1
|
Cao J, Yang S, Luo T, Yang R, Zhu H, Zhao T, Jiang K, Xu B, Wang Y, Chen F. TATA-box-binding protein promotes hepatocellular carcinoma metastasis through epithelial-mesenchymal transition. Hepatol Commun 2023; 7:e00155. [PMID: 37314767 DOI: 10.1097/hc9.0000000000000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/02/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND HCC characterizes malignant metastasis with high incidence and recurrence. Thus, it is pivotal to discover the mechanisms of HCC metastasis. TATA-box-binding protein (TBP), a general transcriptional factor (TF), couples with activators and chromatin remodelers to sustain the transcriptional activity of target genes. Here, we investigate the key role of TBP in HCC metastasis. METHODS TBP expression was measured by PCR, western blot, and immunohistochemistry. RNA-sequencing was performed to identify downstream proteins. Functional assays of TBP and downstream targets were identified in HCC cell lines and xenograft models. Luciferase reporter and chromatin immunoprecipitation assays were used to demonstrate the mechanism mediated by TBP. RESULTS HCC patients showed high expression of TBP, which correlated with poor prognosis. Upregulation of TBP increased HCC metastasis in vivo and in vitro, and muscleblind-like-3 (MBNL3) was the effective factor of TBP, positively related to TBP expression. Mechanically, TBP transactivated and enhanced MBNL3 expression to stimulate exon inclusion of lncRNA-paxillin (PXN)-alternative splicing (AS1) and, thus, activated epithelial-mesenchymal transition for HCC progression through upregulation of PXN. CONCLUSIONS Our data revealed that TBP upregulation is an HCC enhancer mechanism that increases PXN expression to drive epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jiayi Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Suzhen Yang
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, Nanjing, China
| | - Tingting Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Rui Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Hanlong Zhu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, Nanjing, China
| | - Tianming Zhao
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, China
| | - Kang Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, Nanjing, China
| | - Bing Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Yingchun Wang
- Department of Gastroenterology, the Affiliated Zhongshan Hospital of Dalian University, Liaoning, Dalian, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
| |
Collapse
|
2
|
Van Berkel AA, Koopmans F, Gonzalez-Lozano MA, Lammertse HCA, Feringa F, Bryois J, Sullivan PF, Smit AB, Toonen RF, Verhage M. Dysregulation of synaptic and developmental transcriptomic/proteomic profiles upon depletion of MUNC18-1. eNeuro 2022; 9:ENEURO.0186-22.2022. [PMID: 36257704 PMCID: PMC9668351 DOI: 10.1523/eneuro.0186-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Absence of presynaptic protein MUNC18-1 (gene: Stxbp1) leads to neuronal cell death at an immature stage before synapse formation. Here, we performed transcriptomic and proteomic profiling of immature Stxbp1 knockout (KO) cells to discover which cellular processes depend on MUNC18-1. Hippocampi of Stxbp1 KO mice showed cell-type specific dysregulation of 2123 transcripts primarily related to synaptic transmission and immune response. To further investigate direct, neuron-specific effects of MUNC18-1 depletion, a proteomic screen was performed on murine neuronal cultures at two developmental timepoints prior to onset of neuron degeneration. 399 proteins were differentially expressed, which were primarily involved in synaptic function (especially synaptic vesicle exocytosis) and neuron development. We further show that many of the downregulated proteins upon loss of MUNC18-1 are normally upregulated during this developmental stage. Thus, absence of MUNC18-1 extensively dysregulates the transcriptome and proteome, primarily affecting synaptic and developmental profiles. Lack of synaptic activity is unlikely to underlie these effects, as the changes were observed in immature neurons without functional synapses, and minimal overlap was found to activity-dependent proteins. We hypothesize that presence of MUNC18-1 is essential to advance neuron development, serving as a 'checkpoint' for neurons to initiate cell death in its absence.Significance StatementPresynaptic protein MUNC18-1 is essential for neuronal functioning. Pathogenic variants in its gene, STXBP1, are among the most common found in patients with developmental delay and epilepsy. To discern the pathogenesis in these patients, a thorough understanding of MUNC18-1's function in neurons is required. Here, we show that loss of MUNC18-1 results in extensive dysregulation of synaptic and developmental proteins in immature neurons before synapse formation. Many of the downregulated proteins are normally upregulated during this developmental stage. This indicates that MUNC18-1 is a critical regulator of neuronal development, which could play an important role in the pathogenesis of STXBP1 variant carriers.
Collapse
Affiliation(s)
- A A Van Berkel
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Functional Genomics, Department of Human Genetics, CNCR, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - F Koopmans
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Dept. Molecular & Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - M A Gonzalez-Lozano
- Dept. Molecular & Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - H C A Lammertse
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Functional Genomics, Department of Human Genetics, CNCR, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - F Feringa
- Functional Genomics, Department of Human Genetics, CNCR, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - J Bryois
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Nobels vag 12A, 171 77 Stockholm, Sweden
| | - P F Sullivan
- UNC Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599-7160, USA
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Nobels vag 12A, 171 77 Stockholm, Sweden
| | - A B Smit
- Dept. Molecular & Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - R F Toonen
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - M Verhage
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Functional Genomics, Department of Human Genetics, CNCR, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Validation of Appropriate Reference Genes for qRT–PCR Normalization in Oat (Avena sativa L.) under UV-B and High-Light Stresses. Int J Mol Sci 2022; 23:ijms231911187. [PMID: 36232488 PMCID: PMC9570368 DOI: 10.3390/ijms231911187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oat is a food and forage crop species widely cultivated worldwide, and it is also an important forage grass in plateau regions of China, where there is a high level of ultraviolet radiation and sunlight. Screening suitable reference genes for oat under UV-B and high-light stresses is a prerequisite for ensuring the accuracy of real-time quantitative PCR (qRT–PCR) data used in plant adaptation research. In this study, eight candidate reference genes (sulfite oxidase, SUOX; victorin binding protein, VBP; actin-encoding, Actin1; protein PSK SIMULATOR 1-like, PSKS1; TATA-binding protein 2-like, TBP2; ubiquitin-conjugating enzyme E2, UBC2; elongation factor 1-alpha, EF1-α; glyceraldehyde-3-phosphate dehydrogenase 1, GAPDH1;) were selected based on previous studies and our oat transcriptome data. The expression stability of these reference genes in oat roots, stems, and leaves under UV-B and high-light stresses was first calculated using three frequently used statistical software (geNorm, NormFinder, and BestKeeper), and then the comprehensive stability of these genes was evaluated using RefFinder. The results showed that the most stably expressed reference genes in the roots, stems, and leaves of oat under UV-B stress were EF1-α, TBP2, and PSKS1, respectively; the most stably expressed reference genes in the roots, stems, and leaves under high-light stress were PSKS1, UBC2, and PSKS1, respectively. PSKS1 was the most stably expressed reference gene in all the samples. The reliability of the selected reference genes was further validated by analysis of the expression of the phenylalanine ammonia-lyase (PAL) gene. This study highlights reference genes for accurate quantitative analysis of gene expression in different tissues of oat under UV-B and high-light stresses.
