs. Being the only efferent neuron of the cerebellar cortex, PCs project to cerebellar nuclei and control behaviors ranging from movement to cognition and social interaction. Neural cell adhesion molecule 1 (NCAM1) is widely expressed in the embryonic and postnatal development of the brain and plays essential roles in neuronal migration, axon pathfinding and synapse assembly. However, despite its high expression levels in cerebellum, little is known to date regarding the role(s) of NCAM1 in PCs development. Among other aspects, elucidating how the expression of NCAM1 in PCs could impact their postnatal migration would be a significant achievement. We analyzed the Acp2 mutant mouse (nax: naked and ataxia), which displays excessive PC migration into the molecular layer, and investigated how the excessive migration of PCs along Bergmann glia could correlate to NCAM1 expression pattern in early postnatal days. Our Western blot and RT-qPCR analysis of the whole cerebellum show that the protein and mRNA of NCAM1 in wild type are not different during PC dispersal from the cluster stage to monolayer formation. However, RT-qPCR analysis from FACS-based isolated PCs shows that Ncam1 is significantly upregulated when PCs fail to align and instead overmigrate into the molecular layer. Our results suggest two alternative interpretations: (1) NCAM1 promotes excessive PC migration along Bergmann glia, or (2) NCAM1 upregulation is an attempt to prevent PCs from invading the molecular layer. If the latter scenario proves true, NCAM1 may play a key role in PC monolayer formation.
Collapse
Affiliation(s)
- Shahin Shabanipour
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaodan Jiao
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamad Reza Aghanoori
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Seung H. Chung
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - G. Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Hassan Marzban,
| |
Collapse
|
19
|
Case LB, De Pasquale M, Henry L, Rosen MK. Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation. eLife 2022; 11:e72588. [PMID: 35049497 PMCID: PMC8791637 DOI: 10.7554/elife.72588] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Integrin adhesion complexes (IACs) are integrin-based plasma-membrane-associated compartments where cells sense environmental cues. The physical mechanisms and molecular interactions that mediate initial IAC formation are unclear. We found that both p130Cas ('Cas') and Focal adhesion kinase ('FAK') undergo liquid-liquid phase separation in vitro under physiologic conditions. Cas- and FAK- driven phase separation is sufficient to reconstitute kindlin-dependent integrin clustering in vitro with recombinant mammalian proteins. In vitro condensates and IACs in mouse embryonic fibroblasts (MEFs) exhibit similar sensitivities to environmental perturbations including changes in temperature and pH. Furthermore, mutations that inhibit or enhance phase separation in vitro reduce or increase the number of IACs in MEFs, respectively. Finally, we find that the Cas and FAK pathways act synergistically to promote phase separation, integrin clustering, IAC formation and partitioning of key components in vitro and in cells. We propose that Cas- and FAK-driven phase separation provides an intracellular trigger for integrin clustering and nascent IAC formation.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Milagros De Pasquale
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Lisa Henry
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
20
|
Dong J, Zhu C, Zhang F, Zhou Z, Sun M. "Attractive/adhesion force" dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release 2021; 341:892-903. [PMID: 34953982 DOI: 10.1016/j.jconrel.2021.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is refractory systemic disease resulting in low survival rate of breast cancer patients, especially in the late stage. The processes of metastasis are mainly initiated by strong "attractive force" from distant organs and deteriorated by weak "adhesion force" in primary tumor. Here, we reported "attractive/adhesion force" dual-regulatory nanogels (CQ-HF/PTX) for the precise treatment of both primary and metastasis of metastatic breast cancer. Hydroxychloroquine (HCQ) and hydrophobic Fmoc were grafted on hydrophilic hydroxyethyl starch (HES) to obtain amphiphilic CQ-HF polymer, which was assembly with chemotherapy drug paclitaxel (PTX) to form the nanogels for anti-primary tumor. Meanwhile, CQ-HF/PTX nanogels play two roles in anti-metastasis: i) For reducing the "attractive force", it could block the CXCR4/SDF-1 pathway, preventing tumor cells metastasis to the lung; ii) For reinforcing "adhesion force", it could inhibit the excessive autophagy for hindering the degradation of paxillin and enhancing the cell adhesion. As a result, dual-regulatory CQ-HF/PTX nanogels dramatically inhibited tumor and the lung metastasis of mouse breast cancer. Therefore, the fabricating of synergetic dual-regulatory nanogels uncovered the explicit mechanism and provided an efficient strategy for combating malignant metastatic tumors.
Collapse
Affiliation(s)
- Jingwen Dong
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Chenfei Zhu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Feiran Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
21
|
Hu X, Zhang Y. Developing biomaterials to mediate the spatial distribution of integrins. BIOPHYSICS REVIEWS 2021; 2:041302. [PMID: 38504718 PMCID: PMC10903404 DOI: 10.1063/5.0055746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/21/2021] [Indexed: 03/21/2024]
Abstract
Innovation in material design to regulate cell behavior and function is one of the primary tasks in materials science. Integrins, a family of cell surface-adhesion receptors that mechanically connect the extracellular matrix (ECM) to the intracellular cytoskeleton, have long served as primary targets for the design of biomaterials because their activity is not only critical to a wide range of cell and tissue functions but also subject to very tight and complex regulations from the outside environment. To review the recent progress of material innovations targeting the spatial distribution of integrins, we first introduce the interaction mechanisms between cells and the ECM by highlighting integrin-based cell adhesions, describing how integrins respond to environmental stimuli, including variations in ligand presentation, mechanical cues, and topographical variations. Then, we overview the current development of soft materials in guiding cell behaviors and functions via spatial regulation of integrins. Finally, we discuss the current limitations of these technologies and the advances that may be achieved in the future. Undoubtedly, synthetic soft materials that mediate the spatial distribution of integrins play an important role in biomaterial innovations for advancing biomedical applications and addressing fundamental biological questions.
