1
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
2
|
Saxena A, Ma B, Schramm L, Hernandez N. Structure-function analysis of the human TFIIB-related factor II protein reveals an essential role for the C-terminal domain in RNA polymerase III transcription. Mol Cell Biol 2005; 25:9406-18. [PMID: 16227591 PMCID: PMC1265830 DOI: 10.1128/mcb.25.21.9406-9418.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.
Collapse
Affiliation(s)
- Ashish Saxena
- Genetics Program, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
3
|
Tubon TC, Tansey WP, Herr W. A nonconserved surface of the TFIIB zinc ribbon domain plays a direct role in RNA polymerase II recruitment. Mol Cell Biol 2004; 24:2863-74. [PMID: 15024075 PMCID: PMC371104 DOI: 10.1128/mcb.24.7.2863-2874.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIB is a highly conserved and essential component of the eukaryotic RNA polymerase II (pol II) transcription initiation machinery. It consists of a single polypeptide with two conserved structural domains: an amino-terminal zinc ribbon structure (TFIIB(ZR)) and a carboxy-terminal core (TFIIB(CORE)). We have analyzed the role of the amino-terminal region of human TFIIB in transcription in vivo and in vitro. We identified a small nonconserved surface of the TFIIB(ZR) that is required for pol II transcription in vivo and for different types of basal pol II transcription in vitro. Consistent with a general role in transcription, this TFIIB(ZR) surface is directly involved in the recruitment of pol II to a TATA box-containing promoter. Curiously, although the amino-terminal human TFIIB(ZR) domain can recruit both human pol II and yeast (Saccharomyces cerevisiae) pol II, the yeast TFIIB amino-terminal region recruits yeast pol II but not human pol II. Thus, a critical process in transcription from many different promoters-pol II recruitment-has changed in sequence specificity during eukaryotic evolution.
Collapse
Affiliation(s)
- Thomas C Tubon
- Graduate Program in Genetics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
4
|
Bushnell DA, Westover KD, Davis RE, Kornberg RD. Structural Basis of Transcription: An RNA Polymerase II-TFIIB Cocrystal at 4.5 Angstroms. Science 2004; 303:983-8. [PMID: 14963322 DOI: 10.1126/science.1090838] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-terminal domain, whose interaction with both the polymerase and with a TATA box-binding protein (TBP)-promoter DNA complex orients the DNA for unwinding and transcription. TFIIB stabilizes an early initiation complex, containing an incomplete RNA-DNA hybrid region. It may interact with the template strand, which sets the location of the transcription start site, and may interfere with RNA exit, which leads to abortive initiation or promoter escape. The trajectory of promoter DNA determined by the C-terminal domain of TFIIB traverses sites of interaction with TFIIE, TFIIF, and TFIIH, serving to define their roles in the transcription initiation process.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Crystallization
- Crystallography, X-Ray
- DNA/chemistry
- DNA/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Hybridization
- Promoter Regions, Genetic
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA/chemistry
- RNA/metabolism
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- TATA Box
- TATA-Box Binding Protein/chemistry
- TATA-Box Binding Protein/metabolism
- Templates, Genetic
- Transcription Factor TFIIB/chemistry
- Transcription Factor TFIIB/metabolism
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
- Zinc/chemistry
Collapse
Affiliation(s)
- David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | | | |
Collapse
|
5
|
Albrecht RA, Jang HK, Kim SK, O'Callaghan DJ. Direct interaction of TFIIB and the IE protein of equine herpesvirus 1 is required for maximal trans-activation function. Virology 2004; 316:302-12. [PMID: 14644612 DOI: 10.1016/j.virol.2003.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, we reported that the immediate-early (IE) protein of equine herpesvirus 1 (EHV-1) associates with transcription factor TFIIB [J. Virol. 75 (2001), 10219]. In the current study, the IE protein purified as a glutathione-S-transferase (GST) fusion protein was shown to interact directly with purified TFIIB in GST-pulldown assays. A panel of TFIIB mutants employed in protein-binding assays revealed that residues 125 to 174 within the first direct repeat of TFIIB mediate its interaction with the IE protein. This interaction is physiologically relevant as transient transfection assays demonstrated that (1). exogenous native TFIIB did not perturb IE protein function, and (2). ectopic expression of a TFIIB mutant that lacked the IE protein interactive domain significantly diminished the ability of the IE protein to trans-activate EHV-1 promoters. These results suggest that an interaction of the IE protein with TFIIB is an important aspect of the regulatory role of the IE protein in the trans-activation of EHV-1 promoters.
Collapse
Affiliation(s)
- Randy A Albrecht
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Laura Schramm
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
7
|
Pei L. Transcriptional repressor of vasoactive intestinal peptide receptor mediates repression through interactions with TFIIB and TFIIEbeta. Biochem J 2001; 360:633-8. [PMID: 11736653 PMCID: PMC1222266 DOI: 10.1042/0264-6021:3600633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcriptional repressor for rat vasoactive-intestinal-polypeptide receptor 1 (VIPR-RP) is a recently characterized transcription factor that belongs to a family of proteins, which include components of the DNA replication factor C complex. In this study, I investigated the mechanisms by which VIPR-RP represses transcription. I show here that transcriptional repression by VIPR-RP is mediated by a histone deacetylase-independent mechanism. I provide evidence that VIPR-RP makes direct physical contacts with two proteins of the basal transcription apparatus, the transcription factors TFIIB and TFIIEbeta. The interaction with TFIIB is mediated by the N-terminal 180 amino acids, whereas the interactive domain with TFIIEbeta is located between residues 367 and 527 of VIPR-RP. Using gel mobility-shift assays I demonstrated that interaction between VIPR-RP and TFIIB prevents the recruitment of TFIIB into a DNA-TATA-box-binding protein complex. My results indicate that VIPR-RP mediates transcriptional repression through direct interactions with the general transcription machinery.
Collapse
Affiliation(s)
- L Pei
- Division of Endocrinology & Metabolism, Cedars-Sinai Research Institute-UCLA School of Medicine, 8700 Beverly Boulevard, Los Angeles, CA 90048, U.S.A.
| |
Collapse
|
8
|
Kobayashi A, Miyake T, Ohyama Y, Kawaichi M, Kokubo T. Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae. J Biol Chem 2001; 276:395-405. [PMID: 11035037 DOI: 10.1074/jbc.m008208200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID, which is composed of the TATA box-binding protein (TBP) and a set of TBP-associated factors (TAFs), is crucial for both basal and regulated transcription by RNA polymerase II. The N-terminal small segment of yeast TAF145 (yTAF145) binds to TBP and thereby inhibits TBP function. To understand the physiological role of this inhibitory domain, which is designated as TAND (TAF N-terminal domain), we screened mutations, synthetically lethal with the TAF145 gene lacking TAND (taf145 Delta TAND), in Saccharomyces cerevisiae by exploiting a red/white colony-sectoring assay. Our screen yielded several recessive nsl (Delta TAND synthetic lethal) mutations, two of which, nsl1-1 and nsl1-2, define the same complementation group. The NSL1 gene was found to be identical to the SPT15 gene encoding TBP. Interestingly, both temperature-sensitive nsl1/spt15 alleles, which harbor the single amino acid substitutions, S118L and P65S, respectively, were defective in transcriptional activation in vivo. Several other previously characterized activation-deficient spt15 alleles also displayed synthetic lethal interactions with taf145 Delta TAND, indicating that TAND and TBP carry an overlapping but as yet unidentified function that is specifically required for transcriptional regulation.