Collapse
|
4
|
Bertucci A, Porchetta A, Del Grosso E, Patiño T, Idili A, Ricci F. Protein‐Controlled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alessandro Bertucci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Alessandro Porchetta
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Tania Patiño
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Andrea Idili
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) Campus UAB Bellaterra 08193 Barcelona Spain
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
5
|
Bertucci A, Porchetta A, Del Grosso E, Patiño T, Idili A, Ricci F. Protein-Controlled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators*. Angew Chem Int Ed Engl 2020; 59:20577-20581. [PMID: 32737920 DOI: 10.1002/anie.202008553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Indexed: 12/20/2022]
Abstract
Integrating dynamic DNA nanotechnology with protein-controlled actuation will expand our ability to process molecular information. We have developed a strategy to actuate strand displacement reactions using DNA-binding proteins by engineering synthetic DNA translators that convert specific protein-binding events into trigger inputs through a programmed conformational change. We have constructed synthetic DNA networks responsive to two different DNA-binding proteins, TATA-binding protein and Myc-Max, and demonstrated multi-input activation of strand displacement reactions. We achieved protein-controlled regulation of a synthetic RNA and of an enzyme through artificial DNA-based communication, showing the potential of our molecular system in performing further programmable tasks.
Collapse
Affiliation(s)
- Alessandro Bertucci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Erica Del Grosso
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Tania Patiño
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Andrea Idili
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
6
|
Molecular determinants underlying functional innovations of TBP and their impact on transcription initiation. Nat Commun 2020; 11:2384. [PMID: 32404905 PMCID: PMC7221094 DOI: 10.1038/s41467-020-16182-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
TATA-box binding protein (TBP) is required for every single transcription event in archaea and eukaryotes. It binds DNA and harbors two repeats with an internal structural symmetry that show sequence asymmetry. At various times in evolution, TBP has acquired multiple interaction partners and different organisms have evolved TBP paralogs with additional protein regions. Together, these observations raise questions of what molecular determinants (i.e. key residues) led to the ability of TBP to acquire new interactions, resulting in an increasingly complex transcriptional system in eukaryotes. We present a comprehensive study of the evolutionary history of TBP and its interaction partners across all domains of life, including viruses. Our analysis reveals the molecular determinants and suggests a unified and multi-stage evolutionary model for the functional innovations of TBP. These findings highlight how concerted chemical changes on a conserved structural scaffold allow for the emergence of complexity in a fundamental biological process. The TATA-box binding protein (TBP) is required for transcription initiation in archaea and eukaryotes. Here the authors delineate how TBP’s function has evolved new functional features through context-dependent interactions with various protein partners.
Collapse
|
7
|
Santiago Á, Razo-Hernández RS, Pastor N. The TATA-binding Protein DNA-binding domain of eukaryotic parasites is a potentially druggable target. Chem Biol Drug Des 2019; 95:130-149. [PMID: 31569300 DOI: 10.1111/cbdd.13630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/14/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
Abstract
The TATA-binding protein (TBP) is a central transcription factor in eukaryotes that interacts with a large number of different transcription factors; thus, affecting these interactions will be lethal for any living being. In this work, we present the first structural and dynamic computational study of the surface properties of the TBP DNA-binding domain for a set of parasites involved in diseases of worldwide interest. The sequence and structural differences of these TBPs, as compared with human TBP, were proposed to select representative ensembles generated from molecular dynamics simulations and to evaluate their druggability by molecular ensemble-based docking of drug-like molecules. We found that potential druggable sites correspond to the NC2-binding site, N-terminal tail, H2 helix, and the interdomain region, with good selectivity for Plasmodium falciparum, Necator americanus, Entamoeba histolytica, Candida albicans, and Taenia solium TBPs. The best hit compounds share structural similarity among themselves and have predicted dissociation constants ranging from nM to μM. These can be proposed as initial scaffolds for experimental testing and further optimization. In light of the obtained results, we propose TBP as an attractive therapeutic target for treatment of parasitic diseases.
Collapse
Affiliation(s)
- Ángel Santiago
- Centro de Investigación en Dinámica Celular - IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.,Doctorado en Ciencias, CIDC-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular - IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular - IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
8
|
Blombach F, Matelska D, Fouqueau T, Cackett G, Werner F. Key Concepts and Challenges in Archaeal Transcription. J Mol Biol 2019; 431:4184-4201. [PMID: 31260691 DOI: 10.1016/j.jmb.2019.06.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022]
Abstract
Transcription is enabled by RNA polymerase and general factors that allow its progress through the transcription cycle by facilitating initiation, elongation and termination. The transitions between specific stages of the transcription cycle provide opportunities for the global and gene-specific regulation of gene expression. The exact mechanisms and the extent to which the different steps of transcription are exploited for regulation vary between the domains of life, individual species and transcription units. However, a surprising degree of conservation is apparent. Similar key steps in the transcription cycle can be targeted by homologous or unrelated factors providing insights into the mechanisms of RNAP and the evolution of the transcription machinery. Archaea are bona fide prokaryotes but employ a eukaryote-like transcription system to express the information of bacteria-like genomes. Thus, archaea provide the means not only to study transcription mechanisms of interesting model systems but also to test key concepts of regulation in this arena. In this review, we discuss key principles of archaeal transcription, new questions that still await experimental investigation, and how novel integrative approaches hold great promise to fill this gap in our knowledge.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| | - Dorota Matelska
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Thomas Fouqueau
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Gwenny Cackett
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
9
|
Parey E, Crombach A. Evolution of the Drosophila melanogaster Chromatin Landscape and Its Associated Proteins. Genome Biol Evol 2019; 11:660-677. [PMID: 30689829 PMCID: PMC6411481 DOI: 10.1093/gbe/evz019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/30/2022] Open
Abstract
In the nucleus of eukaryotic cells, genomic DNA associates with numerous protein complexes and RNAs, forming the chromatin landscape. Through a genome-wide study of chromatin-associated proteins in Drosophila cells, five major chromatin types were identified as a refinement of the traditional binary division into hetero- and euchromatin. These five types were given color names in reference to the Greek word chroma. They are defined by distinct but overlapping combinations of proteins and differ in biological and biochemical properties, including transcriptional activity, replication timing, and histone modifications. In this work, we assess the evolutionary relationships of chromatin-associated proteins and present an integrated view of the evolution and conservation of the fruit fly Drosophila melanogaster chromatin landscape. We combine homology prediction across a wide range of species with gene age inference methods to determine the origin of each chromatin-associated protein. This provides insight into the evolution of the different chromatin types. Our results indicate that for the euchromatic types, YELLOW and RED, young associated proteins are more specialized than old ones; and for genes found in either chromatin type, intron/exon structure is lineage-specific. Next, we provide evidence that a subset of GREEN-associated proteins is involved in a centromere drive in D. melanogaster. Our results on BLUE chromatin support the hypothesis that the emergence of Polycomb Group proteins is linked to eukaryotic multicellularity. In light of these results, we discuss how the regulatory complexification of chromatin links to the origins of eukaryotic multicellularity.
Collapse
Affiliation(s)
- Elise Parey
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Université Paris, France.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Anton Crombach
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Université Paris, France.,Inria, Antenne Lyon La Doua, Villeurbanne, France.,Université de Lyon, INSA-Lyon, LIRIS, UMR 5205, Villeurbanne, France
| |
Collapse
|
10
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
11
|
Fouqueau T, Blombach F, Cackett G, Carty AE, Matelska DM, Ofer S, Pilotto S, Phung DK, Werner F. The cutting edge of archaeal transcription. Emerg Top Life Sci 2018; 2:517-533. [PMID: 33525828 PMCID: PMC7289017 DOI: 10.1042/etls20180014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022]
Abstract
The archaeal RNA polymerase (RNAP) is a double-psi β-barrel enzyme closely related to eukaryotic RNAPII in terms of subunit composition and architecture, promoter elements and basal transcription factors required for the initiation and elongation phase of transcription. Understanding archaeal transcription is, therefore, key to delineate the universally conserved fundamental mechanisms of transcription as well as the evolution of the archaeo-eukaryotic transcription machineries. The dynamic interplay between RNAP subunits, transcription factors and nucleic acids dictates the activity of RNAP and ultimately gene expression. This review focusses on recent progress in our understanding of (i) the structure, function and molecular mechanisms of known and less characterized factors including Elf1 (Elongation factor 1), NusA (N-utilization substance A), TFS4, RIP and Eta, and (ii) their evolution and phylogenetic distribution across the expanding tree of Archaea.