Collapse
Affiliation(s)
- Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
22
|
Integrin and syndecan binding peptide-conjugated alginate hydrogel for modulation of nucleus pulposus cell phenotype. Biomaterials 2021; 277:121113. [PMID: 34492582 DOI: 10.1016/j.biomaterials.2021.121113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
Biomaterial based strategies have been widely explored to preserve and restore the juvenile phenotype of cells of the nucleus pulposus (NP) in degenerated intervertebral discs (IVD). With aging and maturation, NP cells lose their ability to produce necessary extracellular matrix and proteoglycans, accelerating disc degeneration. Previous studies have shown that integrin or syndecan binding peptide motifs from laminin can induce NP cells from degenerative human discs to re-express juvenile NP-specific cell phenotype and biosynthetic activity. Here, we engineered alginate hydrogels to present integrin- and syndecan-binding peptides alone or in combination (cyclic RGD and AG73, respectively) to introduce bioactive features into the alginate gels. We demonstrated human NP cells cultured upon and within alginate hydrogels presented with cRGD and AG73 peptides exhibited higher cell viability, biosynthetic activity, and NP-specific protein expression over alginate alone. Moreover, the combination of the two peptide motifs elicited markers of the NP-specific cell phenotype, including N-Cadherin, despite differences in cell morphology and multicellular cluster formation between 2D and 3D cultures. These results represent a promising step toward understanding how distinct adhesive peptides can be combined to guide NP cell fate. In the future, these insights may be useful to rationally design hydrogels for NP cell-transplantation based therapies for IVD degeneration.
Collapse
|
23
|
Freise C, Lee H, Chronowski C, Chan D, Cziomer J, Rühl M, Dagdelen T, Lösekann M, Erben U, Catic A, Tegge W, Schuppan D, Somasundaram R, Sahin E. Alpha-single chains of collagen type VI inhibit the fibrogenic effects of triple helical collagen VI in hepatic stellate cells. PLoS One 2021; 16:e0254557. [PMID: 34473704 PMCID: PMC8412337 DOI: 10.1371/journal.pone.0254557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The interaction of extracellular matrix (ECM) components with hepatic stellate cells (HSCs) is thought to perpetuate fibrosis by stimulating signaling pathways that drive HSC activation, survival and proliferation. Consequently, disrupting the interaction between ECM and HSCs is considered a therapeutical avenue although respective targets and underlying mechanisms remain to be established. Here we have interrogated the interaction between type VI collagen (CVI) and HSCs based on the observation that CVI is 10-fold upregulated during fibrosis, closely associates with HSCs in vivo and promotes cell proliferation and cell survival in cancer cell lines. We exposed primary rat HSCs and a rat hepatic stellate cell line (CFSC) to soluble CVI and determined the rate of proliferation, apoptosis and fibrogenesis in the absence of any additional growth factors. We find that CVI in nanomolar concentrations prevents serum starvation-induced apoptosis. This potent anti-apoptotic effect is accompanied by induction of proliferation and acquisition of a pronounced pro-fibrogenic phenotype characterized by increased α-smooth muscle actin, TGF-β, collagen type I and TIMP-1 expression and diminished proteolytic MMP-13 expression. The CVI-HSC interaction can be disrupted with the monomeric α2(VI) and α3(VI) chains and abrogates the activating CVI effects. Further, functional relevant α3(VI)—derived 30 amino acid peptides lead to near-complete inhibition of the CVI effect. In conclusion, CVI serves as a potent mitogen and activating factor for HSCs. The antagonistic effects of the CVI monomeric chains and peptides point to linear peptide sequences that prevent activation of CVI receptors which may allow a targeted antifibrotic therapy.
Collapse
Affiliation(s)
- Christian Freise
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hyunho Lee
- Huffington Center On Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christopher Chronowski
- Huffington Center On Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Doug Chan
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jessica Cziomer
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Rühl
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tarkan Dagdelen
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maik Lösekann
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Erben
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andre Catic
- Huffington Center On Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Detlef Schuppan
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
| | - Rajan Somasundaram
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Emergency Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ergun Sahin
- Huffington Center On Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
24
|
Liu L, Gao X, Li X, Zhu G, Li N, Shi X, Wang Y. Calcium alendronate-coated composite scaffolds promote osteogenesis of ADSCs via integrin and FAK/ERK signalling pathways. J Mater Chem B 2021; 8:6912-6924. [PMID: 32432602 DOI: 10.1039/d0tb00571a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bioceramic-biopolymer composites have been used extensively as bone tissue engineering scaffolds due to their bioactive properties. However, composite scaffolds are insufficient in inducing osteogenic differentiation of stem cells. In this study, a strategy for the local delivery of bioactive factors by coating calcium alendronate (ALC) on the surface of composite scaffolds was systematically evaluated for the first time. The coated ALC not only displayed excellent cytocompatibility and cell adhesion properties but also resulted in the significant upregulation of osteogenic related gene expression, osteogenic related protein levels, alkaline phosphatase (ALP) activity and calcium deposition of ADSCs. Furthermore, our results suggested that the molecular mechanism of ADSC osteogenic differentiation induced by the constructed ALC may be related to the integrin binding and the activation of FAK/ERK signalling pathways. These findings suggested that ALC-coated composite scaffolds can serve as bone tissue engineering scaffolds, providing a simple and universal method to improve the osteogenic differentiation of ADSCs by calcium phosphate-containing composite materials.