Collapse
Affiliation(s)
- A Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
9
|
Chen HT, Legault P, Glushka J, Omichinski JG, Scott RA. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci 2000; 9:1743-52. [PMID: 11045620 PMCID: PMC2144703 DOI: 10.1110/ps.9.9.1743] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Transcription factor IIB (TFIIB) is an essential component in the formation of the transcription initiation complex in eucaryal and archaeal transcription. TFIIB interacts with a promoter complex containing the TATA-binding protein (TBP) to facilitate interaction with RNA polymerase II (RNA pol II) and the associated transcription factor IIF (TFIIF). TFIIB contains a zinc-binding motif near the N-terminus that is directly involved in the interaction with RNA pol II/TFIIF and plays a crucial role in selecting the transcription initiation site. The solution structure of the N-terminal residues 2-59 of human TFIIB was determined by multidimensional NMR spectroscopy. The structure consists of a nearly tetrahedral Zn(Cys)3(His)1 site confined by type I and "rubredoxin" turns, three antiparallel beta-strands, and disordered loops. The structure is similar to the reported zinc-ribbon motifs in several transcription-related proteins from archaea and eucarya, including Pyrococcus furiosus transcription factor B (PfTFB), human and yeast transcription factor IIS (TFIIS), and Thermococcus celer RNA polymerase II subunit M (TcRPOM). The zinc-ribbon structure of TFIIB, in conjunction with the biochemical analyses, suggests that residues on the beta-sheet are involved in the interaction with RNA pol II/TFIIF, while the zinc-binding site may increase the stability of the beta-sheet.
Collapse
Affiliation(s)
- H T Chen
- Center for Metalloenzyme Studies, University of Georgia, Athens 30602-2556, USA
| | | | | | | | | |
Collapse
|
10
|
Wu WH, Pinto I, Chen BS, Hampsey M. Mutational analysis of yeast TFIIB. A functional relationship between Ssu72 and Sub1/Tsp1 defined by allele-specific interactions with TFIIB. Genetics 1999; 153:643-52. [PMID: 10511545 PMCID: PMC1460761 DOI: 10.1093/genetics/153.2.643] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TFIIB is an essential component of the RNA polymerase II core transcriptional machinery. Previous studies have defined TFIIB domains required for interaction with other transcription factors and for basal transcription in vitro. In the study reported here we investigated the TFIIB structural requirements for transcription initiation in vivo. A library of sua7 mutations encoding altered forms of yeast TFIIB was generated by error-prone polymerase chain reaction and screened for conditional growth defects. Twenty-two single amino acid replacements in TFIIB were defined and characterized. These replacements are distributed throughout the protein and occur primarily at phylogenetically conserved positions. Most replacements have little or no effect on the steady-state protein levels, implying that each affects TFIIB function rather than synthesis or stability. In contrast to the initial sua7 mutants, all replacements, with one exception, have no effect on start site selection, indicating that specific TFIIB structural defects affect transcriptional accuracy. This collection of sua7 alleles, including the initial sua7 alleles, was used to investigate the allele specificity of interactions between ssu72 and sub1, both of which were initially identified as either suppressors (SUB1 2mu) or enhancers (sub1Delta, ssu72-1) of sua7 mutations. We show that the interactions of ssu72-1 and sub1Delta with sua7 are allele specific; that the allele specificities of ssu72 and sub1 overlap; and that each of the sua7 alleles that interacts with ssu72 and sub1 affects the accuracy of transcription start site selection. These results demonstrate functional interactions among TFIIB, Ssu72, and Sub1 and suggest that these interactions play a role in the mechanism of start site selection by RNA polymerase II.
Collapse
Affiliation(s)
- W H Wu
- Department of Biochemistry, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
11
|
Cho EJ, Buratowski S. Evidence that transcription factor IIB is required for a post-assembly step in transcription initiation. J Biol Chem 1999; 274:25807-13. [PMID: 10464320 DOI: 10.1074/jbc.274.36.25807] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation of glutamate 62 to lysine in yeast transcription factor (TF) IIB (Sua7) causes a cold-sensitive phenotype. This mutant also leads to preferential transcription of downstream start sites on some promoters in vivo. To explore the molecular nature of these phenotypes, the TFIIB E62K mutant was characterized in vitro. The mutant interacts with TATA-binding protein normally. In three different assays, the mutant can also interact with RNA polymerase II and recruit it and the other basal transcription factors to a promoter. Despite the ability to assemble a transcription complex, the TFIIB E62K protein is severely defective in transcription in vitro. Therefore, the role of TFIIB must be more than simply bridging TATA-binding protein and polymerase at the promoter. We propose that the region around Glu-62 in yeast TFIIB plays a role in start site selection, perhaps mediating a conformational change in the polymerase or the DNA during the search for initiation sites. This step may be related to the yeast-specific spacing between TATA elements and start sites since mutations of the corresponding glutamate in mammalian TFIIB do not produce a similar effect.
Collapse
Affiliation(s)
- E J Cho
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
12
|
Felzien LK, Farrell S, Betts JC, Mosavin R, Nabel GJ. Specificity of cyclin E-Cdk2, TFIIB, and E1A interactions with a common domain of the p300 coactivator. Mol Cell Biol 1999; 19:4241-6. [PMID: 10330164 PMCID: PMC104383 DOI: 10.1128/mcb.19.6.4241] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p300 and CREB binding protein (CBP) transcriptional coactivators interact with a variety of transcription factors and regulate their activity. Among the interactions that have been described, the COOH-terminal region of p300 binds to cyclin E-cyclin-dependent kinase 2 (cyclin E-Cdk2) and TFIIB, as well as to the E1A gene products of adenovirus. Inhibition of Cdk activity by Cdk inhibitors, such as p21 or p27, potentiates NF-kappaB activity and provides a mechanism to coordinate cell cycle progression with the transcription of genes expressed during growth arrest. In this report, we analyze the specific domains of p300 required for the binding of p300 to cyclin E-Cdk2, TFIIB, and E1A and the ability of these proteins to interact with p300, alone or in combination. 12S E1A, an inhibitor of p300-dependent transcription, reduces the binding of TFIIB, but not that of cyclin E-Cdk2, to p300. In contrast, 13S E1A, a pleiotropic transcriptional activator, does not inhibit TFIIB binding to p300, although it enhances the interaction of cyclin E-Cdk2 with p300. Modification of cyclin E-Cdk2 is most likely required for association with p300 since the interaction is observed only with cyclin E-Cdk2 purified from mammalian cells. Domain swap studies show that the cyclin homology domain of TFIIB is involved in interactions with p300, although the homologous region from cyclin E does not mediate this interaction. These findings suggest that p300 or CBP function is regulated by interactions of various proteins with a common coactivator domain.