Collapse
Affiliation(s)
- Thomas Fouqueau
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Fabian Blombach
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Gwenny Cackett
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Alice E Carty
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Dorota M Matelska
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Sapir Ofer
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Simona Pilotto
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Duy Khanh Phung
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Finn Werner
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
12
|
Leading role of TBP in the Establishment of Complexity in Eukaryotic Transcription Initiation Systems. Cell Rep 2017; 21:3941-3956. [DOI: 10.1016/j.celrep.2017.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
|
13
|
Blackstone NW. PERSPECTIVE A UNITS‐OF‐EVOLUTION PERSPECTIVE ON THE ENDOSYMBIONT THEORY OF THE ORIGIN OF THE MITOCHONDRION. Evolution 2017; 49:785-796. [DOI: 10.1111/j.1558-5646.1995.tb02315.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1994] [Accepted: 10/20/1994] [Indexed: 11/26/2022]
Affiliation(s)
- Neil W. Blackstone
- Department of Biological Sciences Northern Illinois University DeKalb Illinois 60115
| |
Collapse
|
14
|
Transcription Factor-Mediated Gene Regulation in Archaea. RNA METABOLISM AND GENE EXPRESSION IN ARCHAEA 2017. [DOI: 10.1007/978-3-319-65795-0_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
15
|
Abstract
The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription.
Collapse
|
16
|
Uncovering ancient transcription systems with a novel evolutionary indicator. Sci Rep 2016; 6:27922. [PMID: 27307191 PMCID: PMC4910066 DOI: 10.1038/srep27922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/26/2016] [Indexed: 11/08/2022] Open
Abstract
TBP and TFIIB are evolutionarily conserved transcription initiation factors in archaea and eukaryotes. Information about their ancestral genes would be expected to provide insight into the origin of the RNA polymerase II-type transcription apparatus. In obtaining such information, the nucleotide sequences of current genes of both archaea and eukaryotes should be included in the analysis. However, the present methods of evolutionary analysis require that a subset of the genes should be excluded as an outer group. To overcome this limitation, we propose an innovative concept for evolutionary analysis that does not require an outer group. This approach utilizes the similarity in intramolecular direct repeats present in TBP and TFIIB as an evolutionary measure revealing the degree of similarity between the present offspring genes and their ancestors. Information on the properties of the ancestors and the order of emergence of TBP and TFIIB was also revealed. These findings imply that, for evolutionarily early transcription systems billions of years ago, interaction of RNA polymerase II with transcription initiation factors and the regulation of its enzymatic activity was required prior to the accurate positioning of the enzyme. Our approach provides a new way to discuss mechanistic and system evolution in a quantitative manner.
Collapse
|
17
|
Paul BG, Bagby SC, Czornyj E, Arambula D, Handa S, Sczyrba A, Ghosh P, Miller JF, Valentine DL. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat Commun 2015; 6:6585. [PMID: 25798780 PMCID: PMC4372165 DOI: 10.1038/ncomms7585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/09/2015] [Indexed: 11/09/2022] Open
Abstract
In the evolutionary arms race between microbes, their parasites, and their neighbours, the capacity for rapid protein diversification is a potent weapon. Diversity-generating retroelements (DGRs) use mutagenic reverse transcription and retrohoming to generate myriad variants of a target gene. Originally discovered in pathogens, these retroelements have been identified in bacteria and their viruses, but never in archaea. Here we report the discovery of intact DGRs in two distinct intraterrestrial archaeal systems: a novel virus that appears to infect archaea in the marine subsurface, and, separately, two uncultivated nanoarchaea from the terrestrial subsurface. The viral DGR system targets putative tail fibre ligand-binding domains, potentially generating >1018 protein variants. The two single-cell nanoarchaeal genomes each possess ≥4 distinct DGRs. Against an expected background of low genome-wide mutation rates, these results demonstrate a previously unsuspected potential for rapid, targeted sequence diversification in intraterrestrial archaea and their viruses. Diversity-generating retroelements (DGRs) are genetic elements that introduce sequence variation within target genes in bacteria and their viruses. Here, Paul et al. report the discovery of DGRs in an archaeal virus and in two archaea from marine and terrestrial subsurface environments, respectively.
Collapse
Affiliation(s)
- Blair G Paul
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
| | - Sarah C Bagby
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
| | - Elizabeth Czornyj
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Diego Arambula
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Sumit Handa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Alexander Sczyrba
- 1] Center for Biotechnology and Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany [2] DOE Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Jeff F Miller
- 1] Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA [2] Molecular Biology Institute, University of California, Los Angeles, California 90095, USA [3] California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - David L Valentine
- 1] Marine Science Institute, University of California, Santa Barbara, California 93106, USA [2] Department of Earth Science, University of California Santa Barbara, Santa Barbara, California 93106 USA
| |
Collapse
|
18
|
Duttke SHC. RNA polymerase III accurately initiates transcription from RNA polymerase II promoters in vitro. J Biol Chem 2014; 289:20396-404. [PMID: 24917680 DOI: 10.1074/jbc.m114.563254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In eukaryotes, there are three major RNA polymerases (Pol) in the nucleus, which are commonly described as transcribing non-overlapping subsets of genes. Structural studies have highlighted a conserved core shared among all three transcription systems. Initiation of human Pol III from TATA box-containing Pol II promoters under conditions with impaired Pol II transcription activity have been described previously. RNA polymerase III and Pol II were found to co-localize at the promoters of the c-myc gene and the RPPH1 sRNA in vivo. Here, I report that Pol III can, like Pol II, initiate transcription from most tested Pol II core promoters when assayed with crude human nuclear extracts (HSK, SNF, or Dignam). Both polymerases often initiate from the same transcription start site, and depend on a TATA box or AT-rich region but not the downstream promoter element (DPE) or the motif ten element (MTE). Moderate (∼2-fold) changes in the ratio of DNA template to nuclear extract were sufficient to change Pol II-mediated transcription to a mixture of Pol II- and Pol III-, or to a solely Pol III-dependent initiation of transcription from Pol II promoters. Polymerase specificity is thus not fixed but a variable that depends on the properties of the promoter and the transcription conditions. These findings provide functional evidence for a close similarity between the Pol II and Pol III transcription complexes, and additionally explain previous controversies in the literature.
Collapse
Affiliation(s)
- Sascha H C Duttke
- From the Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
19
|
|
20
|
Affiliation(s)
- Robert O J Weinzierl
- Department of Life Sciences, Division of Biomolecular Sciences, Imperial College London , Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
21
|
Jun SH, Reichlen MJ, Tajiri M, Murakami KS. Archaeal RNA polymerase and transcription regulation. Crit Rev Biochem Mol Biol 2011; 46:27-40. [PMID: 21250781 DOI: 10.3109/10409238.2010.538662] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To elucidate the mechanism of transcription by cellular RNA polymerases (RNAPs), high-resolution X-ray crystal structures together with structure-guided biochemical, biophysical, and genetics studies are essential. The recently solved X-ray crystal structures of archaeal RNAP allow a structural comparison of the transcription machinery among all three domains of life. The archaea were once thought of closely related to bacteria, but they are now considered to be more closely related to the eukaryote at the molecular level than bacteria. According to these structures, the archaeal transcription apparatus, which includes RNAP and general transcription factors (GTFs), is similar to the eukaryotic transcription machinery. Yet, the transcription regulators, activators and repressors, encoded by archaeal genomes are closely related to bacterial factors. Therefore, archaeal transcription appears to possess an intriguing hybrid of eukaryotic-type transcription apparatus and bacterial-like regulatory mechanisms. Elucidating the transcription mechanism in archaea, which possesses a combination of bacterial and eukaryotic transcription mechanisms that are commonly regarded as separate and mutually exclusive, can provide data that will bring basic transcription mechanisms across all life forms.
