1
|
Singh A, Allison SH, Azhagesan AAA, Verma D, Vilesov AF. Infrared Spectroscopy of CH 5+ Cations in Helium Nanodroplets. J Phys Chem Lett 2024; 15:10931-10936. [PMID: 39447079 DOI: 10.1021/acs.jpclett.4c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The methanium CH5+ is a prototypical fluxional ion whose infrared spectra remain unassigned. Here we report on the infrared spectra of CH5+ cations and its deuterated isotopomer, CH4D+, in helium droplets at a low temperature of 0.38 K. The ions were produced upon protonation of CH4 molecules, a technique that was developed in this work. The spectra of CH5+ around 3000 cm-1 show two strong and broad infrared bands and a weak shoulder, reflecting its highly fluxional nature. The spectrum of CH4D+ shows a much sharper infrared band, indicating a partial quenching of the exchange of H/D atoms. This work also reports on the infrared spectrum of the methane dimer radical cations (CH4)2+.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sofia H Allison
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Mount St. Mary's University, Emmitsburg, Maryland 21727, United States
| | - Andrew Abishek A Azhagesan
- Department of Computer Science, University of Southern California, Los Angeles, California 90089, United States
| | - Deepak Verma
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Andrey F Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Beckmann R, Schran C, Brieuc F, Marx D. Theoretical infrared spectroscopy of protonated methane isotopologues. Phys Chem Chem Phys 2024; 26:22846-22852. [PMID: 39171731 DOI: 10.1039/d4cp02295e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The vibrational spectroscopy of protonated methane and its mixed hydrogen/deuterium isotopologues remains a challenge to both experimental and computational spectroscopy due to the iconic floppiness of CH5+. Here, we compute the finite-temperature broadband infrared spectra of CH5+ and all its isotopologues, i.e. CHnD5-n+ up to CD5+, from path integral molecular dynamics in conjunction with interactions and dipoles computed consistently at CCSD(T) coupled cluster accuracy. The potential energy and dipole moment surfaces have been accurately represented in full dimensionality in terms of high-dimensional neural networks. The resulting computational efficiency allows us to establish CCSD(T) accuracy at the level of converged path integral simulations. For all six isotopologues, the computed broadband spectra compare very favorably to the available experimental broadband spectra obtained from laser induced reactions action vibrational spectroscopy. The current approach is found to consistently and significantly improve on previous calculations of these broadband vibrational spectra and defines the new cutting-edge for what has been dubbed the "enfant terrible" of molecular spectroscopy in view of its pronounced large-amplitude motion that involves all intramolecular degrees of freedom.
Collapse
Affiliation(s)
- Richard Beckmann
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Christoph Schran
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Fabien Brieuc
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
3
|
Surendran A, Pereverzev AY, Roithová J. Intricacies of Mass Transport during Electrocatalysis: A Journey through Iron Porphyrin-Catalyzed Oxygen Reduction. J Am Chem Soc 2024; 146:15619-15626. [PMID: 38778765 PMCID: PMC11157527 DOI: 10.1021/jacs.4c04989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical steps are increasingly attractive for green chemistry. Understanding reactions at the electrode-solution interface, governed by kinetics and mass transport, is crucial. Traditional insights into these mechanisms are limited, but our study bridges this gap through an integrated approach combining voltammetry, electrochemical impedance spectroscopy, and electrospray ionization mass spectrometry. This technique offers real-time monitoring of the chemical processes at the electrode-solution interface, tracking changes in intermediates and products during reactions. Applied to the electrochemical reduction of oxygen catalyzed by the iron(II) tetraphenyl porphyrin complex, it successfully reveals various reaction intermediates and degradation pathways under different kinetic regimes. Our findings illuminate complex electrocatalytic processes and propose new ways for studying reactions in alternating current and voltage-pulse electrosynthesis. This advancement enhances our capacity to optimize electrochemical reactions for more sustainable chemical processes.
Collapse
Affiliation(s)
- Adarsh
Koovakattil Surendran
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Aleksandr Y. Pereverzev
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
4
|
Mazo-Sevillano PD, Aguado A, Goicoechea JR, Roncero O. Quantum study of the CH3+ photodissociation in full-dimensional neural network potential energy surfaces. J Chem Phys 2024; 160:184307. [PMID: 38738612 DOI: 10.1063/5.0206895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
C H 3 + , a cornerstone intermediate in interstellar chemistry, has recently been detected for the first time by using the James Webb Space Telescope. The photodissociation of this ion is studied here. Accurate explicitly correlated multi-reference configuration interaction ab initio calculations are done, and full-dimensional potential energy surfaces are developed for the three lower electronic states, with a fundamental invariant neural network method. The photodissociation cross section is calculated using a full-dimensional quantum wave packet method in heliocentric Radau coordinates. The wave packet is represented in angular and radial grids, allowing us to reduce the number of points physically accessible, requiring to push up the spurious states appearing when evaluating the angular kinetic terms, through projection technique. The photodissociation spectra, when employed in astrochemical models to simulate the conditions of the Orion bar, result in a lesser destruction of CH3+ compared to that obtained when utilizing the recommended values in the kinetic database for astrochemistry.