Collapse
Affiliation(s)
- L K Felzien
- Howard Hughes Medical Institute, University of Michigan Medical Center, Departments of Internal Medicine and Biological Chemistry, Ann Arbor, Michigan 48109-0650, USA
| | | | | | | | | |
Collapse
|
13
|
Kuhlman TC, Cho H, Reinberg D, Hernandez N. The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter. Mol Cell Biol 1999; 19:2130-41. [PMID: 10022900 PMCID: PMC84006 DOI: 10.1128/mcb.19.3.2130] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II transcribes the mRNA-encoding genes and the majority of the small nuclear RNA (snRNA) genes. The formation of a minimal functional transcription initiation complex on a TATA-box-containing mRNA promoter has been well characterized and involves the ordered assembly of a number of general transcription factors (GTFs), all of which have been either cloned or purified to near homogeneity. In the human RNA polymerase II snRNA promoters, a single element, the proximal sequence element (PSE), is sufficient to direct basal levels of transcription in vitro. The PSE is recognized by the basal transcription complex SNAPc. SNAPc, which is not required for transcription from mRNA-type RNA polymerase II promoters such as the adenovirus type 2 major late (Ad2ML) promoter, is thought to recruit TATA binding protein (TBP) and nucleate the assembly of the snRNA transcription initiation complex, but little is known about which GTFs other than TBP are required. Here we show that the GTFs IIA, IIB, IIF, and IIE are required for efficient RNA polymerase II transcription from snRNA promoters. Thus, although the factors that recognize the core elements of RNA polymerase II mRNA and snRNA-type promoters differ, they mediate the recruitment of many common GTFs.
Collapse
Affiliation(s)
- T C Kuhlman
- Graduate Program in Molecular and Cellular Pharmacology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
14
|
Takeo J, Yamashita S. Two distinct isoforms of cDNA encoding rainbow trout androgen receptors. J Biol Chem 1999; 274:5674-80. [PMID: 10026186 DOI: 10.1074/jbc.274.9.5674] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgens play an important role in male sexual differentiation and development. The activity of androgens is mediated by an androgen receptor (AR), which binds to specific DNA recognition sites and regulates transcription. We describe here the isolation of two distinct rainbow trout cDNA clones, designated rtAR-alpha and rtAR-beta, which contain the entire androgen receptor coding region. Comparison of the predicted amino acid sequence of rtAR-alpha to that of rtAR-beta revealed 85% identity. Interestingly, despite this high homology, rtAR-alpha activated transcription of an androgen-responsive reporter gene in co-transfection assays, but rtAR-beta did not. These results suggest that rainbow trout contains two distinct isoforms of androgen receptors whose functions differ. The region of rtAR-beta responsible for its inactivity was mapped to its ligand binding domain by analyzing chimeras of the rtAR-alpha, rtAR-beta, and rtGR-I (glucocorticoid) receptors. Alteration of any one of three out of four segments within this domain restored activity. Extracts made from COS-1 cells transfected with an rtAR-alpha expression plasmid produced a high level of [3H]mibolerone binding, whereas no binding was observed by extracts of cells transfected with an rtAR-beta expression plasmid. These data demonstrate that the lack of transactivation activity of rtAR-beta is due to its inability to bind hormone.
Collapse
Affiliation(s)
- J Takeo
- Central Research Laboratory, Nippon Suisan Kaisha Ltd., 559-6 Kitanomachi, Hachioji, Tokyo 192-0906, Japan
| | | |
Collapse
|
15
|
Schroeder SC, Weil PA. Biochemical and genetic characterization of the dominant positive element driving transcription ofthe yeast TBP-encoding gene, SPT15. Nucleic Acids Res 1998; 26:4186-95. [PMID: 9722639 PMCID: PMC147844 DOI: 10.1093/nar/26.18.4186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously demonstrated that a combination of both positive and negative cis -acting upstream elements control the transcription of the gene encoding TBP ( SPT15 ) in Saccharomyces cerevisiae . One of these elements found in that study, resident between 5' flanking sequences -147 and -128 , and termed PED (for positive element distal), was found to play an essential positive role in driving transcription of the gene encoding TBP. In this report, we map at nucleotide-level resolution, the critical residues which comprise PED, purify and sequence the protein that binds to it and determine that this PED binding factor is Abf1p, an abundant yeast protein previously broadly implicated in both gene regulation and DNA replication. In the case of the TBP-encoding gene, however, Abf1p works through the PED element which is a non-consensus binding site. Based upon the work of others, the PED-variant ABF1 site would be predicted to be a very poor binding site for this factor yet Abf1p binds PED and a consensus ABF1 site with comparable affinity. These results are discussed in light of the broader context of Abf1p-mediated gene regulation.
Collapse
Affiliation(s)
- S C Schroeder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville,TN 37232-0615, USA
| | | |
Collapse
|
16
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
17
|
Leong GM, Wang KS, Marton MJ, Blanco JC, Wang IM, Rolfes RJ, Ozato K, Segars JH. Interaction between the retinoid X receptor and transcription factor IIB is ligand-dependent in vivo. J Biol Chem 1998; 273:2296-305. [PMID: 9442074 DOI: 10.1074/jbc.273.4.2296] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The retinoid X receptor (RXR) influences gene activation through heterodimeric and homodimeric association with DNA and associates with TATA binding protein, TAF110, and cAMP response element-binding protein-binding protein; yet the molecular mechanisms responsible for gene activation by RXRs remain incompletely defined. Since the general transcription factor IIB (TFIIB) is a common target of sequence-specific transcriptional activators, we suspected that RXR might regulate target genes via an interaction with TFIIB. Coimmunoprecipitation, far Western analysis, and glutathione S-transferase binding studies indicated that murine RXR beta (mRXR beta) was capable of binding to human TFIIB in vitro. Functional analysis with a dual-hybrid yeast system and cotransfection assays revealed the interaction of mRXR beta with TFIIB to be ligand-dependent in vivo. Truncation experiments mapped the essential binding regions to the carboxyl region of mRXR beta (amino acids (aa) 254-389) and two regions in the carboxyl region of TFIIB (aa 178-201 and aa 238-271). Furthermore, the delta 390-410 mRXR beta mutant bound to TFIIB in vitro but was not active in the dual-hybrid yeast system, suggesting that the extreme carboxyl region of RXR was required for in vivo interaction with TFIIB. These data indicate that interaction of mRXR beta with TFIIB is specific, direct, and ligand-dependent in vivo and suggest that gene activation by RXR involves TFIIB.