Collapse
Affiliation(s)
- Sung-Hoon Jun
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
22
|
Regulation of autotrophic CO2 fixation in the archaeon Thermoproteus neutrophilus. J Bacteriol 2010; 192:5329-40. [PMID: 20693323 DOI: 10.1128/jb.00729-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermoproteus neutrophilus, a hyperthermophilic, chemolithoautotrophic, anaerobic crenarchaeon, uses a novel autotrophic CO(2) fixation pathway, the dicarboxylate/hydroxybutyrate cycle. The regulation of the central carbon metabolism was studied on the level of whole cells, enzyme activity, the proteome, transcription, and gene organization. The organism proved to be a facultative autotroph, which prefers organic acids as carbon sources that can easily feed into the metabolite pools of this cycle. Addition of the preferred carbon sources acetate, pyruvate, succinate, and 4-hydroxybutyrate to cultures resulted in stimulation of the growth rate and a diauxic growth response. The characteristic enzyme activities of the carbon fixation cycle, fumarate hydratase, fumarate reductase, succinyl coenzyme A (CoA) synthetase, and enzymes catalyzing the conversion of succinyl-CoA to crotonyl-CoA, were differentially downregulated in the presence of acetate and, to a lesser extent, in the presence of other organic substrates. This regulation pattern correlated well with the differential expression profile of the proteome as well as with the transcription of the encoding genes. The genes encoding phosphoenolpyruvate (PEP) carboxylase, fumarate reductase, and four enzymes catalyzing the conversion of succinyl-CoA to crotonyl-CoA are clustered. Two putative operons, one comprising succinyl-CoA reductase plus 4-hydroxybutyrate-CoA ligase genes and the other comprising 4-hydroxybutyryl-CoA dehydratase plus fumarate reductase genes, were divergently transcribed into leaderless mRNAs. The promoter regions were characterized and used for isolating DNA binding proteins. Besides an Alba protein, a 18-kDa protein characteristic for autotrophic Thermoproteales that bound specifically to the promoter region was identified. This system may be suitable for molecular analysis of the transcriptional regulation of autotrophy-related genes.
Collapse
|
23
|
Koziol C, Kobayashi N, Müller IM, Müller WEG. Cloning of sponge heat shock proteins: evolutionary relationships between the major kingdoms. J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.1998.tb00782.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Huang AC, Hu L, Kauffman SA, Zhang W, Shmulevich I. Using cell fate attractors to uncover transcriptional regulation of HL60 neutrophil differentiation. BMC SYSTEMS BIOLOGY 2009; 3:20. [PMID: 19222862 PMCID: PMC2652435 DOI: 10.1186/1752-0509-3-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 02/18/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND The process of cellular differentiation is governed by complex dynamical biomolecular networks consisting of a multitude of genes and their products acting in concert to determine a particular cell fate. Thus, a systems level view is necessary for understanding how a cell coordinates this process and for developing effective therapeutic strategies to treat diseases, such as cancer, in which differentiation plays a significant role. Theoretical considerations and recent experimental evidence support the view that cell fates are high dimensional attractor states of the underlying molecular networks. The temporal behavior of the network states progressing toward different cell fate attractors has the potential to elucidate the underlying molecular mechanisms governing differentiation. RESULTS Using the HL60 multipotent promyelocytic leukemia cell line, we performed experiments that ultimately led to two different cell fate attractors by two treatments of varying dosage and duration of the differentiation agent all-trans-retinoic acid (ATRA). The dosage and duration combinations of the two treatments were chosen by means of flow cytometric measurements of CD11b, a well-known early differentiation marker, such that they generated two intermediate populations that were poised at the apparently same stage of differentiation. However, the population of one treatment proceeded toward the terminally differentiated neutrophil attractor while that of the other treatment reverted back toward the undifferentiated promyelocytic attractor. We monitored the gene expression changes in the two populations after their respective treatments over a period of five days and identified a set of genes that diverged in their expression, a subset of which promotes neutrophil differentiation while the other represses cell cycle progression. By employing promoter based transcription factor binding site analysis, we found enrichment in the set of divergent genes, of transcription factors functionally linked to tumor progression, cell cycle, and development. CONCLUSION Since many of the transcription factors identified by this approach are also known to be implicated in hematopoietic differentiation and leukemia, this study points to the utility of incorporating a dynamical systems level view into a computational analysis framework for elucidating transcriptional mechanisms regulating differentiation.
Collapse
|
25
|
Adachi N, Senda M, Natsume R, Senda T, Horikoshi M. Crystal structure of Methanococcus jannaschii TATA box-binding protein. Genes Cells 2009; 13:1127-40. [PMID: 19090808 DOI: 10.1111/j.1365-2443.2008.01233.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As the archaeal transcription system consists of a eukaryotic-type transcription apparatus and bacterial-type regulatory transcription factors, analyses of the molecular interface between the transcription apparatus and regulatory transcription factors are critical to reveal the evolutionary change of the transcription system. TATA box-binding protein (TBP), the central components of the transcription apparatus are classified into three groups: eukaryotic, archaeal-I and archaeal-II TBPs. Thus, comparative functional analysis of these three groups of TBP is important for the study of the evolution of the transcription system. Here, we present the first crystal structure of an archaeal-II TBP from Methanococcus jannaschii. The highly conserved and group-specific conserved surfaces of TBP bind to DNA and TFIIB/TFB, respectively. The phylogenetic trees of TBP and TFIIB/TFB revealed that they evolved in a coupled manner. The diversified surface of TBP is negatively charged in the archaeal-II TBP, which is completely different from the case of eukaryotic and archaeal-I TBPs, which are positively charged and biphasic, respectively. This difference is responsible for the diversification of the regulatory functions of TBP during evolution.
Collapse
Affiliation(s)
- Naruhiko Adachi
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), 5-9-6 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | | | | | | | | |
Collapse
|
26
|
Archaeal transcription: function of an alternative transcription factor B from Pyrococcus furiosus. J Bacteriol 2007; 190:157-67. [PMID: 17965161 DOI: 10.1128/jb.01498-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the hyperthermophile archaeon Pyrococcus furiosus encodes two transcription factor B (TFB) paralogs, one of which (TFB1) was previously characterized in transcription initiation. The second TFB (TFB2) is unusual in that it lacks recognizable homology to the archaeal TFB/eukaryotic TFIIB B-finger motif. TFB2 functions poorly in promoter-dependent transcription initiation, but photochemical cross-linking experiments indicated that the orientation and occupancy of transcription complexes formed with TFB2 at the strong gdh promoter are similar to the orientation and occupancy of transcription complexes formed with TFB1. Initiation complexes formed by TFB2 display a promoter opening defect that can be bypassed with a preformed transcription bubble, suggesting a mechanism to explain the low TFB2 transcription activity. Domain swaps between TFB1 and TFB2 showed that the low activity of TFB2 is determined mainly by its N terminus. The low activity of TFB2 in promoter opening and transcription can be partially relieved by transcription factor E (TFE). The results indicate that the TFB N-terminal region, containing conserved Zn ribbon and B-finger motifs, is important in promoter opening and that TFE can compensate for defects in the N terminus through enhancement of promoter opening.