Collapse
Affiliation(s)
- Lei Liu
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Karna D, Stilgenbauer M, Jonchhe S, Ankai K, Kawamata I, Cui Y, Zheng YR, Suzuki Y, Mao H. Chemo-Mechanical Modulation of Cell Motions Using DNA Nanosprings. Bioconjug Chem 2021; 32:311-317. [PMID: 33475341 PMCID: PMC8199798 DOI: 10.1021/acs.bioconjchem.0c00674] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell motions such as migration and change in cellular morphology are essential activities for multicellular organism in response to environmental stimuli. These activities are a result of coordinated clustering/declustering of integrin molecules at the cell membrane. Here, we prepared DNA origami nanosprings to modulate cell motions by targeting the clustering of integrin molecules. Each nanospring was modified with arginyl-glycyl-aspartic acid (RGD) domains with a spacing such that when the nanospring is coiled, the RGD ligands trigger the clustering of integrin molecules, which changes cell motions. The coiling or uncoiling of the nanospring is controlled, respectively, by the formation or dissolution of an i-motif structure between neighboring piers in the DNA origami nanodevice. At slightly acidic pH (<6.5), the folding of the i-motif leads to the coiling of the nanospring, which inhibits the motion of HeLa cells. At neutrality (pH 7.4), the unfolding of the i-motif allows cells to resume mechanical movement as the nanospring becomes uncoiled. We anticipate that this pH-responsive DNA nanoassembly is valuable to inhibit the migration of metastatic cancer cells in acidic extracellular environment. Such a chemo-mechanical modulation provides a new mechanism for cells to mechanically respond to endogenous chemical cues.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Morgan Stilgenbauer
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Kazuya Ankai
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Ibuki Kawamata
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Yunxi Cui
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
- College of Life Sciences, Nankai University, Tianjin, China, 300071
| | - Yao-Rong Zheng
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
26
|
Sarker FA, Prior VG, Bax S, O'Neill GM. Forcing a growth factor response - tissue-stiffness modulation of integrin signaling and crosstalk with growth factor receptors. J Cell Sci 2020; 133:133/23/jcs242461. [PMID: 33310867 DOI: 10.1242/jcs.242461] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Research throughout the 90s established that integrin crosstalk with growth factor receptors stimulates robust growth factor signaling. These insights were derived chiefly from comparing adherent versus suspension cell cultures. Considering the new understanding that mechanosensory inputs tune adhesion signaling, it is now timely to revisit this crosstalk in different mechanical environments. Here, we present a brief historical perspective on integrin signaling against the backdrop of the mechanically diverse extracellular microenvironment, then review the evidence supporting the mechanical regulation of integrin crosstalk with growth factor signaling. We discuss early studies revealing distinct signaling consequences for integrin occupancy (binding to matrix) and aggregation (binding to immobile ligand). We consider how the mechanical environments encountered in vivo intersect with this diverse signaling, focusing on receptor endocytosis. We discuss the implications of mechanically tuned integrin signaling for growth factor signaling, using the epidermal growth factor receptor (EGFR) as an illustrative example. We discuss how the use of rigid tissue culture plastic for cancer drug screening may select agents that lack efficacy in the soft in vivo tissue environment. Tuning of integrin signaling via external mechanical forces in vivo and subsequent effects on growth factor signaling thus has implications for normal cellular physiology and anti-cancer therapies.
Collapse
Affiliation(s)
- Farhana A Sarker
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Victoria G Prior
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Samuel Bax
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia .,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
27
|
Bye AP, Gibbins JM, Mahaut-Smith MP. Ca 2+ waves coordinate purinergic receptor-evoked integrin activation and polarization. Sci Signal 2020; 13:13/615/eaav7354. [PMID: 31964805 DOI: 10.1126/scisignal.aav7354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells sense extracellular nucleotides through the P2Y class of purinergic G protein-coupled receptors (GPCRs), which stimulate integrin activation through signaling events, including intracellular Ca2+ mobilization. We investigated the relationship between P2Y-stimulated repetitive Ca2+ waves and fibrinogen binding to the platelet integrin αIIbβ3 (GPIIb/IIIa) through confocal fluorescence imaging of primary rat megakaryocytes. Costimulation of the receptors P2Y1 and P2Y12 generated a series of Ca2+ transients that each induced a rapid, discrete increase in fibrinogen binding. The peak and net increase of individual fibrinogen binding events correlated with the Ca2+ transient amplitude and frequency, respectively. Using BAPTA loading and selective receptor antagonists, we found that Ca2+ mobilization downstream of P2Y1 was essential for ADP-evoked fibrinogen binding, whereas P2Y12 and the kinase PI3K were also required for αIIbβ3 activation and enhanced the number of Ca2+ transients. ADP-evoked fibrinogen binding was initially uniform over the cell periphery but subsequently redistributed with a polarity that correlated with the direction of the Ca2+ waves. Polarization of αIIbβ3 may be mediated by the actin cytoskeleton, because surface-bound fibrinogen is highly immobile, and its motility was enhanced by cytoskeletal disruption. In conclusion, spatial and temporal patterns of Ca2+ increase enable fine control of αIIbβ3 activation after cellular stimulation. P2Y1-stimulated Ca2+ transients coupled to αIIbβ3 activation only in the context of P2Y12 coactivation, thereby providing an additional temporal mechanism of synergy between these Gq- and Gi-coupled GPCRs.
Collapse
Affiliation(s)
- Alexander P Bye
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading RG6 6AS, UK.
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading RG6 6AS, UK
| | - Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
28
|
Zhang S, Wang HJ, Li J, Hu XL, Shen Q. Radial Glial Cell-Derived VCAM1 Regulates Cortical Angiogenesis Through Distinct Enrichments in the Proximal and Distal Radial Processes. Cereb Cortex 2020; 30:3717-3730. [PMID: 31907535 DOI: 10.1093/cercor/bhz337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/27/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis in the developing cerebral cortex accompanies cortical neurogenesis. However, the precise mechanisms underlying cortical angiogenesis at the embryonic stage remain largely unknown. Here, we show that radial glia-derived vascular cell adhesion molecule 1 (VCAM1) coordinates cortical vascularization through different enrichments in the proximal and distal radial glial processes. We found that VCAM1 was highly enriched around the blood vessels in the inner ventricular zone (VZ), preventing the ingrowth of blood vessels into the mitotic cell layer along the ventricular surface. Disrupting the enrichment of VCAM1 surrounding the blood vessels by a tetraspanin-blocking peptide or conditional deletion of Vcam1 gene in neural progenitor cells increased angiogenesis in the inner VZ. Conversely, VCAM1 expressed in the basal endfeet of radial glial processes promoted angiogenic sprouting from the perineural vascular plexus (PNVP). In utero, overexpression of VCAM1 increased the vessel density in the cortical plate, while knockdown of Vcam1 accomplished the opposite. In vitro, we observed that VCAM1 bidirectionally affected endothelial cell proliferation in a concentration-dependent manner. Taken together, our findings identify that distinct concentrations of VCAM1 around VZ blood vessels and the PNVP differently organize cortical angiogenesis during late embryogenesis.