Collapse
Affiliation(s)
- G M Leong
- Unit on the Molecular Mechanisms of Reproduction, NICHHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bangur CS, Pardee TS, Ponticelli AS. Mutational analysis of the D1/E1 core helices and the conserved N-terminal region of yeast transcription factor IIB (TFIIB): identification of an N-terminal mutant that stabilizes TATA-binding protein-TFIIB-DNA complexes. Mol Cell Biol 1997; 17:6784-93. [PMID: 9372909 PMCID: PMC232534 DOI: 10.1128/mcb.17.12.6784] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The general transcription factor IIB (TFIIB) plays an essential role in transcription of protein-coding genes by RNA polymerase II. We have used site-directed mutagenesis to assess the role of conserved amino acids in several important regions of yeast TFIIB. These include residues in the highly conserved amino-terminal region and basic residues in the D1 and E1 core domain alpha-helices. Acidic substitutions of residues K190 (D1) and K201 (E1) resulted in growth impairments in vivo, reduced basal transcriptional activity in vitro, and an inability to form stable TFIIB-TATA-binding protein-DNA (DB) complexes. Significantly, these mutants retained the ability to respond to acidic activators in vivo and to the Gal4-VP16 activator in vitro, supporting the view that these basic residues play a role in basal transcription. In addition, 14 single-amino-acid substitutions were introduced in the conserved amino-terminal region. Three of these mutants, the L50D, R64E, and R78L mutants, displayed altered growth properties in vivo and were compromised for supporting transcription in vitro. The L50D mutant was impaired for RNA polymerase II interaction, while the R64E mutant exhibited altered transcription start site selection both in vitro and in vivo and, surprisingly, was more active than the wild type in the formation of stable DB complexes. These results support the view that the amino-terminal domain is involved in the direct interaction between yeast TFIIB and RNA polymerase II and suggest that this domain may interact with DNA and/or modulate the formation of a DB complex.
Collapse
Affiliation(s)
- C S Bangur
- Department of Biochemistry and Center for Advanced Molecular Biology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214-3000, USA
| | | | | |
Collapse
|
19
|
Chou S, Struhl K. Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains. Mol Cell Biol 1997; 17:6794-802. [PMID: 9372910 PMCID: PMC232535 DOI: 10.1128/mcb.17.12.6794] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biochemical experiments indicate that the general transcription factor IIB (TFIIB) can interact directly with acidic activation domains and that activators can stimulate transcription by increasing recruitment of TFIIB to promoters. For promoters at which recruitment of TFIIB to promoters is limiting in vivo, one would predict that transcriptional activity should be particularly sensitive to TFIIB mutations that decrease the association of TFIIB with promoter DNA and/or with activation domains; i.e., such TFIIB mutations should exacerbate a limiting step that occurs in wild-type cells. Here, we describe mutations on the DNA-binding surface of TFIIB that severely affect both TATA-binding protein (TBP)-TFIIB-TATA complex formation and interaction with the VP16 activation domain in vitro. These TFIIB mutations affect the stability of the TBP-TFIIB-TATA complex in vivo because they are synthetically lethal in combination with TBP mutants impaired for TFIIB binding. Interestingly, these TFIIB derivatives support viability, and they efficiently respond to Gal4-VP16 and natural acidic activators in different promoter contexts. These results suggest that in vivo, recruitment of TFIIB is not generally a limiting step for acidic activators. However, one TFIIB derivative shows reduced transcription of GAL4, suggesting that TFIIB may be limiting at a subset of promoters in vivo.
Collapse
Affiliation(s)
- S Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
20
|
Kassavetis GA, Bardeleben C, Kumar A, Ramirez E, Geiduschek EP. Domains of the Brf component of RNA polymerase III transcription factor IIIB (TFIIIB): functions in assembly of TFIIIB-DNA complexes and recruitment of RNA polymerase to the promoter. Mol Cell Biol 1997; 17:5299-306. [PMID: 9271407 PMCID: PMC232380 DOI: 10.1128/mcb.17.9.5299] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces cerevisiae transcription factor IIIB (TFIIIB) is composed of three subunits: the TATA-binding protein, the TFIIB-related protein Brf, and B". TFIIIB, which is brought to RNA polymerase III-transcribed genes indirectly through interaction with DNA-bound TFIIIC or directly through DNA recognition by the TATA-binding protein, in turn recruits RNA polymerase III to the promoter. N-terminally deleted derivatives of Brf have been examined for their ability to interact with DNA-bound TFIIIC and with the other components of TFIIIB and for participation in transcription. Brf(165-596), lacking 164 N-proximal TFIIB-homologous amino acids, is competent to participate in the assembly of TFIIIB-DNA complexes and in TFIIIC-independent transcription. Even deletion of the entire TFIIB-homologous half of the protein, as in Brf(317-596) and Brf(352-596), allows some interaction with DNA-bound TBP and with the B" component of TFIIIB to be retained. The function of Brf(165-596) in transcription has also been examined in the context of B" with small internal deletions. The ability of Brf with this sizable N-terminal segment deleted to function in TFIIIC-independent transcription requires segments of B" that are individually indispensable although required on an either/or basis, in the context of complete Brf. These findings suggest a functional complementarity and reciprocity between the Brf and B" components of TFIIIB.
Collapse
Affiliation(s)
- G A Kassavetis
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634, USA.
| | | | | | | | | |
Collapse
|
21
|
Chibazakura T, Watanabe F, Kitajima S, Tsukada K, Yasukochi Y, Teraoka H. Phosphorylation of human general transcription factors TATA-binding protein and transcription factor IIB by DNA-dependent protein kinase--synergistic stimulation of RNA polymerase II basal transcription in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1166-73. [PMID: 9288944 DOI: 10.1111/j.1432-1033.1997.01166.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA-dependent protein kinase (DNA-PK) has been known to catalyze phosphorylation of a number of regulatory factors involved in DNA replication and transcription such as simian virus 40 T antigen, p53, c-Myc, Sp1, and RNA polymerase II (Pol II). We examined the possibility that DNA-PK phosphorylates the general transcription factors TATA-binding protein (TBP) and transcription factor (TF) IIB, which play key roles in the formation of transcription initiation complex with Pol II. By using a highly purified preparation of DNA-PK from Raji cells, both TBP and TFIIB were shown to be phosphorylated in vitro by DNA-PK. We then investigated the effect of the phosphorylation of these factors on Pol II basal transcription. Stepwise analysis of preinitiation complex formation by electrophoretic mobility shift assay revealed that the phosphorylation of TBP and TFIIB by DNA-PK did not affect the formation of promoter (P)-TBP and P-TBP-TFIIB complexes but synergistically stimulated the formation of P-TBP-TFIIB-TFIIF-Pol II complex. Similarly, combination of the phosphorylated TBP and TFIIB synergistically stimulated Pol II basal transcription from adenovirus major late promoter. These observations suggest that DNA-PK could positively regulate the Pol II basal transcription by phosphorylating TBP and TFIIB.
Collapse
Affiliation(s)
- T Chibazakura
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Shaw SP, Carson DJ, Dorsey MJ, Ma J. Mutational studies of yeast transcription factor IIB in vivo reveal a functional surface important for gene activation. Proc Natl Acad Sci U S A 1997; 94:2427-32. [PMID: 9122211 PMCID: PMC20104 DOI: 10.1073/pnas.94.6.2427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent experiments in yeast (Saccharomyces cerevisiae) cells have identified a species-specific region of yeast transcription factor IIB (TFIIB) located at residues 144-157. According to the human TFIIB structure, this region is part of a solvent-exposed helix in the first repeat of the carboxyl-terminal core domain. In this report, we systematically analyze four positions in this region (Lys-147, Cys-149, Lys-151, and Glu-152) that together have been shown previously to be important for yeast TFIIB's function in vivo. Our experiments suggest that all of these four positions, and in particular positions 151, 149, and 152, are critical for yeast TFIIB's ability to support cell growth. In addition, we describe an intragenic suppressor screening experiment to identify mutations that reverse, or partially reverse, the temperature-sensitive phenotype of a yeast TFIIB derivative bearing amino acid changes at these four positions to human residues. The suppressor mutations reveal changes at positions 115, 117, and 182 that are located outside the species-specific region of yeast TFIIB, suggesting an extended surface available to interact with other proteins. Finally, we demonstrate that the suppressor mutations restore gene activation in vivo, further supporting the idea that one important function of yeast TFIIB in living cells is to mediate gene activation.