Collapse
|
27
|
Hsieh TY, Shiu TY, Huang SM, Lin HH, Lee TC, Chen PJ, Chu HC, Chang WK, Jeng KS, Lai MMC, Chao YC. Molecular pathogenesis of Gilbert's syndrome: decreased TATA-binding protein binding affinity of UGT1A1 gene promoter. Pharmacogenet Genomics 2007; 17:229-36. [PMID: 17496722 DOI: 10.1097/fpc.0b013e328012d0da] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Gilbert's syndrome is a congenital, nonhemolytic, unconjugated hyperbilirubinemia. The most common genotype of Gilbert's syndrome is the homozygous polymorphism, A(TA)7TAA, in the promoter of the gene for UDP-glucuronosyltransferase 1A1 (UGT1A1), with a thymine adenine insertion in the TATA-box-like sequence, which results in a decrease in UGT1A1 activity. The mechanism responsible for this decrease in UGT1A1 activity, however, has not been elucidated. To clarify the mechanism underlying this deficiency in UGT1A1 activity in patients with Gilbert's syndrome. METHODS The promoter activity assay using the wild-type A(TA)6TAA or the mutant A(TA)7TAA promoter and a luciferase reporter was performed in two different hepatoma cell lines. The binding affinity for a nuclear protein complex or for TATA-binding protein was evaluated by a competitive electophoretic mobility shift assay using wild-type or mutant TATA-box-like oligonucleotide probes and nuclear extract or TATA-binding protein. The formation of complexes between TATA-binding protein and wild-type or mutant oligonucleotide probes was also studied by a quantitive electophoretic mobility shift assay. RESULTS A TA insertion in the TATA-box-like sequence of the promoter activity of UGT1A1 gene. A competitive electrophoretic mobility shift assay showed a decrease in nuclear protein complex binding affinity and TATA-binding protein binding affinity of the mutant TATA-box-like sequence A(TA)7TAA. When the mutants A(TA)5TAA and A(TA)8TAA were also compared, quantitative electrophoretic mobility shift assay demonstrated that the TATA-binding protein binding affinity progressively decreased as the number of TA repeats in the TATA-box-like sequence increased. CONCLUSION TA insertion in the TATA-box-like sequence of the UGT1A1 promoter affected its binding affinity for TATA-binding protein, causing a decrease in its activity. This explains the pathogenesis of Gilbert's syndrome.
Collapse
Affiliation(s)
- Tsai-Yuan Hsieh
- Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Travers A, Muskhelishvili G. A common topology for bacterial and eukaryotic transcription initiation? EMBO Rep 2007; 8:147-51. [PMID: 17268506 PMCID: PMC1796767 DOI: 10.1038/sj.embor.7400898] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 12/11/2006] [Indexed: 11/09/2022] Open
Abstract
DNA supercoiling is a major regulator of transcription in bacteria. Negative supercoiling acts both by promoting the formation of nucleoprotein structures containing wrapped DNA and by altering the twist of DNA. The latter affects the initiation of transcription by RNA polymerase as well as recombination processes. Here, we argue that although bacteria and eukaryotes differ in their mode of packaging DNA supercoils, increases in DNA twist are associated with chromatin folding and transcriptional silencing in both. Conversely, decreases in DNA twist are associated with chromatin unfolding and the acquisition of transcriptional competence. In other words, at the most fundamental level, the principles of genetic regulation are common to all organisms. The apparent differences in the details of regulation probably represent alternative methods of fine-tuning similar underlying processes.
Collapse
Affiliation(s)
- Andrew Travers
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
29
|
Coulson RMR, Touboul N, Ouzounis CA. Lineage-specific partitions in archaeal transcription. ARCHAEA (VANCOUVER, B.C.) 2007; 2:117-25. [PMID: 17350932 PMCID: PMC2686387 DOI: 10.1155/2006/629868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 10/23/2006] [Indexed: 11/18/2022]
Abstract
The phylogenetic distribution of the components comprising the transcriptional machinery in the crenarchaeal and euryarchaeal lineages of the Archaea was analyzed in a systematic manner by genome-wide profiling of transcription complements in fifteen complete archaeal genome sequences. Initially, a reference set of transcription-associated proteins (TAPs) consisting of sequences functioning in all aspects of the transcriptional process, and originating from the three domains of life, was used to query the genomes. TAP-families were detected by sequence clustering of the TAPs and their archaeal homologues, and through extensive database searching, these families were assigned a function. The phylogenetic origins of archaeal genes matching hidden Markov model profiles of protein domains associated with transcription, and those encoding the TAP-homologues, showed there is extensive lineage-specificity of proteins that function as regulators of transcription: most of these sequences are present solely in the Euryarchaeota, with nearly all of them homologous to bacterial DNA-binding proteins. Strikingly, the hidden Markov model profile searches revealed that archaeal chromatin and histone-modifying enzymes also display extensive taxon-restrictedness, both across and within the two phyla.
Collapse
Affiliation(s)
- Richard M R Coulson
- Microarray Group, The European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | |
Collapse
|
30
|
Miyazono KI, Tsujimura M, Kawarabayasi Y, Tanokura M. Crystal structure of an archaeal homologue of multidrug resistance repressor protein, EmrR, from hyperthermophilic archaea Sulfolobus tokodaii strain 7. Proteins 2007; 67:1138-46. [PMID: 17357153 DOI: 10.1002/prot.21327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MarR family proteins, MarR, MexR, and EmrR, are known as bacterial regulators for a phenotype resistant to multiple antibiotic drugs. Genomic data have indicated the presence of bacterial-type transcriptional regulators, including MarR family proteins in archaea, though the archaeal transcription system is close to that of eukaryote. To elucidate the structural basis of the transcriptional regulation mechanism of archaeal MarR family proteins, the crystal structure of the ST1710 protein, which was identified as an archaeal EmrR homologue, StEmrR, from hyperthermophilic archaeon Sulfolobus tokodaii strain 7 was determined at 1.45-A resolution. The protein was composed of two N- and C-terminal dimerization domains, and the DNA-binding domain consisted of a winged helix motif, as in the case of bacterial MarR family proteins. Despite the relatively low overall structural similarity between StEmrR and bacterial MarR family proteins, the structure of the DNA-binding domain displayed high structural similarity. A comparison with the crystal structures of bacterial MarR family proteins revealed that structural variation was mainly due to the different orientation of the two helices at the N- and C-termini. Our results indicated that the distance between the two DNA-binding domains of MarR family proteins would be changed by the rotation of the two terminal helices to interact with the target DNA.
Collapse
Affiliation(s)
- Ken-ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
31
|
Hamilton-Brehm SD, Schut GJ, Adams MWW. Metabolic and evolutionary relationships among Pyrococcus Species: genetic exchange within a hydrothermal vent environment. J Bacteriol 2005; 187:7492-9. [PMID: 16237032 PMCID: PMC1272969 DOI: 10.1128/jb.187.21.7492-7499.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrococcus furiosus and Pyrococcus woesei grow optimally at temperatures near 100 degrees C and were isolated from the same shallow marine volcanic vent system. Hybridization of genomic DNA from P. woesei to a DNA microarray containing all 2,065 open reading frames (ORFs) annotated in the P. furiosus genome, in combination with PCR analysis, indicated that homologs of 105 ORFs present in P. furiosus are absent from the uncharacterized genome of P. woesei. Pulsed-field electrophoresis indicated that the sizes of the two genomes are comparable, and the results were consistent with the hypothesis that P. woesei lacks the 105 ORFs found in P. furiosus. The missing ORFs are present in P. furiosus mainly in clusters. These clusters include one cluster (Mal I, PF1737 to PF1751) involved in maltose metabolism and another cluster (PF0691 to PF0695) whose products are thought to remove toxic reactive nitrogen species. Accordingly, it was found that P. woesei, in contrast to P. furiosus, is unable to utilize maltose as a carbon source for growth, and the growth of P. woesei on starch was inhibited by addition of a nitric oxide generator. In P. furiosus the ORF clusters not present in P. woesei are bracketed by or are in the vicinity of insertion sequences or long clusters of tandem repeats (LCTRs). While the role of LCTRs in lateral gene transfer is not known, the Mal I cluster in P. furiosus is a composite transposon that undergoes replicative transposition. The same locus in P. woesei lacks any evidence of insertion activity, indicating that P. woesei is a sister or even the parent of P. furiosus. P. woesei may have acquired by lateral gene transfer more than 100 ORFs from other organisms living in the same thermophilic environment to produce the type strain of P. furiosus.