Collapse
Affiliation(s)
- Pablo Del Mazo-Sevillano
- Unidad Asociada UAM-IFF-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alfredo Aguado
- Unidad Asociada UAM-IFF-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier R Goicoechea
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
5
|
George MAR, Dopfer O. Infrared spectra of Si nH 4n-1+ ions ( n = 2-8): inorganic H-(Si-H) n-1 hydride wires of penta-coordinated Si in 3c-2e and charge-inverted hydrogen bonds. Phys Chem Chem Phys 2024; 26:6574-6581. [PMID: 38348767 DOI: 10.1039/d3cp05918a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
SinHm+ cations are important constituents in silane plasmas and astrochemical environments. Protonated disilane (Si2H7+) was shown to have a symmetric three-centre two-electron (3c-2e) Si-H-Si bond that can also be considered as a strong ionic charge-inverted hydrogen bond with polarity Siδ+-Hδ--Siδ+. Herein, we extend our previous work to larger SinH4n-1+ cations, formally resulting from adding SiH4 molecules to a SiH3+ core. Infrared spectra of size-selected SinH4n-1+ ions (n = 2-8) produced in a cold SiH4/H2/He plasma expansion are analysed in the SiH stretch range by complementary dispersion-corrected density functional theory calculations (B3LYP-D3/aug-cc-pVTZ) to reveal their bonding characteristics and cluster growth. The ions with n = 2-4 form a linear inorganic H-(Si-H)n hydride wire with adjacent Si-H-Si 3c-2e bridges, whose strength decreases with n, as evident from their characteristic and strongly IR active SiH stretch fundamentals in the range 1850-2100 cm-1. These 3c-2e bonds result from the lowest-energy valence orbitals, and their high stability arises from their delocalization along the whole hydride wire. For SinH4n-1+ with n ≥ 5, the added SiH4 ligands form weak van der Waals bonds to the Si4H19+ chain. Significantly, because the SinH4n-1+ hydride wires are based on penta-coordinated Si atoms leading to supersaturated hydrosilane ions, analogous wires cannot be formed by isovalent carbon.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623, Germany.
| |
Collapse
|
6
|
Tikhonov DS, Vishnevskiy YV. Describing nuclear quantum effects in vibrational properties using molecular dynamics with Wigner sampling. Phys Chem Chem Phys 2023. [PMID: 37401424 DOI: 10.1039/d3cp01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
In this work we discuss the generally applicable Wigner sampling and introduce a new, simplified Wigner sampling method, for computationally effective modeling of molecular properties containing nuclear quantum effects and vibrational anharmonicity. For various molecular systems test calculations of (a) vibrationally averaged rotational constants, (b) vibrational IR spectra and (c) photoelectron spectra have been performed. The performance of Wigner sampling has been assessed by comparing with experimental data and with results of other theoretical models, including harmonic and VPT2 approximations. The developed simplified Wigner sampling method shows advantages in application to large and flexible molecules.
Collapse
Affiliation(s)
- Denis S Tikhonov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Yury V Vishnevskiy
- 2Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
7
|
Steenbakkers K, Marimuthu AN, Redlich B, Groenenboom GC, Brünken S. A vibrational action spectroscopic study of the Renner-Teller- and spin-orbit-affected cyanoacetylene radical cation HC 3N . J Chem Phys 2023; 158:084305. [PMID: 36859081 DOI: 10.1063/5.0135000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The linear radical cation of cyanoacetylene, HC3N+ (2Π), is not only of astrophysical interest, being the, so far undetected, cationic counterpart of the abundant cyanoaceteylene, but also of fundamental spectroscopic interest due to its strong spin-orbit and Renner-Teller interactions. Here, we present the first broadband vibrational action spectroscopic investigation of this ion through the infrared pre-dissociation (IRPD) method using a Ne tag. Experiments have been performed using the FELion cryogenic ion-trap instrument in combination with the FELIX free-electron lasers and a Laservision optical parametric oscillator/optical parametric amplifier system. The vibronic splitting patterns of the three interacting bending modes (ν5, ν6, ν7), ranging from 180 to 1600 cm-1, could be fully resolved revealing several bands that were previously unobserved. The associated Renner-Teller and intermode coupling constants have been determined by fitting an effective Hamiltonian to the experimental data, and the obtained spectroscopic constants are in reasonable agreement with previous photoelectron spectroscopy (PES) studies and ab initio calculations on the HC3N+ ion. The influence of the attached Ne atom on the infrared spectrum has been investigated by ab initio calculations at the RCCSD(T)-F12a level of theory, which strongly indicates that the discrepancies between the IRPD and PES data are a result of the effects of the Ne attachment.