Collapse
Affiliation(s)
- S P Shaw
- Division of Developmental Biology, Children's Hospital Research Foundation, University of Cincinnati College of Medicine, OH 45229, USA
| | | | | | | |
Collapse
|
23
|
Hata JI, Takeo J, Segawa C, Yamashita S. A cDNA encoding fish fibroblast growth factor-2, which lacks alternative translation initiation. J Biol Chem 1997; 272:7285-9. [PMID: 9054425 DOI: 10.1074/jbc.272.11.7285] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Here, we describe the isolation of a rainbow trout cDNA clone that contains the entire fibroblast growth factor-2 (FGF-2; basic FGF) coding region. Interestingly, the rainbow trout cDNA contains a translation stop codon just upstream of the primary initiating methionine codon and so cannot give rise to the longer forms of FGF-2 that are produced in mammals by alternative translation initiation at leucines farther upstream. Transfection of human FGF-2 cDNA into fish cells shows that fish cells can initiate protein synthesis at an upstream leucine CUG codon; surprisingly, however, synthesis is initiated only at the most 5' CUG and not at the two subsequent CUG codons or the methionine AUG codon also used in mammalian cells. Like other FGF-2 proteins, bacterially produced rainbow trout FGF-2 protein binds tightly to heparin-Sepharose and also promotes the proliferation of fibroblast cells. However, the protein differs from all others previously identified at amino acids 121-123, which are part of the proposed highly conserved receptor-binding domain. Comparisons of the efficacies of recombinant wild-type and mutant rainbow trout FGF-2 proteins demonstrate that these three amino acids are critical to the activity of FGF-2.
Collapse
Affiliation(s)
- J i Hata
- Central Research Laboratory, Nippon Suisan Kaisha Limited, 559-6 Kitanomachi, Hachioji, Tokyo 192, Japan
| | | | | | | |
Collapse
|
24
|
Huang W, Bateman E. Transcription of the Acanthamoeba TATA-binding protein gene. A single transcription factor acts both as an activator and a repressor. J Biol Chem 1997; 272:3852-9. [PMID: 9013645 DOI: 10.1074/jbc.272.6.3852] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcription of the Acanthamoeba TATA-binding protein (TBP) gene is regulated by TBP promoter-binding factor (TPBF), a previously described transactivator that binds as a tetramer to the TBP Promoter Element (TPE) and stimulates transcription up to 10-fold in vitro. Here we report that TPBF also functions as a transcription repressor by binding to a negative cis-element, located between the TATA box and the transcription initiation site. The negative element, referred to as the nTPE, is structurally similar to the TPE, and its disruption increases the transcription potency of the TBP promoter. TPBF binds to the nTPE, as demonstrated by mobility shift assays. However, the binding affinity of TPBF for the nTPE is about 10-fold lower than for the TPE. When placed upstream of the TATA box, the nTPE has very little effect on transcription. However, it inhibits transcription when placed at several positions downstream of the TATA box. Mechanistic studies with the TBP promoter suggest that binding of TPBF to the nTPE not only prevents TBP from binding to the TATA box but also displaces bound TBP, thereby inhibiting further assembly of the preinitiation complex. These results suggest a mechanism in which the cellular TPBF concentration controls the level of TBP gene transcription and show that a single factor can be stimulatory, inhibitory, or neutral depending on the sequence and the context of its binding site.
Collapse
Affiliation(s)
- W Huang
- Department of Microbiology and Molecular Genetics, Cell and Molecular Biology Program, Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|
25
|
Conaway RC, Conaway JW. General transcription factors for RNA polymerase II. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:327-46. [PMID: 9187058 DOI: 10.1016/s0079-6603(08)61009-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R C Conaway
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
26
|
Orphanides G, Lagrange T, Reinberg D. The general transcription factors of RNA polymerase II. Genes Dev 1996; 10:2657-83. [PMID: 8946909 DOI: 10.1101/gad.10.21.2657] [Citation(s) in RCA: 772] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- G Orphanides
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | | | |
Collapse
|
27
|
Takeo J, Hata J, Segawa C, Toyohara H, Yamashita S. Fish glucocorticoid receptor with splicing variants in the DNA binding domain. FEBS Lett 1996; 389:244-8. [PMID: 8766708 DOI: 10.1016/0014-5793(96)00596-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Here we describe the isolation of a rainbow trout cDNA containing an entire GR coding region. Although the encoded protein is highly homologous to other GRs, especially in its DNA binding domain, it contains a nine amino acid insertion between the two zinc fingers. This novel form is found in all rainbow trout tissues examined; however, the testis also contains a splice variant lacking this insert, making it completely continuous to other GRs. In transient transfection assays of cultured cells, the two rainbow trout GR variants activated transcription from the glucocorticoid-responsive mouse mammary tumor virus promoter to comparable levels.
Collapse
Affiliation(s)
- J Takeo
- Central Research Laboratory, Nippon Suisan Kaisha Ltd.559-6, Kitanomachi, Hachioji, Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
Shaw SP, Wingfield J, Dorsey MJ, Ma J. Identifying a species-specific region of yeast TF11B in vivo. Mol Cell Biol 1996; 16:3651-7. [PMID: 8668181 PMCID: PMC231360 DOI: 10.1128/mcb.16.7.3651] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The general transcription factor IIB (TFIIB) is required for RNA polymerase II transcription in eukaryotes. It provides a physical link between the TATA-binding protein (TBP) and the RNA polymerase and is a component previously suggested to respond to transcriptional activators in vitro. In this report, we compare the yeast (Saccharomyces cerevisiae) and human forms of the protein in yeast cells to study their functional differences. We demonstrate that human TFIIB fails to functionally replace yeast TFIIB in yeast cells. By analyzing various human-yeast hybrid TFIIB molecules, we show that a 14-amino-acid region at the amino terminus of the first repeat of yeast TFIIB plays an important role in determining species specificity in vivo. In addition, we identify four amino acids in this region that are critical for an amphipathic helix unique to yeast TFIIB. By site-directed mutagenesis analyses we demonstrate that these four amino acids are important for yeast TFIIB's activity in vivo. Finally, we show that mutations in the species-specific region of yeast TFIIB can differentially affect the expression of genes activated by different activators in vivo. These results provide strong evidence suggesting that yeast TFIIB is involved in the process of transcriptional activation in living cells.