Collapse
Affiliation(s)
- Sanguo Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huanhuan Joyce Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jia Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-Ling Hu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qin Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Brain and Spinal Cord Clinical Research Center, Tongji University Shanghai 200092, China
| |
Collapse
|
29
|
Surface-Immobilized Biomolecules. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Westerfield JM, Barrera FN. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. J Biol Chem 2019; 295:1792-1814. [PMID: 31879273 DOI: 10.1074/jbc.rev119.009457] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Single-pass membrane receptors contain extracellular domains that respond to external stimuli and transmit information to intracellular domains through a single transmembrane (TM) α-helix. Because membrane receptors have various roles in homeostasis, signaling malfunctions of these receptors can cause disease. Despite their importance, there is still much to be understood mechanistically about how single-pass receptors are activated. In general, single-pass receptors respond to extracellular stimuli via alterations in their oligomeric state. The details of this process are still the focus of intense study, and several lines of evidence indicate that the TM domain (TMD) of the receptor plays a central role. We discuss three major mechanistic hypotheses for receptor activation: ligand-induced dimerization, ligand-induced rotation, and receptor clustering. Recent observations suggest that receptors can use a combination of these activation mechanisms and that technical limitations can bias interpretation. Short peptides derived from receptor TMDs, which can be identified by screening or rationally developed on the basis of the structure or sequence of their targets, have provided critical insights into receptor function. Here, we explore recent evidence that, depending on the target receptor, TMD peptides cannot only inhibit but also activate target receptors and can accommodate novel, bifunctional designs. Furthermore, we call for more sharing of negative results to inform the TMD peptide field, which is rapidly transforming into a suite of unique tools with the potential for future therapeutics.
Collapse
Affiliation(s)
- Justin M Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996.
| |
Collapse
|
31
|
Pankov R, Momchilova A, Stefanova N, Yamada KM. Characterization of stitch adhesions: Fibronectin-containing cell-cell contacts formed by fibroblasts. Exp Cell Res 2019; 384:111616. [PMID: 31499058 DOI: 10.1016/j.yexcr.2019.111616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022]
Abstract
Fibronectin is a multifunctional, extracellular matrix glycoprotein that exists either as an insoluble multimeric fibrillar component of the extracellular matrix or as a soluble monomer. Cells attach to fibronectin through transmembrane integrin receptors and form a variety of cell-matrix contacts. Here we show that primary fibroblasts can use fibronectin to organize a specific cell-cell contact - "stitch adhesions." This contact is formed by short parallel fibronectin fibrils connecting adjacent cells above the level of the focal adhesions that attach the cells to the substrate. Stitch adhesions contain integrin α5β1 but not αVβ3, align with actin filament bundles, and contain talin, tensin, α-actinin, vinculin, paxillin and a phosphorylated form of focal adhesion kinase. This combination of components differs from the described constituents of the known cell adhesions. Stitch adhesions are organized when protein synthesis and secretion are inhibited by cycloheximide and exogenous fibronectin is provided to the cells. The adhesion stitches described here provide an attractive model system for studying fibronectin fibrillogenesis and the mechanisms governing the formation of cellular adhesions.
Collapse
Affiliation(s)
- Roumen Pankov
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8, Dragan Tsankov Str, 1164, Sofia, Bulgaria.
| | - Albena Momchilova
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 21, 1113, Sofia, Bulgaria
| | - Nadezhda Stefanova
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8, Dragan Tsankov Str, 1164, Sofia, Bulgaria
| | - Kenneth M Yamada
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
32
|
Turner KR, Adams C, Staelens S, Deckmyn H, San Antonio J. Crucial Role for Endothelial Cell α2β1 Integrin Receptor Clustering in Collagen-Induced Angiogenesis. Anat Rec (Hoboken) 2019; 303:1604-1618. [PMID: 31581346 DOI: 10.1002/ar.24277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 11/07/2022]
Abstract
Angiogenesis is a crucial mechanism of vascular growth and regeneration that requires biosynthesis and cross-linking of collagens in vivo and is induced by collagen in vitro. Here, we use an in vitro model in which apical Type I collagen gels rapidly induce angiogenesis in endothelial monolayers. We extend previous studies demonstrating the importance of the endothelial α2β1 integrin, a key collagen receptor, in angiogenesis by investigating the roles of receptor clustering and conformational activation. Immunocytochemical localization of α2β1 integrins in endothelial monolayers showed a concentration of integrins along cell-cell borders. After inducing angiogenesis with collagen, the receptors redistributed to apical cell surfaces, aligning with collagen fibers, which were also redistributed during angiogenesis. Levels of conformationally activated α2β1 integrins were unchanged during angiogenesis and undetected on endothelial cells binding collagen in suspension. We mimicked the polyvalency of collagen fibrils using antibody-coated polystyrene beads to cluster endothelial cell surface α2β1 integrins, which induced rapid angiogenesis in the absence of collagen gels. Clustering of αvβ3 integrins and PECAM-1 but not of α1 integrins also induced angiogenesis. Soluble antibodies alone had no effect. Thus, the angiogenic property of collagen may reside in its ability to ligate and cluster cell surface receptors such as α2β1 integrins. Furthermore, synthetic substrates that promote the clustering of select endothelial cell surface receptors mimic the angiogenic properties of Type I collagen and may have applications in promoting vascularization of engineered tissues. Anat Rec, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Kevin R Turner
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Christopher Adams
- Department of Anatomy, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Stephanie Staelens
- Agrosavfe NV, Ghent, Zwijnaarde, Belgium.,Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - James San Antonio
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Bieniek MK, Llopis‐Hernandez V, Douglas K, Salmeron‐Sanchez M, Lorenz CD. Minor Chemistry Changes Alter Surface Hydration to Control Fibronectin Adsorption and Assembly into Nanofibrils. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mateusz K. Bieniek
- Department of PhysicsKing's College LondonLondon WC2R 2LS UK
- Francis Crick Institute1 Midland Road London NW1 1AT UK
| | | | - Katie Douglas
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgow G12 8LT UK
| | | | | |
Collapse
|
34
|
Cruz-Acuña R, Mulero-Russe A, Clark AY, Zent R, García AJ. Identification of matrix physicochemical properties required for renal epithelial cell tubulogenesis by using synthetic hydrogels. J Cell Sci 2019; 132:jcs.226639. [PMID: 31558679 DOI: 10.1242/jcs.226639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 09/15/2019] [Indexed: 11/20/2022] Open