Collapse
Affiliation(s)
- Kim Steenbakkers
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Aravindh N Marimuthu
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Britta Redlich
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Gerrit C Groenenboom
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Sandra Brünken
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Moonkaen P, Finney JM, McCoy AB. Isotope Effects on Ground and Excited States of Ethyl Cation, H +(C 2H 4). J Phys Chem A 2023; 127:1196-1205. [PMID: 36705480 DOI: 10.1021/acs.jpca.2c07334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The structure and spectra of ethyl cation, H+(C2H4), and its deuterated analogues are investigated using diffusion Monte Carlo (DMC). These calculations all show that the ground state wave function for H+(C2H4) is localized near the minimum energy configuration in which the excess proton is in a bridging configuration, although the amplitude of the vibrational motions of the bridging proton is large. Deuteration of the bridging proton reduces the amplitude of this motion, while deuteration of only the ethylenic hydrogen atoms in H+(C2D4) has little effect on the amplitude of the motion of the bridging proton. Excited states that are accessed by spectroscopically observed transitions in H+(C2H4) are calculated using fixed-node DMC. The calculated and measured frequencies for the states with one quantum of excitation in the ethylenic CH stretching vibrations show good agreement. We also explore the excited state with one quantum of excitation in the proton transfer vibration of the bridging proton and obtain a frequency of 616 cm-1 for H+(C2H4). This frequency increases to 629 cm-1 in H+(C2D4). Deuteration decreases this frequency to 491 and 495 cm-1 in D+(C2H4) and D+(C2D4), respectively. The effects of partial deuteration on the frequencies of the CH stretching vibrations, and the corresponding probability amplitudes are also explored. Finally, we report the vibrationally averaged rotational constants for the four isotopologues of ethyl cation considered in this study.
Collapse
Affiliation(s)
- Pattarapon Moonkaen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jacob M Finney
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Jin J, Wulf T, Jorewitz M, Heine T, Asmis KR. Vibrational spectroscopy of Cu +(H 2) 4: about anharmonicity and fluxionality. Phys Chem Chem Phys 2023; 25:5262-5270. [PMID: 36723211 DOI: 10.1039/d2cp05802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The vibrational spectra of the copper(I) cation-dihydrogen complexes Cu+(H2)4, Cu+(D2)4 and Cu+(D2)3H2 are studied using cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations. The infrared photodissociation (IRPD) spectra (2500-7300 cm-1) are assigned based on a comparison to IR spectra calculated using vibrational second-order perturbation theory (VPT2). The IRPD spectra exhibit ≈60 cm-1 broad bands that lack rotational resolution, indicative of rather floppy complexes even at an ion trap temperature of 10 K. The observed vibrational features are assigned to the excitations of dihydrogen stretching fundamentals, combination bands of these fundamentals with low energy excitations as well as overtone excitations of a minimum-energy structure with Cs symmetry. The three distinct dihydrogen positions present in the structure can interconvert via pseudorotations with energy barriers less than 10 cm-1, far below the zero-point vibrational energy. Ab initio Born-Oppenheimer molecular dynamics (BOMD) simulations confirm the fluxional behavior of these complexes and yield an upper limit for the timeframe of the pseudorotation on the order of 10 ps. For Cu+(D2)3H2, the H2 and D2 loss channels yield different IRPD spectra indicating non-ergodic behavior.
Collapse
Affiliation(s)
- Jiaye Jin
- Wilhelm-Ostwald-Institut für Physikalische und Theoretisch Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| | - Toshiki Wulf
- Wilhelm-Ostwald-Institut für Physikalische und Theoretisch Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany. .,Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, 04318, Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062, Dresden, Germany.
| | - Marcel Jorewitz
- Wilhelm-Ostwald-Institut für Physikalische und Theoretisch Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| | - Thomas Heine
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, 04318, Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062, Dresden, Germany.
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretisch Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| |
Collapse
|
10
|
Simkó I, Fábri C, Császár AG. Quantum-Chemical and Quantum-Graph Models of the Dynamical Structure of CH 5. J Chem Theory Comput 2023; 19:42-50. [PMID: 36534596 DOI: 10.1021/acs.jctc.2c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experimental and computational results about the structure, dynamics, and rovibrational spectra of protonated methane have challenged a considerable number of traditional chemical concepts. Hereby theoretical and computational results are provided about the dynamical structure of CH5+. It is shown that the ground vibrational state investigated thus far by computations, forbidden by nuclear-spin statistics, has a structure similar to the first allowed vibrational state and, in fact, the structures of all vibrational states significantly below 200 cm-1 are highly similar. Spatial delocalization of the nuclei, determined by nuclear densities computed from accurate variational vibrational wave functions, turns out to be limited when viewed in the body-fixed frame, confirming that the effective structure of CH5+ is well described as a CH3+ tripod with a H2 unit on top of it. The interesting and unusual qualitative aspects of the sophisticated state-dependent variational results receive full explanation via simple quantum-graph models.