Collapse
Affiliation(s)
- S P Shaw
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
29
|
Gupta R, Emili A, Pan G, Xiao H, Shales M, Greenblatt J, Ingles CJ. Characterization of the interaction between the acidic activation domain of VP16 and the RNA polymerase II initiation factor TFIIB. Nucleic Acids Res 1996; 24:2324-30. [PMID: 8710503 PMCID: PMC145954 DOI: 10.1093/nar/24.12.2324] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Contact between a transcriptional activator and one or more components of the RNA polymerase II transcription initiation machinery is generally believed important for activators to function. Several different molecular targets have been suggested for direct contact by herpes simplex virus virion protein VP16, including the general initiation factor TFIIB. In this report we have used several strategies to critically assess this interaction between VP16 and TFIIB. Affinity columns of VP16 bound TFIIB activity from HeLa cell extracts and the binding was reduced by mutations in the activation domain of VP16. In assays of direct binding, VP16 bound recombinant human TFIIB but not Drosophila or yeast TFIIB. Unlike binding from an extract, however, we found that the interaction between VP16 and recombinant human TFIIB was not affected by mutations in VP16 that reduce transactivation. Point mutations within human TFIIB that reduce transactivation by VP16 have been shown to reduce VP16 binding, but we show here that these same mutations critically affect both the important TBP-TFIIB interaction and the ability of TFIIB to support activator-independent basal transcription in vitro. Taken together our results suggest more evidence is needed to support the notion that TFIIB is a functionally important target for the activator VP16.
Collapse
Affiliation(s)
- R Gupta
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Leuther KK, Bushnell DA, Kornberg RD. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Cell 1996; 85:773-9. [PMID: 8646784 DOI: 10.1016/s0092-8674(00)81242-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY Transcription factors IIB (TFIIB) and IIE (TFIIE) bound to RNA polymerase II have been revealed by electron crystallography in projection at 15.7 A resolution. The results lead to simple hypotheses for the roles of these factors in the initiation of transcription. TFIIB is suggested to define the distance from TATA box to transcription start site by bringing TATA DNA in contact with polymerase at that distance from the active center of the enzyme. TFIIE is suggested to participate in a key conformational switch occurring at the active center upon polymerase-DNA interaction.
Collapse
Affiliation(s)
- K K Leuther
- Department of Structural Biology, Stanford University School of Medicine, California 94305-5400, USA
| | | | | |
Collapse
|
31
|
Huang W, Bateman E. Cloning, expression, and characterization of the TATA-binding protein (TBP) promoter binding factor, a transcription activator of the Acanthamoeba TBP gene. J Biol Chem 1995; 270:28839-47. [PMID: 7499409 DOI: 10.1074/jbc.270.48.28839] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
TATA-binding protein (TBP) gene promoter binding factor (TPBF) is a transactivator which binds to the TBP promoter element (TPE) sequence of the Acanthamoeba TBP gene promoter and stimulates transcription in vitro. We have isolated a cDNA clone encoding TPBF. TPBF is a polypeptide of 327 amino acids with a calculated molecular mass of 37 kDa. The predicted amino acid sequence of TPBF shows no significant homology to other proteins. TPBF has two potential coiled-coil regions, a basic region, a proline-rich region, a histidine-rich N terminus, and a nuclear targeting sequence. The recombinant protein has an apparent molecular mass of 50 kDa, identical with that of TPBF purified from Acanthamoeba. Recombinant TPBF is able to bind DNA and activate transcription with the same specificity as natural Acanthamoeba TPBF, demonstrating the authenticity of the clone. Mobility shift assays of co-translated TPBF polypeptides and chemical cross-linking demonstrate that TPBF is tetrameric in solution and when bound to DNA. Analyses of TPBF mutants show that Coiled-coil II is essential for DNA binding, but Coiled-coil I and the basic region are also involved. TPBF is thus a novel DNA-binding protein with functional similarity to the tumor suppressor protein p53.
Collapse
Affiliation(s)
- W Huang
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington 05405, USA
| | | |
Collapse
|
32
|
Godde JS, Nakatani Y, Wolffe AP. The amino-terminal tails of the core histones and the translational position of the TATA box determine TBP/TFIIA association with nucleosomal DNA. Nucleic Acids Res 1995; 23:4557-64. [PMID: 8524642 PMCID: PMC307425 DOI: 10.1093/nar/23.22.4557] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We establish that the TATA binding protein (TBP) in the presence of TFIIA recognizes the TATA box in nucleosomal DNA dependent on the dissociation of the amino-terminal tails of the core histones from the nucleosome and the position of the TATA box within the nucleosome. We examine TBP/TFIIA access to the TATA box with this sequence placed in four distinct rotational frames with reference to the histone surface and at three distinct translational positions at the edge, side and dyad axis of the nucleosome. Under our experimental conditions, we find that the preferential translational position at which TBP/TFIIA can bind the TATA box is within linker DNA at the edge of the nucleosome and that binding is facilitated if contacts made by the amino-terminal tails of the histones with nucleosomal DNA are eliminated. TBP/TFIIA binding to DNA at the edge of the nucleosome occurs with the TATA box in all four rotational positions. This is indicative of TBP/TFIIA association directing the dissociation of the TATA box from the surface of the histone octamer.
Collapse
Affiliation(s)
- J S Godde
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-2710, USA
| | | | | |
Collapse
|
33
|
Nikolov DB, Chen H, Halay ED, Usheva AA, Hisatake K, Lee DK, Roeder RG, Burley SK. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 1995; 377:119-28. [PMID: 7675079 DOI: 10.1038/377119a0] [Citation(s) in RCA: 441] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The crystal structure of the transcription factor IIB (TFIIB)/TATA box-binding protein (TBP)/TATA-element ternary complex is described at 2.7 A resolution. Core TFIIB resembles cyclin A, and recognizes the preformed TBP-DNA complex through protein-protein and protein-DNA interactions. The amino-terminal domain of core TFIIB forms the downstream surface of the ternary complex, where it could fix the transcription start site. The remaining surfaces of TBP and the TFIIB can interact with TBP-associated factors, other class II initiation factors, and transcriptional activators and coactivators.
Collapse
Affiliation(s)
- D B Nikolov
- Laboratories of Molecular Biophysics, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bagby S, Kim S, Maldonado E, Tong KI, Reinberg D, Ikura M. Solution structure of the C-terminal core domain of human TFIIB: similarity to cyclin A and interaction with TATA-binding protein. Cell 1995; 82:857-67. [PMID: 7671313 DOI: 10.1016/0092-8674(95)90483-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
TFIIB is an essential component of the machinery that transcribes protein-coding genes. The three-dimensional structure of the human TFIIB core domain (TFIIBc) has been determined using multidimensional heteronuclear magnetic resonance spectroscopy. The molecule consists of two direct repeats that adopt similar alpha-helical folds, conferring pseudo-twofold symmetry. An extensive, central basic surface including an amphipathic alpha helix is critical to the function of TFIIB as a bridge between the TBP-promoter complex and RNA polymerase II and associated general and regulatory transcription factors. Similarities between the TFIIBc and cyclin A folds indicate that elements of the eukaryotic cell cycle control apparatus evolved from more fundamental transcriptional control components, demonstrating a link between the transcription and cell cycle molecular machineries.