Collapse
Affiliation(s)
- Scott D Hamilton-Brehm
- Department of Biochemistry and Molecular Biology, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602-7229, USA
| | | | | |
Collapse
|
32
|
Bartlett MS. Determinants of transcription initiation by archaeal RNA polymerase. Curr Opin Microbiol 2005; 8:677-84. [PMID: 16249119 DOI: 10.1016/j.mib.2005.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 10/13/2005] [Indexed: 12/27/2022]
Abstract
Transcription in Archaea is catalyzed by an RNA polymerase that is most similar to eukaryotic RNA polymerases both in subunit composition and in transcription initiation factor requirements. Recent studies on archaeal transcription in diverse members of this domain have contributed new details concerning the functions of promoters and transcription factors in guiding initiation by RNA polymerase, and phylogenetic arguments have allowed modeling of archaeal transcription initiation complexes by comparison with recently described models of eukaryotic and bacterial transcription initiation complexes. Important new advances in reconstitution of archaeal transcription complexes from fully recombinant components is permitting testing of hypotheses derived from and informed by these structural models, and will help bring the study of archaeal transcription to the levels of understanding currently enjoyed by bacterial and eukaryotic RNA polymerase II transcription.
Collapse
Affiliation(s)
- Michael S Bartlett
- Department of Biology, Portland State University, SB2 Room 246, 1719 SW 10th Avenue, Portland, OR 97201, USA.
| |
Collapse
|
33
|
Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P. Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 2004; 186:427-37. [PMID: 14702312 PMCID: PMC305765 DOI: 10.1128/jb.186.2.427-437.2004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mercury resistance mediated by mercuric reductase (MerA) is widespread among bacteria and operates under the control of MerR. MerR represents a unique class of transcription factors that exert both positive and negative regulation on gene expression. Archaea and bacteria are prokaryotes, yet little is known about the biological role of mercury in archaea or whether a resistance mechanism occurs in these organisms. The archaeon Sulfolobus solfataricus was sensitive to mercuric chloride, and low-level adaptive resistance could be induced by metal preconditioning. Protein phylogenetic analysis of open reading frames SSO2689 and SSO2688 clarified their identity as orthologs of MerA and MerR. Northern analysis established that merA transcription responded to mercury challenge, since mRNA levels were transiently induced and, when normalized to 7S RNA, approximated values for other highly expressed transcripts. Primer extension analysis of merA mRNA predicted a noncanonical TATA box with nonstandard transcription start site spacing. The functional roles of merA and merR were clarified further by gene disruption. The merA mutant exhibited mercury sensitivity relative to wild type and was defective in elemental mercury volatilization, while the merR mutant was mercury resistant. Northern analysis of the merR mutant revealed merA transcription was constitutive and that transcript abundance was at maximum levels. These findings constitute the first report of an archaeal heavy metal resistance system; however, unlike bacteria the level of resistance is much lower. The archaeal system employs a divergent MerR protein that acts only as a negative transcriptional regulator of merA expression.
Collapse
Affiliation(s)
- James Schelert
- Beadle Center for Genetics, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The events leading to transcription of eukaryotic protein-coding genes culminate in the positioning of RNA polymerase II at the correct initiation site. The core promoter, which can extend ~35 bp upstream and/or downstream of this site, plays a central role in regulating initiation. Specific DNA elements within the core promoter bind the factors that nucleate the assembly of a functional preinitiation complex and integrate stimulatory and repressive signals from factors bound at distal sites. Although core promoter structure was originally thought to be invariant, a remarkable degree of diversity has become apparent. This article reviews the structural and functional diversity of the RNA polymerase II core promoter.
Collapse
Affiliation(s)
- Stephen T Smale
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
35
|
Bartlett MS, Thomm M, Geiduschek EP. Topography of the euryarchaeal transcription initiation complex. J Biol Chem 2003; 279:5894-903. [PMID: 14617625 DOI: 10.1074/jbc.m311429200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription in the Archaea is carried out by RNA polymerases and transcription factors that are highly homologous to their eukaryotic counterparts, but little is known about the structural organization of the archaeal transcription complex. To address this, transcription initiation complexes have been formed with Pyrococcus furiosus transcription factors (TBP and TFB1), RNA polymerase, and a linear DNA fragment containing a strong promoter. The arrangement of proteins from base pair -35 to +20 (relative to the transcriptional start site) has been analyzed by photochemical protein-DNA cross-linking. TBP cross-links to the TATA box and TFB1 cross-links both upstream and downstream of the TATA box, as expected, but the sites of most prominent TFB1 cross-linking are located well downstream of the TATA box, reaching as far as the start site of transcription, suggesting a role for TFB1 in initiation of transcription that extends beyond polymerase recruitment. These cross-links indicate the transcription factor orientation in the initiation complex. The pattern of cross-linking of four RNA polymerase subunits (B, A', A", and H) to the promoter suggests a path for promoter DNA relative to the RNA polymerase surface in this archaeal transcription initiation complex. In addition, an unidentified protein approximately the size of TBP cross-links to the non-transcribed DNA strand near the upstream edge of the transcription bubble. Cross-linking is specific to the polymerase-containing initiation complex and requires the gdh promoter TATA box. The location of this protein suggests that it, like TFB1, could also have a role in transcription initiation following RNA polymerase recruitment.
Collapse
Affiliation(s)
- Michael S Bartlett
- Division of Biological Sciences, Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
36
|
Renfrow MB, Naryshkin N, Lewis LM, Chen HT, Ebright RH, Scott RA. Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex. J Biol Chem 2003; 279:2825-31. [PMID: 14597623 DOI: 10.1074/jbc.m311433200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription initiation in all three domains of life requires the assembly of large multiprotein complexes at DNA promoters before RNA polymerase (RNAP)-catalyzed transcript synthesis. Core RNAP subunits show homology among the three domains of life, and recent structural information supports this homology. General transcription factors are required for productive transcription initiation complex formation. The archaeal general transcription factors TATA-element-binding protein (TBP), which mediates promoter recognition, and transcription factor B (TFB), which mediates recruitment of RNAP, show extensive homology to eukaryal TBP and TFIIB. Crystallographic information is becoming available for fragments of transcription initiation complexes (e.g. RNAP, TBP-TFB-DNA, TBP-TFIIB-DNA), but understanding the molecular topography of complete initiation complexes still requires biochemical and biophysical characterization of protein-protein and protein-DNA interactions. In published work, systematic site-specific protein-DNA photocrosslinking has been used to define positions of RNAP subunits and general transcription factors in bacterial and eukaryal initiation complexes. In this work, we have used systematic site-specific protein-DNA photocrosslinking to define positions of RNAP subunits and general transcription factors in an archaeal initiation complex. Employing a set of 41 derivatized DNA fragments, each having a phenyl azide photoactivable crosslinking agent incorporated at a single, defined site within positions -40 to +1 of the gdh promoter of the hyperthermophilic marine archaea, Pyrococcus furiosus (Pf), we have determined the locations of PfRNAP subunits PfTBP and PfTFB relative to promoter DNA. The resulting topographical information supports the striking homology with the eukaryal initiation complex and permits one major new conclusion, which is that PfTFB interacts with promoter DNA not only in the TATA-element region but also in the transcription-bubble region, near the transcription start site. Comparison with crystallographic information implicates the PfTFB N-terminal domain in the interaction with the transcription-bubble region. The results are discussed in relation to the known effects of substitutions in the TFB and TFIIB N-terminal domains on transcription initiation and transcription start-site selection.