Abstract
Synthetic hydrogels with controlled physicochemical matrix properties serve as powerful in vitro tools to dissect cell-extracellular matrix (ECM) interactions that regulate epithelial morphogenesis in 3D microenvironments. In addition, these fully defined matrices overcome the lot-to-lot variability of naturally derived materials and have provided insights into the formation of rudimentary epithelial organs. Therefore, we engineered a fully defined synthetic hydrogel with independent control over proteolytic degradation, mechanical properties, and adhesive ligand type and density to study the impact of ECM properties on epithelial tubulogenesis for inner medullary collecting duct (IMCD) cells. Protease sensitivity of the synthetic material for membrane-type matrix metalloproteinase-1 (MT1-MMP, also known as MMP14) was required for tubulogenesis. Additionally, a defined range of matrix elasticity and presentation of RGD adhesive peptide at a threshold level of 2 mM ligand density were required for epithelial tubulogenesis. Finally, we demonstrated that the engineered hydrogel supported organization of epithelial tubules with a lumen and secreted laminin. This synthetic hydrogel serves as a platform that supports epithelial tubular morphogenetic programs and can be tuned to identify ECM biophysical and biochemical properties required for epithelial tubulogenesis.
Collapse
Affiliation(s)
- Ricardo Cruz-Acuña
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adriana Mulero-Russe
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amy Y Clark
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roy Zent
- Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA .,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
35
|
Soysa NS, Alles N. Positive and negative regulators of osteoclast apoptosis. Bone Rep 2019; 11:100225. [PMID: 31720316 PMCID: PMC6838739 DOI: 10.1016/j.bonr.2019.100225] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/22/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
Survival and apoptosis are of major importance in the osteoclast life cycle. As osteoclasts have short lifespan, any alteration that prolongs their viability may cause enhanced osteoclast activity. Hence, the regulation of OC apoptosis has been recognized as a critical factor in bone remodeling. An imbalance in bone remodeling due to increased osteoclast activity leads to most adult bone diseases such as osteoporosis, rheumatoid arthritis and multiple myeloma. Therefore, manipulating osteoclast death would be a viable therapeutic approach in ameliorating bone diseases, with accelerated resorption. Over the last few decades we have witnessed the unraveling of many of the intracellular mechanisms responsible for osteoclast apoptosis. Thus, an understanding of the underlying mechanisms by which osteoclasts undergo programmed cell death and the regulators that modulate that activity will undoubtedly provide an insight into the development of pharmacological agents to treat such pathological bone diseases.
Collapse
Affiliation(s)
- Niroshani Surangika Soysa
- Division of Pharmacology, Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Sri Lanka
| | - Neil Alles
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Sri Lanka
| |
Collapse
|
36
|
Jia T, Ciccione J, Jacquet T, Maurel M, Montheil T, Mehdi A, Martinez J, Eymin B, Subra G, Coll JL. The presence of PEG on nanoparticles presenting the c[RGDfK]- and/or ATWLPPR peptides deeply affects the RTKs-AKT-GSK3β-eNOS signaling pathway and endothelial cells survival. Int J Pharm 2019; 568:118507. [PMID: 31299336 DOI: 10.1016/j.ijpharm.2019.118507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Covering the surface of a nanoparticle with polyethylene glycol (PEG) is a common way to prevent non-specific interactions but how its presence impacts on the activity of targeting ligands is still poorly documented. We synthesized a set of 9 silica nanoparticles grafted with c[RGDfK]-, a peptide targeting integrin αvß3 (cRGD), and/or with ATWLPPR, an anti-neuropilin 1 peptide (ATW). We then added various PEGs, and studied NPs binding on primary endothelial cells, the downstream activated signaling pathways and the impact on apoptosis. Our results show that the presence of PEG2000 on cRGD/ATW nanoparticles moderately improves cell binding but induces a 6000 times augmentation of AKT-dependent cell response due to the recruitment of other Receptor Tyrosine Kinases. Augmenting the length of the spacer that separates the peptides from the silica (using PEG3000) mainly resulted in a loss of specificity. Finally, the PEG-mediated hyperactivation of AKT did not protect endothelial cell from dying in the absence of serum, while its moderate activation obtained without PEG did. Finally, PEGylation of cRGD/ATW-NPs can generate nanoparticles with potent capacities to activate the AKT-GSK3β-eNOS cascade and to affect the resistance of endothelial cells to apoptosis. Thus, the impact of PEGylation should be precisely considered in order to avoid the apparition of counter-productive biological responses.
Collapse
Affiliation(s)
- Tao Jia
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Jéremy Ciccione
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France; ICGM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thibault Jacquet
- Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Manon Maurel
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Titouan Montheil
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ahmad Mehdi
- ICGM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Béatrice Eymin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Gilles Subra
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Luc Coll
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France.
| |
Collapse
|
37
|
Multiscale model of integrin adhesion assembly. PLoS Comput Biol 2019; 15:e1007077. [PMID: 31163027 PMCID: PMC6568411 DOI: 10.1371/journal.pcbi.1007077] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023] Open
Abstract
The ability of adherent cells to form adhesions is critical to numerous phases of their physiology. The assembly of adhesions is mediated by several types of integrins. These integrins differ in physical properties, including rate of diffusion on the plasma membrane, rapidity of changing conformation from bent to extended, affinity for extracellular matrix ligands, and lifetimes of their ligand-bound states. However, the way in which nanoscale physical properties of integrins ensure proper adhesion assembly remains elusive. We observe experimentally that both β-1 and β-3 integrins localize in nascent adhesions at the cell leading edge. In order to understand how different nanoscale parameters of β-1 and β-3 integrins mediate proper adhesion assembly, we therefore develop a coarse-grained computational model. Results from the model demonstrate that morphology and distribution of nascent adhesions depend on ligand binding affinity and strength of pairwise interactions. Organization of nascent adhesions depends on the relative amounts of integrins with different bond kinetics. Moreover, the model shows that the architecture of an actin filament network does not perturb the total amount of integrin clustering and ligand binding; however, only bundled actin architectures favor adhesion stability and ultimately maturation. Together, our results support the view that cells can finely tune the expression of different integrin types to determine both structural and dynamic properties of adhesions.