Collapse
Affiliation(s)
- S Bagby
- Division of Molecular and Structural Biology Ontario Cancer Institute, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Nakshatri H, Nakshatri P, Currie RA. Interaction of Oct-1 with TFIIB. Implications for a novel response elicited through the proximal octamer site of the lipoprotein lipase promoter. J Biol Chem 1995; 270:19613-23. [PMID: 7642649 DOI: 10.1074/jbc.270.33.19613] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ubiquitous human POU domain protein, Oct-1, and the related B-cell protein, Oct-2, regulate transcription from a variety of eukaryotic genes by binding to a common cis-acting octamer element, 5'-ATTTGCAT-3'. The binding of Oct-1 and Oct-2 to the functionally important lipoprotein lipase (LPL) promoter octamer site was stimulated by the general transcription factor, TFIIB. Comparative analysis of the LPL, histone H2B (H2B), and herpes simplex virus ICPO gene promoter octamer sites revealed that nucleotide sequences within and flanking the octamer sequence determined the degree of TFIIB-mediated stimulation of Oct-1 DNA binding. TFIIB was found to decrease the rate of dissociation of Oct-1 from the LPL octamer site, whereas it increased the rate of association, as well as decreased the rate of dissociation, of Oct-1 from the H2B octamer site. A monoclonal antibody against TFIIB immunoprecipitated a ternary complex containing TFIIB, Oct-1, and the LPL and H2B octamer binding sites. TFIIB did not alter the DNase I footprints generated by Oct-1 on the LPL and H2B promoters. However, Oct-1 on the TATA-binding protein and TFIIB from footprinting the perfect TATA box sequence located 5' of the LPL, NF-Y binding site. In transfection experiments, transcription from the reporters containing the LPL octamer, and either the SV40 or the yeast transcription factor GAL4-dependent enhancers, initiated at a precise position within the octamer sequence. Transcription from reporters containing the H2B octamer and the SV40 enhancer initiated at several positions within and flanking the octamer site, whereas transcription initiated at a precise position within the octamer from reporters with both the H2B octamer and the GAL4-dependent enhancer. These results suggest that octamers and their flanking sequences play an important role in positioning the site of transcription initiation, and that this could be a function of the interaction of Oct-1 with TFIIB.
Collapse
Affiliation(s)
- H Nakshatri
- Laboratory of Gene Regulation, Picower Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | |
Collapse
|
36
|
Abstract
Transcription factor TFIIB is essential for the formation of RNA polymerase II initiation complexes where it binds to the TATA-binding protein (TBP) complex with DNA and recruits RNA polymerase II. TFIIB is probably a target for various activators. Several models have been proposed for the position of TFIIB in the TFIIB-TBP-DNA complex. Here we examine the structure of this complex using gel mobility-shift assays and hydroxyl-radical footprinting. TFIIB requires at least seven base pairs of DNA on either side of the TATA box to form a stable TFIIB-TBP-DNA complex. The sugar residues protected from hydroxyl-radical cleavage by the TFIIB-TBP complex were mapped on the crystal-structure model of the TBP-DNA complex. This analysis suggests that TFIIB binds beneath the concave surface of TBP, contacting DNA both upstream and downstream of the TATA box. Our model predicts that TFIIB binds close to the C-terminal stirrup of TBP and provides one explanation for why TBP needs to bend DNA.
Collapse
Affiliation(s)
- S Lee
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | |
Collapse
|
37
|
Qureshi SA, Baumann P, Rowlands T, Khoo B, Jackson SP. Cloning and functional analysis of the TATA binding protein from Sulfolobus shibatae. Nucleic Acids Res 1995; 23:1775-81. [PMID: 7784182 PMCID: PMC306935 DOI: 10.1093/nar/23.10.1775] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Archaea (formerly archaebacteria) comprise a domain of life that is phylogenetically distinct from both Eucarya and Bacteria. Here we report the cloning of a gene from the Archaeon Sulfolobus shibatae that encodes a protein with strong homology to the TATA binding protein (TBP) of eukaryotes. Sulfolobus shibatae TBP is, however, almost as diverged from other archaeal TBPs that have been cloned as it is from eukaryotic TBPs. DNA binding studies indicate that S.shibatae TBP recognizes TATA-like A-box sequences that are present upstream of most archaeal genes. By quantitatively immunodepleting S.shibatae TBP from an in vitro transcription system, we demonstrate that Sulfolobus RNA polymerase is capable of transcribing the 16S/23S rRNA promoter weakly in the absence of TBP. Most significantly, we show that addition of recombinant S.shibatae TBP to this immunodepleted system leads to transcriptional stimulation and that this stimulation is dependent on the A-box sequence of the promoter. Taken together, these findings reveal fundamental similarities between the transcription machineries of Archaea and eukaryotes.
Collapse
|
38
|
Colgan J, Ashali H, Manley JL. A direct interaction between a glutamine-rich activator and the N terminus of TFIIB can mediate transcriptional activation in vivo. Mol Cell Biol 1995; 15:2311-20. [PMID: 7891725 PMCID: PMC230459 DOI: 10.1128/mcb.15.4.2311] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Studies examining the mechanism by which transcriptional activators function have suggested that the general transcription factor IIB (TFIIB) can be a target for certain regulatory proteins. For example, we showed previously that expression of a mutant form of TFIIB can specifically inhibit activation in vivo mediated by the strong, glutamine-rich activator protein GAL4-ftzQ. Using transient cotransfection assays, we have defined the regions in both GAL4-ftzQ and TFIIB that are required for activity in vivo and provide evidence that a potential zinc finger structure at the N terminus of TFIIB is necessary for the observed functional interaction between the two proteins. Using a protein binding assay, we have demonstrated that GAL4-ftzQ can specifically interact with TFIIB in vitro. This interaction requires the same regions in both molecules necessary for function in vivo and is reduced or eliminated by mutations predicted to disrupt the zinc finger in TFIIB. These results support the idea that a direct interaction between a regulatory protein and TFIIB can be important for transcriptional activation in vivo and, combined with previous data of others, suggest that different activators can function by contacting distinct regions of TFIIB.
Collapse
Affiliation(s)
- J Colgan
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
39
|
Colgan J, Manley JL. Cooperation between core promoter elements influences transcriptional activity in vivo. Proc Natl Acad Sci U S A 1995; 92:1955-9. [PMID: 7892207 PMCID: PMC42401 DOI: 10.1073/pnas.92.6.1955] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Core promoters for RNA polymerase II frequently contain either (or both) of two consensus sequence elements, a TATA box and/or an initiator (Inr). Using test promoters consisting of prototypical TATA and/or Inr elements, together with binding sites for sequence-specific activators, we have analyzed the function of TATA and Inr elements in vivo. In the absence of activators, the TATA element was significantly more active than the Inr, and the combination of elements was only slightly more effective than the TATA-only promoter. In the presence of any of several coexpressed activator proteins, the TATA elements was again most active, but here addition of the Inr allowed significant increases in activity, indicating a cooperative interaction between the two elements. An interesting exception was observed with the activator Sp1, which was more effective with the Inr-only promoter, and addition of a TATA box did not enhance activity. Finally, in all cases the TATA plus Inr promoters were found to be partially or completely resistant to the dominant negative effects of a transcription factor TFIIB mutant previously shown to interfere with expression from TATA-only promoters. This result strengthens the conclusion that TATA and Inr elements can cooperate in vivo.