Collapse
Affiliation(s)
- Irén Simkó
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.,Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.,MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Csaba Fábri
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.,MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| |
Collapse
|
11
|
Abstract
A few months before the COVID-19 pandemic, Pierre Vogel and Kendall N. Houk published with a new textbook Wiley-VCH, “Organic Chemistry: Theory, Reactivity, and Mechanisms in Modern Synthesis”, with a foreword from the late Roberts H. Grubbs. The book demonstrates how catalytic processes dominate all fields of modern organic chemistry and synthesis, and how invention combines thermodynamics, kinetics, spectroscopy, quantum mechanics, and thermochemical data libraries. Here, the authors present a few case studies that should be of interest to teachers, practitioners of organic and organometallic chemistry, and the engineers of molecules. The Vogel–Houk book is both textbook and reference manual; it provides a modern way to think about chemical reactivity and a powerful toolbox to inventors of new reactions and new procedures.
Collapse
|
12
|
Zhao Y, Wang Z, Zhao J, Hussain M, Wang M. Additive Manufacturing in Orthopedics: A Review. ACS Biomater Sci Eng 2022; 8:1367-1380. [PMID: 35266709 DOI: 10.1021/acsbiomaterials.1c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Additive manufacturing is an advanced manufacturing manner that seems like the industrial revolution. It has the inborn benefit of producing complex formations, which are distinct from traditional machining technology. Its manufacturing strategy is flexible, including a wide range of materials, and its manufacturing cycle is short. Additive manufacturing techniques are progressively used in bone research and orthopedic operation as more innovative materials are developed. This Review lists the recent research results, analyzes the strengths and weaknesses of diverse three-dimensional printing strategies in orthopedics, and sums up the use of varying 3D printing strategies in surgical guides, surgical implants, surgical predictive models, and bone tissue engineering. Moreover, various postprocessing methods for additive manufacturing for orthopedics are described.
Collapse
Affiliation(s)
- Yingchao Zhao
- Xiangya School of Medicine, Central South University, No.172 Yinpenling Street, Tongzipo Road, Changsha 410013, China
| | - Zhen Wang
- Xiangya School of Medicine, Central South University, No.172 Yinpenling Street, Tongzipo Road, Changsha 410013, China
| | - Jingzhou Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mubashir Hussain
- Postdoctoral Innovation Practice, Shenzhen Polytechnic, No.4089 Shahe West Road, Xinwei Nanshan District, Shenzhen 518055, China
| | - Maonan Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
13
|
Davies JA, Yang S, Ellis AM. Infrared spectra of carbocations and CH 4+ in helium. Phys Chem Chem Phys 2021; 23:27449-27459. [PMID: 34870649 DOI: 10.1039/d1cp03138d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared (IR) spectra of several hydrocarbon cations are reported, namely CH3+, CH4+, CH5+, CH5+(CH4) and C2H5+. The spectra were generated from weakly-bound helium-cation complexes formed by electron ionization of helium nanodroplets doped with a neutral hydrocarbon precursor. Spectroscopic transitions were registered by photoexcitation of the complexes coupled with mass spectrometric detection of the bare ions. For CH3+, we provide evidence showing that the helium-bound complexes contain 10-20 helium atoms (on average) and have a rotational temperature of ∼5 K. We show that this technique is well-suited to the study of highly symmetric or fluxional ionic species, as these intrinsic properties are preserved in the helium environment. This is in contrast to conventional tagging methods that use a single atom or molecule, which can change the point group or rigidity of the core ion and therefore the spectral profile. We demonstrate this for the highly fluxional molecular ion CH5+, whose spectrum in the current study matches that of the gas phase ion, whereas the fluxionality is lost when a methane tag is added. Finally, we present the first IR spectrum of methane cation, CH4+. The spectrum of this fundamental organic ion shows CH stretching bands consistent with a non-tetrahedral structure, a consequence of Jahn-Teller distortion.
Collapse
Affiliation(s)
- Julia A Davies
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Shengfu Yang
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Andrew M Ellis
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
14
|
Asvany O, Schlemmer S. Rotational action spectroscopy of trapped molecular ions. Phys Chem Chem Phys 2021; 23:26602-26622. [PMID: 34817492 DOI: 10.1039/d1cp03975j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rotational action spectroscopy is an experimental method in which rotational spectra of molecules, typically in the microwave to sub-mm-wave domain of the electromagnetic spectrum (∼1-1000 GHz), are recorded by action spectroscopy. Action spectroscopy means that the spectrum is recorded not by detecting the absorption of light by the molecules, but by the action of the light on the molecules, e.g., photon-induced dissociation of a chemical bond, a photon-triggered reaction, or photodetachment of an electron. Typically, such experiments are performed on molecular ions, which can be well controlled and mass-selected by guiding and storage techniques. Though coming with many advantages, the application of action schemes to rotational spectroscopy was hampered for a long time by the small energy content of a corresponding photon. Therefore, the first rotational action spectroscopic methods emerged only about one decade ago. Today, there exists a toolbox full of different rotational action spectroscopic schemes which are summarized in this review.