Collapse
|
38
|
Abstract
Cell surface transmembrane receptors often form nanometer- to micrometer-scale clusters to initiate signal transduction in response to environmental cues. Extracellular ligand oligomerization, domain-domain interactions, and binding to multivalent proteins all contribute to cluster formation. Here we review the current understanding of mechanisms driving cluster formation in a series of representative receptor systems: glycosylated receptors, immune receptors, cell adhesion receptors, Wnt receptors, and receptor tyrosine kinases. We suggest that these clusters share properties of systems that undergo liquid-liquid phase separation and could be investigated in this light.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| |
Collapse
|
39
|
Taale M, Schütt F, Zheng K, Mishra YK, Boccaccini AR, Adelung R, Selhuber-Unkel C. Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43874-43886. [PMID: 30395704 PMCID: PMC6302313 DOI: 10.1021/acsami.8b13631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 05/22/2023]
Abstract
Bone, nerve, and heart tissue engineering place high demands on the conductivity of three-dimensional (3D) scaffolds. Fibrous carbon-based scaffolds are excellent material candidates to fulfill these requirements. Here, we show that highly porous (up to 94%) hybrid 3D framework structures with hierarchical architecture, consisting of microfiber composites of self-entangled carbon nanotubes (CNTs) and bioactive nanoparticles are highly suitable for growing cells. The hybrid 3D structures are fabricated by infiltrating a combination of CNTs and bioactive materials into a porous (∼94%) zinc oxide (ZnO) sacrificial template, followed by the removal of the ZnO backbone via a H2 thermal reduction process. Simultaneously, the bioactive nanoparticles are sintered. In this way, conductive and mechanically stable 3D composites of free-standing CNT-based microfibers and bioactive nanoparticles are formed. The adopted strategy demonstrates great potential for implementing low-dimensional bioactive materials, such as hydroxyapatite (HA) and bioactive glass nanoparticles (BGN), into 3D carbon-based microfibrous networks. It is demonstrated that the incorporation of HA nanoparticles and BGN promotes the biomineralization ability and the protein adsorption capacity of the scaffolds significantly, as well as fibroblast and osteoblast adhesion. These results demonstrate that the developed carbon-based bioactive scaffolds are promising materials for bone tissue engineering and related applications.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Fabian Schütt
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Kai Zheng
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Yogendra Kumar Mishra
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Rainer Adelung
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|
40
|
Xiao J, Yang W, Xu B, Zhu H, Zou J, Su C, Rong J, Wang T, Chen Z. Expression of fibronectin in esophageal squamous cell carcinoma and its role in migration. BMC Cancer 2018; 18:976. [PMID: 30314454 PMCID: PMC6186055 DOI: 10.1186/s12885-018-4850-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fibronectin (FN) is a high-molecular-weight glycoprotein component of the extracellular matrix involved in cell adhesion, migration, metastasis, proliferation and differentiation, as well as embryogenesis, wound healing, and blood coagulation. Considerable recent research has established that tumor expression of FN is closely associated with tumor formation and development as well as disease prognosis. However, the mechanisms underlying this relationship have remained unclear. The aim of this study was to investigate FN protein expression in esophageal squamous cell carcinoma (ESCC) and determine its potential prognostic relevance, while also elucidating the source and function of FN. METHODS We conducted immunohistochemical analyses of protein expression in primary tumors of ESCC patients and analyzed their association with standard prognostic parameters and clinical outcomes. Expression of FN in two ESCC cell lines (Eca-109 and TE-1) was also examined by RT-PCR, immunofluorescence, and ELISA. ESCC cells were cultured in a microenvironment containing a high FN content, and changes in their morphology and migration ability were assessed by microscopy, wound-healing assays, and Transwell assays. RESULTS FN expression in ESCC specimens was mainly detected in the tumor stroma, with very little FN detected in tumor cells. Stromal FN content in ESCC specimens was associated with lymphatic metastasis (P = 0.032) and prognosis. In this latter context, patients with high tumor stromal expression of FN showed worse overall survival (P = 0.002) and progression-free survival (P < 0.001) than those with low expression of FN. Interestingly, FN expression and secretion in ESCC cell lines (Eca-109 and TE-1) was found to be low, but these cells adopted a more migratory phenotype when cultured in vitro in a microenvironment containing high levels of FN. CONCLUSIONS High FN expression in the stroma of ESCC tumors is closely associated with poor prognosis of patients. High stromal FN content facilitates tumor cell metastasis by promoting morphological changes and improving the motility and migratory ability of ESCC cells.