Collapse
Affiliation(s)
- J Colgan
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | |
Collapse
|
40
|
Blanco JC, Wang IM, Tsai SY, Tsai MJ, O'Malley BW, Jurutka PW, Haussler MR, Ozato K. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci U S A 1995; 92:1535-9. [PMID: 7878015 PMCID: PMC42554 DOI: 10.1073/pnas.92.5.1535] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], regulates gene transcription through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor superfamily. Sequence-specific transcription factors, including nuclear hormone receptors, are thought to interact with the basal transcription complex to regulate transcription. In glutathione S-transferase fusion-based protein-protein binding assays we found that VDR specifically binds to TFIIB, a component of the basal complex, and that the interaction requires select domains of each protein. To assess the functional significance of this interaction, transfection assays were performed with a 1,25(OH)2D3-responsive reporter construct. In P19 embryonal carcinoma cells cotransfection of VDR and TFIIB cooperatively activated reporter transcription, while each factor alone gave very low to no activation. This activation was dependent on 1,25(OH)2D3 and the dose of TFIIB and VDR transfected, demonstrating that a nuclear hormone receptor functionally interacts with TFIIB in vivo. In contrast, transfection of NIH 3T3 cells generated strong reporter activation by 1,25(OH)2D3 in the presence of VDR alone, and cotransfection of TFIIB led to specific dose-dependent repression of reporter activity. Taken together, these results indicate that TFIIB-nuclear hormone receptor interaction plays a critical role in ligand-dependent transcription, which is apparently modulated by a cell-type-specific accessory factor.
Collapse
Affiliation(s)
- J C Blanco
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Khoo B, Brophy B, Jackson SP. Conserved functional domains of the RNA polymerase III general transcription factor BRF. Genes Dev 1994; 8:2879-90. [PMID: 7995525 DOI: 10.1101/gad.8.23.2879] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Saccharomyces cerevisiae, two components of the RNA polymerase III (Pol III) general transcription factor TFIIIB are the TATA-binding protein (TBP) and the B-related factor (BRF), so called because its amino-terminal half is homologous to the Pol II transcription factor IIB (TFIIB). We have cloned BRF genes from the yeasts Kluyveromyces lactis and Candida albicans. Despite the large evolutionary distance between these species and S. cerevisiae, the BRF proteins are conserved highly. Although the homology is most pronounced in the amino-terminal half, conserved regions also exist in the carboxy-terminal half that is unique to BRF. By assaying for interactions between BRF and other Pol III transcription factors, we show that it is able to bind to the 135-kD subunit of TFIIIC and also to TBP. Surprisingly, in addition to binding the TFIIB-homologous amino-terminal portion of BRF, TBP also interacts strongly with the carboxy-terminal half. Deleting two conserved regions in the BRF carboxy-terminal region abrogates this interaction. Furthermore, TBP mutations that selectively inhibit Pol III transcription in vivo impair interactions between TBP and the BRF carboxy-terminal domain. Finally, we demonstrate that BRF but not TFIIB binds the Pol III subunit C34 and we define a region of C34 necessary for this interaction. These observations provide insights into the roles performed by BRF in Pol III transcription complex assembly.
Collapse
Affiliation(s)
- B Khoo
- Wellcome/CRC Institute, Cambridge University, UK
| | | | | |
Collapse
|
42
|
Schroeder SC, Wang CK, Weil PA. Identification of the cis-acting DNA sequence elements regulating the transcription of the Saccharomyces cerevisiae gene encoding TBP, the TATA box binding protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46933-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Chalut C, Moncollin V, Egly JM. Transcription by RNA polymerase II: a process linked to DNA repair. Bioessays 1994; 16:651-5. [PMID: 7980491 DOI: 10.1002/bies.950160910] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The proteins that are implicated in the basal transcription of protein coding genes have now been identified. Although little is known about their function, recent data demonstrate the ability of these proteins, previously called class II transcription factors, to participate in other reactions: TBP, the TATA-box binding factor, is involved in class I and III transcription, while TFIIH has been shown to possess components that are involved in the DNA repair mechanism. The involvement of some if not all of the TFIIH subunits in transcription and repair may explain the heterogeneity of the various and sometimes completely unrelated symptoms observed in xeroderma pigmentosum, Cockayne Syndrome and trichothiodystrophy disorders.
Collapse
Affiliation(s)
- C Chalut
- U184 de Biologie Moléculaire et de Génie Génétique de l'INSERM, Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Institut de Chimie Biologique, Faculté de Médecine, Strasbourg, France
| | | | | |
Collapse
|
44
|
Molecular cloning, expression, and characterization of the Drosophila 85-kilodalton TFIID subunit. Mol Cell Biol 1994. [PMID: 8247000 DOI: 10.1128/mcb.13.12.7859] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription initiation factor TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. To further understand the role of the 85-kDa TFIID subunit (p85), we have cloned the corresponding cDNA with a probe based on an amino acid sequence of the purified protein. The recombinant p85 interacts directly with both the TATA box-binding subunit (TFIID tau or TBP) and the 110-kDa subunit (p110) of TFIID, suggesting that p85 may play a role in helping to anchor p110 within the TFIID complex and, with other studies, that TFIID assembly and function may involve a concerted series of subunit interactions. Interestingly, the carboxy terminus of p85 contains eight of the WD-40 repeats found originally in the beta subunit of G proteins and more recently in other transcriptional regulatory factors. However, truncated p85 lacking all the WD-40 repeats maintained interactions with both TFIID tau and p110. These observations leave open the possibility of a distinct function for the WD-40 repeats, possibly in transducing signals by interactions with transcriptional regulators and/or other components of the basic transcriptional machinery.
Collapse
|
45
|
Kokubo T, Gong DW, Yamashita S, Takada R, Roeder RG, Horikoshi M, Nakatani Y. Molecular cloning, expression, and characterization of the Drosophila 85-kilodalton TFIID subunit. Mol Cell Biol 1993; 13:7859-63. [PMID: 8247000 PMCID: PMC364857 DOI: 10.1128/mcb.13.12.7859-7863.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcription initiation factor TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. To further understand the role of the 85-kDa TFIID subunit (p85), we have cloned the corresponding cDNA with a probe based on an amino acid sequence of the purified protein. The recombinant p85 interacts directly with both the TATA box-binding subunit (TFIID tau or TBP) and the 110-kDa subunit (p110) of TFIID, suggesting that p85 may play a role in helping to anchor p110 within the TFIID complex and, with other studies, that TFIID assembly and function may involve a concerted series of subunit interactions. Interestingly, the carboxy terminus of p85 contains eight of the WD-40 repeats found originally in the beta subunit of G proteins and more recently in other transcriptional regulatory factors. However, truncated p85 lacking all the WD-40 repeats maintained interactions with both TFIID tau and p110. These observations leave open the possibility of a distinct function for the WD-40 repeats, possibly in transducing signals by interactions with transcriptional regulators and/or other components of the basic transcriptional machinery.
Collapse
Affiliation(s)
- T Kokubo
- National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | | | | | |
Collapse
|