Collapse
Affiliation(s)
- Matthew B Renfrow
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-2256, USA
| | | | | | | | | | | |
Collapse
|
37
|
Guillebault D, Sasorith S, Derelle E, Wurtz JM, Lozano JC, Bingham S, Tora L, Moreau H. A new class of transcription initiation factors, intermediate between TATA box-binding proteins (TBPs) and TBP-like factors (TLFs), is present in the marine unicellular organism, the dinoflagellate Crypthecodinium cohnii. J Biol Chem 2002; 277:40881-6. [PMID: 12154093 DOI: 10.1074/jbc.m205624200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dinoflagellates are marine unicellular eukaryotes that exhibit unique features including a very low level of basic proteins bound to the chromatin and the complete absence of histones and nucleosomal structure. A cDNA encoding a protein with a strong homology to the TATA box-binding proteins (TBP) has been isolated from an expressed sequence tag library of the dinoflagellate Crypthecodinium cohnii. The typical TBP repeat signature and the amino acid motives involved in TFIIA and TFIIB interactions were conserved in this new TBP-like protein. However, the four phenylalanines known to interact with the TATA box were substituted with hydrophilic residues (His(77), Arg(94), Tyr(171), Thr(188)) as has been described for TBP-like factors (TLF)/TBP-related proteins (TRP). A phylogenetic analysis showed that cTBP is intermediate between TBP and TLF/TRP protein families, and the structural similarity of cTBP with TLF was confirmed by low affinity binding to a consensus' TATA box in an equivalent manner to that usually observed for TLFs. Six 5'-upstream gene regions of dinoflagellate genes have been analyzed and neither a TATA box nor a consensus-promoting element could be found within these different sequences. Our results showed that cTBP could bind stronger to a TTTT box sequence than to the canonical TATA box, especially at high salt concentration. Same binding results were obtained with a mutated cTBP (mcTBP), in which the four phenylalanines were restored. To our knowledge, this is the first description of a TBP-like protein in a unicellular organism, which also appears as the major form of TBP present in C. cohnii.
Collapse
Affiliation(s)
- Delphine Guillebault
- Observatoire océanologique, laboratoire Arago, UMR 7628 CNRS-Université Paris VI, BP 44, F-66651 Banyuls-sur-mer cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Werner F, Weinzierl ROJ. A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol Cell 2002; 10:635-46. [PMID: 12408830 DOI: 10.1016/s1097-2765(02)00629-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA polymerases (RNAPs) are core components of the cellular transcriptional machinery. Progress with functional studies of eukaryotic RNAPs has been delayed by the fact that it has not yet been possible to assemble active enzymes from individual subunits. Archaeal RNAPs are directly comparable to eukaryotic RNAPII in terms of primary sequence homology and quaternary structure. Here we report the successful in vitro assembly of a recombinant archaeal RNAP from purified subunits. The recombinant enzyme displays full activity in transcription assays and is capable, in the presence of two other basal factors, of promoter-specific transcription. The assembly of mutant enzymes yielded several unexpected insights into the structural and functional contributions of various subunits toward overall RNAP activity.
Collapse
Affiliation(s)
- Finn Werner
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | |
Collapse
|
39
|
Tefferi A, Wieben ED, Dewald GW, Whiteman DAH, Bernard ME, Spelsberg TC. Primer on medical genomics part II: Background principles and methods in molecular genetics. Mayo Clin Proc 2002; 77:785-808. [PMID: 12173714 DOI: 10.4065/77.8.785] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nucleus of every human cell contains the full complement of the human genome, which consists of approximately 30,000 to 70,000 named and unnamed genes and many intergenic DNA sequences. The double-helical DNA molecule in a human cell, associated with special proteins, is highly compacted into 22 pairs of autosomal chromosomes and an additional pair of sex chromosomes. The entire cellular DNA consists of approximately 3 billion base pairs, of which only 1% is thought to encode a functional protein or a polypeptide. Genetic information is expressed and regulated through a complex system of DNA transcription, RNA processing, RNA translation, and posttranslational and cotranslational modification of proteins. Advances in molecular biology techniques have allowed accurate and rapid characterization of DNA sequences as well as identification and quantification of cellular RNA and protein. Global analytic methods and human genetic mapping are expected to accelerate the process of identification and localization of disease genes. In this second part of an educational series in medical genomics, selected principles and methods in molecular biology are recapped, with the intent to prepare the reader for forthcoming articles with a more direct focus on aspects of the subject matter.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minn 55905, USA
| | | | | | | | | | | |
Collapse
|
40
|
Bergqvist S, Williams MA, O'Brien R, Ladbury JE. Reversal of halophilicity in a protein-DNA interaction by limited mutation strategy. Structure 2002; 10:629-37. [PMID: 12015146 DOI: 10.1016/s0969-2126(02)00749-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparison of the genes of functionally homologous proteins in organisms existing in different environments shows that adaptation is most often accomplished by mutation of an existing protein. However, from such comparisons, the significance of individual residues to the particular environmental adaptation is not generally discernable among the mass of changes that occur over evolutionary time. This can be exemplified by the general transcription factor found in eukaryotes and archaea, the TATA binding protein (TBP). TBP from Pyrococcus woesei is adapted for optimal binding to DNA at high salt and high temperature, with 34% of the amino acids altered in comparison to its nearest known mesophilic counterpart. We demonstrate that the halophilic nature of this protein can be attributed to only three mutations, revealing that the important phenotype of halophilicity could be rapidly acquired in evolutionary time.
Collapse
Affiliation(s)
- Simon Bergqvist
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- J Soppa
- Institute for Microbiology, Biocentre Niederursel, J. W. Goethe University Frankfurt, D-60439 Frankfurt, Germany
| |
Collapse
|
42
|
Bini E, Blum P. Archaeal catabolite repression: a gene regulatory paradigm. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:339-66. [PMID: 11677688 DOI: 10.1016/s0065-2164(01)50009-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- E Bini
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| | | |
Collapse
|
43
|
Abstract
We describe an original approach to determining sequence-structure relationships for DNA. This approach, termed ADAPT, combines all-atom molecular mechanics with a multicopy algorithm to build nucleotides that contain all four standard bases in variable proportions. These nucleotides enable us to search very rapidly for base sequences that energetically favor chosen types of DNA deformation or chosen DNA-protein or DNA-ligand interactions. Sequences satisfying the chosen criteria can be found by energy minimization, combinatorial sequence searching, or genome scanning, in a manner similar to the threading approaches developed for protein structure prediction. In the latter case, we are able to analyze roughly 2000 base pairs per second. Applications of the method to DNA allomorphic transitions, DNA deformation, and specific DNA interactions are presented.