Collapse
Affiliation(s)
- Jiefei Xiao
- Department of Extracorporeal Circulation, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China
| | - Weilin Yang
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Bo Xu
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Haoshuai Zhu
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Jianyong Zou
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Chunhua Su
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Jian Rong
- Department of Extracorporeal Circulation, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, Guangdong, China. .,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Zhenguang Chen
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China. .,Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China. .,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
41
|
Protein-protein interactions reveal key canonical pathways, upstream regulators, interactome domains, and novel targets in ALS. Sci Rep 2018; 8:14732. [PMID: 30283000 PMCID: PMC6170493 DOI: 10.1038/s41598-018-32902-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Developing effective treatment strategies for neurodegenerative diseases require an understanding of the underlying cellular pathways that lead to neuronal vulnerability and progressive degeneration. To date, numerous mutations in 147 distinct genes are identified to be "associated" with, "modifier" or "causative" of amyotrophic lateral sclerosis (ALS). Protein products of these genes and their interactions helped determine the protein landscape of ALS, and revealed upstream modulators, key canonical pathways, interactome domains and novel therapeutic targets. Our analysis originates from known human mutations and circles back to human, revealing increased PPARG and PPARGC1A expression in the Betz cells of sALS patients and patients with TDP43 pathology, and emphasizes the importance of lipid homeostasis. Downregulation of YWHAZ, a 14-3-3 protein, and cytoplasmic accumulation of ZFYVE27 especially in diseased Betz cells of ALS patients reinforce the idea that perturbed protein communications, interactome defects, and altered converging pathways will reveal novel therapeutic targets in ALS.
Collapse
|
42
|
Song J, Ye B, Liu H, Bi R, Zhang N, Hu J, Luo E. Fak-Mapk, Hippo and Wnt signalling pathway expression and regulation in distraction osteogenesis. Cell Prolif 2018; 51:e12453. [PMID: 29504176 PMCID: PMC6528869 DOI: 10.1111/cpr.12453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/27/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To investigate the mechanism of mechanical stimulation in bone formation and regeneration during distraction osteogenesis. MATERIALS AND METHODS In this study, microarray technology was used to investigate the time course of bone-related molecular changes in distraction osteogenesis in rats. Real-time PCR and Western-blot analyses were used to confirm the expression of genes identified in microarrays. Meanwhile, we used a lentivirus vector to inhibit Fak expression, in order to identify the osteogenic effect of Fak and Fak-Mapk pathway during distraction osteogenesis. RESULTS Several components of the Wnt and Hippo pathways were found to be up- or down-regulated during distraction osteogenesis by microarray. Meanwhile, it was found that Fak, Src, Raf-1, Erk1, Jnk and p38-Mapk were up-regulated during gradual distraction, compared with consolidation. To further determine whether Fak-Mapk pathway played an important role in distraction osteogenesis, Fak was disrupted with a lentivirus vector. The expressions levels of p-Fak, p-Erk1/2, p-JNK and p-p38Mapk were decreased. Meanwhile, a poor early and late osteogenesis effect was found in the shRNA-Fak group. CONCLUSION It was inferred that the mechanical stimulus induces increased expression of Fak and activates Fak-Mapk pathway, by activation of Erk, Jnk and p38-Mapk pathway, and that Fak at least, in part, plays an important role in maintaining osteogenic effect by activating Fak-Mapk pathway during distraction osteogenesis.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Bin Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Nian Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jing Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
43
|
Shen J, Cao B, Wang Y, Ma C, Zeng Z, Liu L, Li X, Tao D, Gong J, Xie D. Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer. J Exp Clin Cancer Res 2018; 37:175. [PMID: 30055645 PMCID: PMC6064138 DOI: 10.1186/s13046-018-0850-z] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Focal adhesion plays an essential role in tumour invasiveness and metastasis. Hippo component YAP has been widely reported to be involved in many aspects of tumour biology. However, its role in focal adhesion regulation in breast cancer remains unexplored. METHODS Tissue microarray was used to evaluate YAP expression in clinical breast cancer specimens by immunohistochemical staining. Cell migration and invasion abilities were measured by Transwell assay. A cell adhesion assay was used to measure the ability of cell adhesion to gelatin. The focal adhesion was visualized through immunofluorescence. Phosphorylated FAK and other proteins were detected by Western blot analysis. Gene expression profiling was used to screen differently expressed genes, and gene ontology enrichment was performed using DAVID software. The gene mRNA levels were measured by quantitative real-time PCR. The activity of the THBS1-promoter was evaluated by dual luciferase assay. Chromatin immunoprecipitation (ChIP) was used to verify whether YAP could bind to the THBS1-promoter region. The prediction of potential protein-interaction was performed with the String program. The ChIP sequence data of TEAD was obtained from the ENCODE database and analysed via the ChIP-seek tool. The gene expression dataset (GSE30480) of purified tumour cells from primary breast tumour tissues and metastatic lymph nodes was used in the gene set enrichment analysis. Prognostic analysis of the TCGA dataset was performed by the SurvExpress program. Gene expression correlation of the TCGA dataset was analysed via R2: Genomics Analysis and Visualization Platform. RESULTS Our study provides evidence that YAP acts as a promoter of focal adhesion and tumour invasiveness via regulating FAK phosphorylation in breast cancer. Further experiments reveal that YAP could induce FAK phosphorylation through a TEAD-dependent manner. Using gene expression profiling and bioinformatics analysis, we identify the FAK upstream gene, thrombospondin 1, as a direct transcriptional target of YAP-TEAD. Silencing THBS1 could reverse the YAP-induced FAK activation and focal adhesion. CONCLUSION Our results unveil a new signal axis, YAP/THBS1/FAK, in the modulation of cell adhesion and invasiveness, and provides new insights into the crosstalk between Hippo signalling and focal adhesion.