Collapse
Affiliation(s)
- Oskar Asvany
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany.
| | - Stephan Schlemmer
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany.
| |
Collapse
|
15
|
Rakovský J, Svoboda V, Horká-Zelenková V, Votava O. Pattern recognition as a new strategy in high-resolution spectroscopy: application to methanol OH-stretch overtones. Phys Chem Chem Phys 2021; 23:20193-20200. [PMID: 34473152 DOI: 10.1039/d1cp02639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We further develop a strategy for a line-by-line assignment of complex high-resolution overtone spectra. A search for specific line patterns in the spectrum allows to identify upper rotational states by extending the concept of ground state combination differences (GSCD). Simultaneous use of all GSCDs relating to a given upper state significantly reduces a probability of incorrect assignments. To test this approach, we have analysed a newly recorded spectrum of methanol in the first OH-stretch overtone region, 2νOH, between 7170 cm-1 and 7220 cm-1 at temperature of 19 K by combining a tunable-laser-diode absorption spectrometer with a slit-jet supersonic expansion. The spectrum consists of 1002 lines at this low temperature reflecting the fact that methanol is an asymmetric rotor with a hindered internal rotation. In total, 295 lines have been reliably assigned, representing 63% of the total intensity. Rotational energies and rotational quantum numbers for 52 upper states have been determined. Many of these states have the same quantum numbers, suggesting couplings to a manifold of 'dark' vibrational states in this overtone region.
Collapse
Affiliation(s)
- Jozef Rakovský
- ASCR, J. Heyrovský Institute of Physical Chemistry, v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
| | - Vít Svoboda
- ASCR, J. Heyrovský Institute of Physical Chemistry, v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic. .,Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Veronika Horká-Zelenková
- ASCR, J. Heyrovský Institute of Physical Chemistry, v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic. .,ASCR, Institute of Physics, v.v.i., Na Slovance 1999/2, 182 21 Prague 8, Czech Republic
| | - Ondrej Votava
- ASCR, J. Heyrovský Institute of Physical Chemistry, v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
| |
Collapse
|
16
|
Erukala S, Feinberg A, Singh A, Vilesov AF. Infrared spectroscopy of carbocations upon electron ionization of ethylene in helium nanodroplets. J Chem Phys 2021; 155:084306. [PMID: 34470362 DOI: 10.1063/5.0062171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The electron impact ionization of helium droplets doped with ethylene molecules and clusters yields diverse CXHY + cations embedded in the droplets. The ionization primarily produces C2H2 +, C2H3 +, C2H4 +, and CH2 +, whereas larger carbocations are produced upon the reactions of the primary ions with ethylene molecules. The vibrational excitation of the cations leads to the release of bare cations and cations with a few helium atoms attached. The laser excitation spectra of the embedded cations show well resolved vibrational bands with a few wavenumber widths-an order of magnitude less than those previously obtained in solid matrices or molecular beams by tagging techniques. Comparison with the previous studies of free and tagged CH2 +, CH3 +, C2H2 +, C2H3 +, and C2H4 + cations shows that the helium matrix typically introduces a shift in the vibrational frequencies of less than about 20 cm-1, enabling direct comparisons with the results of quantum chemical calculations for structure determination. This work demonstrates a facile technique for the production and spectroscopic study of diverse carbocations, which act as important intermediates in gas and condensed phases.
Collapse
Affiliation(s)
- Swetha Erukala
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Alexandra Feinberg
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Amandeep Singh
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Andrey F Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
17
|
Rawlinson JI, Fábri C, Császár AG. Exactly solvable 1D model explains the low-energy vibrational level structure of protonated methane. Chem Commun (Camb) 2021; 57:4827-4830. [PMID: 33861262 DOI: 10.1039/d1cc01214b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new one-dimensional model is proposed for the low-energy vibrational quantum dynamics of CH5+ based on the motion of an effective particle confined to a 60-vertex graph Γ60 with a single edge length parameter. Within this model, the quantum states of CH5+ are obtained in analytic form and are related to combinatorial properties of Γ60. The bipartite structure of Γ60 gives a simple explanation for curious symmetries observed in numerically exact variational calculations on CH5+.
Collapse
Affiliation(s)
| | - Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary and MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, Budapest 112 H-1518, Hungary
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary and MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, Budapest 112 H-1518, Hungary
| |
Collapse
|
18
|
Sarka J, Poirier B, Szalay V, Császár AG. On neglecting Coriolis and related couplings in first-principles rovibrational spectroscopy: Considerations of symmetry, accuracy, and simplicity. II. Case studies for H 2O isotopologues, H 3+, O 3, and NH 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119164. [PMID: 33493950 DOI: 10.1016/j.saa.2020.119164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
For centuries, it has been known that vibrational and rotational degrees of freedom are in general not separable. Nevertheless, surprisingly little is known about the best strategies for approximately separating these degrees of freedom in practice-even in the case of semirigid molecules, where the separation is most meaningful. There is also some confusion in the literature about the proper way to quantify the magnitude of the Coriolis (i.e., rotation-vibration) coupling in rovibrational Hamiltonians or its effect on the rovibrational eigenenergies. In this study, a vibrational-coordinate-independent metric is proposed to quantify the magnitude of the Coriolis contribution to the rovibrational Hamiltonian. The impact of Coriolis coupling on the rovibrational eigenenergies is computed numerically exactly, using both full and various truncated Hamiltonians. The role played by the choice of the vibrational coordinate system-and especially by the choice of "embedding" or body-fixed frame-is examined extensively, both numerically and analytically. This investigation targets several molecular prototypes, all of which serve as important benchmarks for the high-resolution spectroscopic community. Most of these are triatomic molecules, including water (H216O), its deuterated isotopologues (D216O and HD16O), H3+, and ozone (16O3), but the tetratomic ammonia molecule (14NH3) is also investigated. These studies provide important insight into the nature of Coriolis coupling under various circumstances. The findings of this study also have significant practical ramifications, vis-à-vis the use of simplifying numerical approximation techniques in nuclear-motion computations.