Collapse
Affiliation(s)
- I Lafontaine
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | | |
Collapse
|
44
|
Pavlov NA, Cherny DI, Nazimov IV, Slesarev AI, Subramaniam V. Identification, cloning and characterization of a new DNA-binding protein from the hyperthermophilic methanogen Methanopyrus kandleri. Nucleic Acids Res 2002; 30:685-94. [PMID: 11809880 PMCID: PMC100301 DOI: 10.1093/nar/30.3.685] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Three novel DNA-binding proteins with apparent molecular masses of 7, 10 and 30 kDa have been isolated from the hyperthermophilic methanogen Methanopyrus kandleri. The proteins were identified using a blot overlay assay that was modified to emulate the high ionic strength intracellular environment of M.kandleri proteins. A 7 kDa protein, named 7kMk, was cloned and expressed in Escherichia coli. As indicated by CD spectroscopy and computer-assisted structure prediction methods, 7kMk is a substantially alpha-helical protein possibly containing a short N-terminal beta-strand. According to analytical gel filtration chromatography and chemical crosslinking, 7kMk exists as a stable dimer, susceptible to further oligomerization. Electron microscopy showed that 7kMk bends DNA and also leads to the formation of loop-like structures of approximately 43.5 +/- 3.5 nm (136 +/- 11 bp for B-form DNA) circumference. A topoisomerase relaxation assay demonstrated that looped DNA is negatively supercoiled under physiologically relevant conditions (high salt and temperature). A BLAST search did not yield 7kMk homologs at the amino acid sequence level, but based on a multiple alignment with ribbon-helix-helix (RHH) transcriptional regulators, fold features and self-association properties of 7kMk we hypothesize that it could be related to RHH proteins.
Collapse
MESH Headings
- Amino Acid Sequence
- Chromatography, Gel
- Circular Dichroism
- Cloning, Molecular
- Cross-Linking Reagents
- DNA Topoisomerases, Type I/metabolism
- DNA, Archaeal/chemistry
- DNA, Archaeal/metabolism
- DNA, Archaeal/ultrastructure
- DNA, Superhelical/chemistry
- DNA, Superhelical/metabolism
- DNA, Superhelical/ultrastructure
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Electrophoretic Mobility Shift Assay
- Euryarchaeota/chemistry
- Euryarchaeota/genetics
- Microscopy, Electron
- Models, Biological
- Molecular Sequence Data
- Molecular Weight
- Nucleic Acid Conformation
- Nucleosomes/chemistry
- Nucleosomes/genetics
- Nucleosomes/metabolism
- Osmolar Concentration
- Protein Binding
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Recombinant Proteins/ultrastructure
- Sequence Alignment
- Sequence Analysis
- Software
Collapse
Affiliation(s)
- Nikolai A Pavlov
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany
| | | | | | | | | |
Collapse
|
45
|
Dahlke I, Thomm M. A Pyrococcus homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment. Nucleic Acids Res 2002; 30:701-10. [PMID: 11809882 PMCID: PMC100285 DOI: 10.1093/nar/30.3.701] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genomes of Archaea harbor homologs of the global bacterial regulator leucine-responsive regulatory protein (Lrp). Archaeal Lrp homologs are helix-turn-helix DNA-binding proteins that specifically repress the transcription of their own genes in vitro. Here, we analyze the interaction of Pyrococcus LrpA with components of the archaeal transcriptional machinery at the lrpA promoter. DNA-protein complexes can be isolated by electrophoretic mobility shift assays that contain both LrpA and the two archaeal transcription factors TBP and TFB. Phenanthroline-copper footprinting experiments showed that the DNA-binding sites of LrpA and TBP/TFB do not overlap. These results and the finding that association of RNA polymerase with the TBP-TFB promoter complex was inhibited in the presence of LrpA indicate that Pyrococcus LrpA interferes with RNA polymerase recruitment. A DNA motif required for the LrpA-DNA interaction was inferred from dimethylsulfate methylation interference experiments.
Collapse
Affiliation(s)
- Isabell Dahlke
- Institut für Allgemeine Mikrobiologie, Universität Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | |
Collapse
|
46
|
Faraone-Mennella MR, Piccialli G, De Luca P, Castellano S, Giordano A, Rigano D, De Napoli L, Farina B. Interaction of the ADP-ribosylating enzyme from the hyperthermophilic archaeonS. solfataricuswith DNA and ss-oligo deoxy ribonucleotides. J Cell Biochem 2002. [DOI: 10.1002/jcb.10107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Hausner W, Thomm M. Events during initiation of archaeal transcription: open complex formation and DNA-protein interactions. J Bacteriol 2001; 183:3025-31. [PMID: 11325929 PMCID: PMC95201 DOI: 10.1128/jb.183.10.3025-3031.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription in Archaea is initiated by association of a TATA box binding protein (TBP) with a TATA box. This interaction is stabilized by the binding of the transcription factor IIB (TFIIB) orthologue TFB. We show here that the RNA polymerase of the archaeon Methanococcus, in contrast to polymerase II, does not require hydrolysis of the beta-gamma bond of ATP for initiation of transcription and open complex formation on linearized DNA. Permanganate probing revealed that the archaeal open complex spanned at least the DNA region from -11 to -1 at a tRNA(Val) promoter. The Methanococcus TBP-TFB promoter complex protected the DNA region from -40 to -14 on the noncoding DNA strand and the DNA segment from -36 to -17 on the coding DNA strand from DNase I digestion. This DNase I footprint was extended only to the downstream end by the addition of the RNA polymerase to position +17 on the noncoding strand and to position +13 on the coding DNA strand.
Collapse
Affiliation(s)
- W Hausner
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Federal Republic of Germany
| | | |
Collapse
|
48
|
Protein-DNA interactions in the initiation of transcription: The Role of Flexibility and Dynamics of the TATA Recognition Sequence and the TATA Box Binding Protein. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1380-7323(01)80011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Abstract
Viruses of Sulfolobus are highly unusual in their morphology, and genome structure and sequence. Certain characteristics of the replication strategies of these viruses and the virus-host interactions suggest relationships with eukaryal and bacterial viruses, and the primeval existence of common ancestors. Moreover, studying these viruses led to the discovery of archaeal promoters and has provided tools for the development of the molecular genetics of these organisms. The Sulfolobus viruses contain unique regulatory features and structures that undoubtedly hold surprises for researchers in the future.
Collapse
Affiliation(s)
- D Prangishvili
- Universität Regensburg, Lehrstuhl für Mikrobiologie--Archaeenzentrum, Universitätsstrasse 31, 93053 Regensburg, Germany.
| | | | | |
Collapse
|
50
|
Bell SD, Jackson SP. Mechanism of autoregulation by an archaeal transcriptional repressor. J Biol Chem 2000; 275:31624-9. [PMID: 10900210 DOI: 10.1074/jbc.m005422200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basal transcription machinery of archaea corresponds to the core components of the eucaryal RNA polymerase II apparatus. Thus, archaea possess a complex multi-subunit RNA polymerase, a TATA box-binding protein and a protein termed transcription factor B (TFB), which is a homologue of eucaryal transcription factor IIB (TFIIB). Intriguingly, archaeal genome sequencing projects have revealed the existence of homologues of bacterial transcriptional regulators. To investigate the mechanism of transcriptional regulation in archaea we have studied one such molecule, Lrs14, a Sulfolobus solfataricus P2 homologue of the bacterial leucine-responsive regulatory protein, Lrp. We find that purified Lrs14 specifically represses the transcription of its own gene in a reconstituted in vitro transcription system. Furthermore, we show that Lrs14 binding sites overlap the basal promoter elements of the Lrs14 promoter and reveal that binding of Lrs14 to these sites prevents promoter recognition by TATA box-binding protein and TFB.
Collapse
Affiliation(s)
- S D Bell
- Wellcome Trust and Cancer Research Campaign Institute of Cancer and Developmental Biology, Cambridge CB2 1QR and Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | | |
Collapse
|