Collapse
Affiliation(s)
- Jie Shen
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Beibei Cao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Yatao Wang
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Chenshen Ma
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Zhuo Zeng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Liang Liu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Xiaolan Li
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Deding Tao
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Jianping Gong
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Daxing Xie
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| |
Collapse
|
44
|
Karimi F, O'Connor AJ, Qiao GG, Heath DE. Integrin Clustering Matters: A Review of Biomaterials Functionalized with Multivalent Integrin-Binding Ligands to Improve Cell Adhesion, Migration, Differentiation, Angiogenesis, and Biomedical Device Integration. Adv Healthc Mater 2018; 7:e1701324. [PMID: 29577678 DOI: 10.1002/adhm.201701324] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/24/2018] [Indexed: 01/17/2023]
Abstract
Material systems that exhibit tailored interactions with cells are a cornerstone of biomaterial and tissue engineering technologies. One method of achieving these tailored interactions is to biofunctionalize materials with peptide ligands that bind integrin receptors present on the cell surface. However, cell biology research has illustrated that both integrin binding and integrin clustering are required to achieve a full adhesion response. This biophysical knowledge has motivated researchers to develop material systems biofunctionalized with nanoscale clusters of ligands that promote both integrin occupancy and clustering of the receptors. These materials have improved a wide variety of biological interactions in vitro including cell adhesion, proliferation, migration speed, gene expression, and stem cell differentiation; and improved in vivo outcomes including increased angiogenesis, tissue healing, and biomedical device integration. This review first introduces the techniques that enable the fabrication of these nanopatterned materials, describes the improved biological effects that have been achieved, and lastly discusses the current limitations of the technology and where future advances may occur. Although this technology is still in its nascency, it will undoubtedly play an important role in the future development of biomaterials and tissue engineering scaffolds for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
- Polymer Science Group; Department of Chemical Engineering; Particulate Fluid Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Andrea J. O'Connor
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Greg G. Qiao
- Polymer Science Group; Department of Chemical Engineering; Particulate Fluid Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Daniel E. Heath
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| |
Collapse
|
45
|
Inoue Y, Onodera Y, Ishihara K. Initial Cell Adhesion onto a Phospholipid Polymer Brush Surface Modified with a Terminal Cell Adhesion Peptide. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15250-15257. [PMID: 29652126 DOI: 10.1021/acsami.8b01906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dynamic changes in the properties of adsorbed protein layers at material surfaces make it difficult to analyze a cell adhesion behavior. Adhesion is affected by the ligand molecules in the adsorbed protein layers on the material's surface. This study aimed to quantitatively analyze the initial cell adhesion onto a polymeric surface modified with immobilized cell adhesion molecules with a well-defined structure. Peptides containing an arginine-glycine-aspartic acid (RGD) sequence were introduced at almost all the termini of the grafted poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] chains using a click reaction at a highly protein-resistant poly(MPC) brush layer. Thus, the surface could bind to the cell membrane proteins only through the immobilized RGD. Furthermore, the degree of polymerization of the grafted poly(MPC) chains could control the hydrated poly(MPC) brush layer softness, as determined by measuring the dissipation energy loss using a quartz crystal microbalance. At the initial stage of cell adhesion, the density of cells adhering to the RGD-immobilized poly(MPC) brush layers did not depend on the poly(MPC) brush layer softness. However, spreading of the adherent cells was inhibited on the RGD-immobilized poly(MPC) brush layers with a higher softness. Hence, the results suggested that the layer softness did not affect the binding number between the RGD and cell membrane protein during initial cell adhesion; however, the intracellular signaling triggered by the RGD-receptor interaction was inhibited. The poly(MPC) brush surface carrying immobilized cell adhesion molecules has the potential to analyze precisely the effect of the properties of cell adhesion molecules on initial cell adhesion.
Collapse
|
46
|
Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018; 19:ijms19020449. [PMID: 29393909 PMCID: PMC5855671 DOI: 10.3390/ijms19020449] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins.
Collapse
|
47
|
Barton M, Filardo EJ, Lolait SJ, Thomas P, Maggiolini M, Prossnitz ER. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives. J Steroid Biochem Mol Biol 2018; 176:4-15. [PMID: 28347854 PMCID: PMC5716468 DOI: 10.1016/j.jsbmb.2017.03.021] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022]
Abstract
Estrogens play a critical role in many aspects of physiology, particularly female reproductive function, but also in pathophysiology, and are associated with protection from numerous diseases in premenopausal women. Steroids and the effects of estrogen have been known for ∼90 years, with the first evidence for a receptor for estrogen presented ∼50 years ago. The original ancestral steroid receptor, extending back into evolution more than 500 million years, was likely an estrogen receptor, whereas G protein-coupled receptors (GPCRs) trace their origins back into history more than one billion years. The classical estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that confer estrogen sensitivity upon many genes. It was soon apparent that these, or novel receptors may also be responsible for the "rapid"/"non-genomic" membrane-associated effects of estrogen. The identification of an orphan GPCR (GPR30, published in 1996) opened a new field of research with the description in 2000 that GPR30 expression is required for rapid estrogen signaling. In 2005-2006, the field was greatly stimulated by two studies that described the binding of estrogen to GPR30-expressing cell membranes, followed by the identification of a GPR30-selective agonist (that lacked binding and activity towards ERα and ERβ). Renamed GPER (G protein-coupled estrogen receptor) by IUPHAR in 2007, the total number of articles in PubMed related to this receptor recently surpassed 1000. In this article, the authors present personal perspectives on how they became involved in the discovery and/or advancement of GPER research. These areas include non-genomic effects on vascular tone, receptor cloning, molecular and cellular biology, signal transduction mechanisms and pharmacology of GPER, highlighting the roles of GPER and GPER-selective compounds in diseases such as obesity, diabetes, and cancer and the obligatory role of GPER in propagating cardiovascular aging, arterial hypertension and heart failure through the stimulation of Nox expression.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, 8057 Zürich, Switzerland.
| | - Edward J Filardo
- Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Stephen J Lolait
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center and University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
48
|
Nanoscale Architecture for Controlling Cellular Mechanoresponse in Musculoskeletal Tissues. EXTRACELLULAR MATRIX FOR TISSUE ENGINEERING AND BIOMATERIALS 2018. [DOI: 10.1007/978-3-319-77023-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Vinik Y, Shatz-Azoulay H, Zick Y. Molecular Mechanisms Underlying the Role of Galectin-8 as a Regulator of Cancer Growth and Metastasis. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1742.1se] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yaron Vinik
- Department of Molecular Cell Biology, The Weizmann Institute of Science
| | | | - Yehiel Zick
- Department of Molecular Cell Biology, The Weizmann Institute of Science
| |
Collapse
|
50
|
Mechanically-competent and cytocompatible polycaprolactone-borophosphosilicate hybrid biomaterials. J Mech Behav Biomed Mater 2017; 75:180-189. [DOI: 10.1016/j.jmbbm.2017.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
|