Collapse
Affiliation(s)
- János Sarka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Bill Poirier
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Viktor Szalay
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Attila G Császár
- MTA-ELTE Complex Chemical Systems Research Group and Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary.
| |
Collapse
|
19
|
Bejjani R, Roucou A, Urbain X, Moshkunov K, Vanlancker G, Lauzin C. STARGATE: A new instrument for high-resolution photodissociation spectroscopy of cold ionic species. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:033307. [PMID: 33820109 DOI: 10.1063/5.0039627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Spectroscopy of transient anions and radicals by gated and accelerated time-of-flight experiment is a new spectrometer developed in UCLouvain. This instrument measures high-resolution photodissociation spectra of mass-selected ions by the combination of a time-of-flight spectrometer including a specific gating, bunching, and re-referencing unit with a nanosecond pulsed dye laser, a pulsed deflection, and an energy selector. The ionic species are generated in a supersonic jet expansion by means of an electric discharge or by the impact of electrons coming from an electron gun. The versatility of the molecular systems that can be addressed by this instrument is illustrated by the presentation of mass spectra of cations, anions, and ionic clusters formed from different gas mixtures and backing pressures. The high-resolution spectrum of the A~2Σ+(002)←X~2Π3/2(000) and A~2Σ+(002)←X~2Π1/2(000) rovibronic bands of N2O+ has been measured and analyzed to provide refined molecular parameters in the A~2Σ+(002) upper state. The A~2Σ+(002)←X~2Π3/2(000) band has been used to evaluate the quality of the experimental setup in terms of rotational temperature, time of measurement for certain signal to noise ratio, and the accuracy of the determination of the wavenumber scale.
Collapse
Affiliation(s)
- Raghed Bejjani
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Anthony Roucou
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Xavier Urbain
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Konstantin Moshkunov
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Guilhem Vanlancker
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Clément Lauzin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| |
Collapse
|
20
|
Geistlinger K, Fischer M, Spieler S, Remmers L, Duensing F, Dahlmann F, Endres E, Wester R. A sub-4 Kelvin radio frequency linear multipole wire trap. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:023204. [PMID: 33648123 DOI: 10.1063/5.0040866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
A linear cryogenic 16-pole wire ion trap has been developed and constructed for cryogenic ion spectroscopy at temperatures below 4 K. The trap is temperature-variable, can be operated with different buffer gases, and offers large optical access perpendicular to the ion beam direction. The housing geometry enables temperature measurement during radio frequency operation. The effective trapping potential of the wire-based radio frequency trap is described and compared to conventional multipole ion trap designs. Furthermore, time-of-flight mass spectra of multiple helium tagged protonated glycine ions that are extracted from the trap are presented, which prove very low ion temperatures and suitable conditions for sensitive spectroscopy.
Collapse
Affiliation(s)
- Katharina Geistlinger
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Moritz Fischer
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Steffen Spieler
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Lena Remmers
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Felix Duensing
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Franziska Dahlmann
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Eric Endres
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Roland Wester
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25/3, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Finney JM, DiRisio RJ, McCoy AB. Guided Diffusion Monte Carlo: A Method for Studying Molecules and Ions That Display Large Amplitude Vibrational Motions. J Phys Chem A 2020; 124:9567-9577. [DOI: 10.1021/acs.jpca.0c07181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacob M. Finney
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan J. DiRisio
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anne B. McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
22
|
Doménech JL, Asvany O, Markus CR, Schlemmer S, Thorwirth S. High-resolution infrared action spectroscopy of the fundamental vibrational band of CN . JOURNAL OF MOLECULAR SPECTROSCOPY 2020; 374:111375. [PMID: 33162609 PMCID: PMC7116308 DOI: 10.1016/j.jms.2020.111375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rotational-vibrational transitions of the fundamental vibrational modes of the 12C14N+ and 12C15N+ cations have been observed for the first time using a cryogenic ion trap apparatus with an action spectroscopy scheme. The lines P(3) to R(3) of 12C14N+ and R(1) to R(3) of 12C15N+ have been measured, limited by the trap temperature of approximately 4 K and the restricted tuning range of the infrared laser. Spectroscopic parameters are presented for both isotopologues, with band origins at 2000.7587(1) and 1970.321(1) cm-1, respectively, as well as an isotope independent fit combining the new and the literature data.
Collapse
Affiliation(s)
- José L. Doménech
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E28006 Madrid, Spain
| | - Oskar Asvany
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D50937 Köln, Germany
| | - Charles R. Markus
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D50937 Köln, Germany
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Stephan Schlemmer
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D50937 Köln, Germany
| | - Sven Thorwirth
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D50937 Köln, Germany
| |
Collapse
|
23
|
Affiliation(s)
- E. K. Campbell
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Verma D, Erukala S, Vilesov AF. Infrared Spectroscopy of Water and Zundel Cations in Helium Nanodroplets. J Phys Chem A 2020; 124:6207-6213. [DOI: 10.1021/acs.jpca.0c05897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Deepak Verma
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Swetha Erukala
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Andrey F. Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
25
|
Sarka J, Poirier B, Szalay V, Császár AG. On neglecting Coriolis and related couplings in first-principles rovibrational spectroscopy: considerations of symmetry, accuracy, and simplicity. Sci Rep 2020; 10:4872. [PMID: 32184431 PMCID: PMC7078231 DOI: 10.1038/s41598-020-60971-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/19/2020] [Indexed: 11/20/2022] Open
Abstract
The rotation-vibration (Coriolis) coupling contribution to variationally computed rovibrational energy levels is investigated, employing triatomic AB[Formula: see text] molecules as models. In particular, calculations are performed for H[Formula: see text][Formula: see text]O, across a range of vibrational and rotational excitations, both with and without the Coriolis contribution. A variety of different embedding choices are considered, together with a hierarchy of increasingly severe approximations culminating in a generalized version of the so-called "centrifugal sudden" method. Several surprising and remarkable conclusions are found, including that the Eckart embedding is not the best embedding choice.
Collapse
Affiliation(s)
- János Sarka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Bill Poirier
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, USA.
| | - Viktor Szalay
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525, Budapest, Hungary
| | - Attila G Császár
- MTA-ELTE Complex Chemical Systems Research Group and Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary.
| |
Collapse
|
26
|
Markus CR, Thorwirth S, Asvany O, Schlemmer S. High-resolution double resonance action spectroscopy in ion traps: vibrational and rotational fingerprints of CH 2NH 2. Phys Chem Chem Phys 2019; 21:26406-26412. [PMID: 31793941 DOI: 10.1039/c9cp05487a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By applying various action spectroscopic techniques in a 4 K cryogenic ion trap instrument, protonated methanimine, CH2NH2+, has been investigated by high-resolution rovibrational and pure rotational spectroscopy for the first time. In total, 39 rovibrational transitions within the fundamental band of the ν2 symmetric C-H stretch were measured around 3026 cm-1, which were used to predict pure rotational transition frequencies of CH2NH2+ in the ground vibrational state. Based on these predictions, nine rotational transitions were observed between 109 and 283 GHz using a novel double resonance method, which significantly improved the sensitivity of the rotational measurements. This double resonance method consists of rotational excitation followed by vibrational excitation, which is finally detected as a dip in the number of CH2NH2+-He complexes formed in the 4 K He bath of the trap. The new measurements and the derived predictions of pure rotational transitions will enable the first radio-astronomical search for CH2NH2+.
Collapse
Affiliation(s)
- Charles R Markus
- The University of Illinois Department of Chemistry, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
27
|
Kranabetter L, Bersenkowitsch NK, Martini P, Gatchell M, Kuhn M, Laimer F, Schiller A, Beyer MK, Ončák M, Scheier P. Considerable matrix shift in the electronic transitions of helium-solvated cesium dimer cation Cs 2He. Phys Chem Chem Phys 2019; 21:25362-25368. [PMID: 31702748 PMCID: PMC7116336 DOI: 10.1039/c9cp04790e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We investigate the photodissociation of helium-solvated cesium dimer cations using action spectroscopy and quantum chemical calculations. The spectrum of Cs2He+ shows three distinct absorption bands into both bound and dissociative states. Upon solvation with further helium atoms, considerable shifts of the absorption bands are observed, exceeding 0.1 eV (850 cm-1) already for Cs2He10+, along with significant broadening. The shifts are highly sensitive to the character of the excited state. Our calculations show that helium atoms adsorb on the ends of Cs2+. The shifts are particularly pronounced if the excited state orbitals extend to the area occupied by the helium atoms. In this case, Pauli repulsion leads to a deformation of the excited state orbitals, resulting in the observed blue shift of the transition. Since the position of the weakly bound helium atoms is ill defined, Pauli repulsion also explains the broadening.
Collapse
Affiliation(s)
- Lorenz Kranabetter
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Nina K Bersenkowitsch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Paul Martini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria. and Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Kuhn
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Felix Laimer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Arne Schiller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| |
Collapse
|
28
|
Gnanasekar SP, Arunan E. Reply to "Comments on 'Inter/Intramolecular Bonds in TH 5+ (T = C/Si/Ge): H 2 as Tetrel Bond Acceptor and the Uniqueness of Carbon Bonds'". J Phys Chem A 2019; 123:9244-9245. [PMID: 31525056 DOI: 10.1021/acs.jpca.9b06730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sharon Priya Gnanasekar
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Elangannan Arunan
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
29
|
Susli M, Alhameedi K, Jayatilaka D. Comment on "Inter/Intramolecular Bonds in TH 5+ (T = C/Si/Ge): H 2 as Tetrel Bond Acceptor and the Uniqueness of Carbon Bonds". J Phys Chem A 2019; 123:9242-9243. [PMID: 31525041 DOI: 10.1021/acs.jpca.9b07378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maram Susli
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Crawley 6009 , Western Australia
| | - Khidhir Alhameedi
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Crawley 6009 , Western Australia
| | - Dylan Jayatilaka
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Crawley 6009 , Western Australia
| |
Collapse
|
30
|
Tennyson J, Miller S. Hydrogen molecular ions: H 3+, H 5+ and beyond. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180395. [PMID: 31378175 PMCID: PMC6710892 DOI: 10.1098/rsta.2018.0395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2019] [Indexed: 06/10/2023]
Abstract
Three decades after the spectroscopic detection of H3+ in space, the inspiring developments in physics, chemistry and astronomy of Hn+ (n = 3, 5, 7) systems, which led to this Royal Society Discussion Meeting, are reviewed, the present state of the art as represented by the meeting surveyed and future lines of research considered. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H3+, H5+ and beyond'.
Collapse
Affiliation(s)
- Jonathan Tennyson
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Steve Miller
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| |
Collapse
|
31
|
Uhl F, Marx D. Quantum Microsolvation of Protonated Methane with ^{4}He: Large-Amplitude Motion Heavily Influences Bosonic Exchange. PHYSICAL REVIEW LETTERS 2019; 123:123002. [PMID: 31633943 DOI: 10.1103/physrevlett.123.123002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/28/2019] [Indexed: 06/10/2023]
Abstract
Quantum simulations of small CH_{5}^{+}·^{4}He_{n} complexes disclose significant and antagonistic impact of small-amplitude local vibrational motion vs large-amplitude global fluxional motion within the CH_{5}^{+} impurity on helium in real and permutation space. While the former significantly enhances bosonic exchange in the surrounding ^{4}He microsolvation shell compared to the rigid-body reference, the latter greatly suppresses long permutation cycles, which is traced back to the different nature of these quantum fluctuations. Therefore, it is expected that the resulting impact on local superfluidity is generic for fluctuating impurities in bosonic environments.
Collapse
Affiliation(s)
- Felix Uhl
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
32
|
Brünken S, Lipparini F, Stoffels A, Jusko P, Redlich B, Gauss J, Schlemmer S. Gas-Phase Vibrational Spectroscopy of the Hydrocarbon Cations l-C 3H +, HC 3H +, and c-C 3H 2+: Structures, Isomers, and the Influence of Ne-Tagging. J Phys Chem A 2019; 123:8053-8062. [PMID: 31422660 PMCID: PMC6755619 DOI: 10.1021/acs.jpca.9b06176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
We
report the first gas-phase vibrational spectra of the hydrocarbon
ions C3H+ and C3H2+. The ions were produced by electron impact ionization of
allene. Vibrational spectra of the mass-selected ions tagged with
Ne were recorded using infrared predissociation spectroscopy in a
cryogenic ion trap instrument using the intense and widely tunable
radiation of a free electron laser. Comparison of high-level quantum
chemical calculations and resonant depletion measurements revealed
that the C3H+ ion is exclusively formed in its
most stable linear isomeric form, whereas two isomers were observed
for C3H2+. Bands of the energetically
favored cyclic c-C3H2+ are in excellent
agreement with calculated anharmonic frequencies, whereas for the
linear open-shell HCCCH+ (2Πg) a detailed theoretical description of the spectrum remains challenging
because of Renner–Teller and spin–orbit interactions.
Good agreement between theory and experiment, however, is observed
for the frequencies of the stretching modes for which an anharmonic
treatment was possible. In the case of linear l-C3H+, small but non-negligible effects of the attached Ne on the
ion fundamental band positions and the overall spectrum were found.
Collapse
Affiliation(s)
- Sandra Brünken
- FELIX Laboratory, Institute for Molecules and Materials , Radboud University , Toernooiveld 7c , NL-6525ED Nijmegen , The Netherlands.,I. Physikalisches Institut , Universität zu Köln , Zülpicher Str. 77 , D-50937 Köln , Germany
| | - Filippo Lipparini
- Institut für Physikalische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany.,Dipartimento di Chimica e Chimica Industriale , Università di Pisa , Via G. Moruzzi 13 , I-56124 Pisa , Italy
| | - Alexander Stoffels
- FELIX Laboratory, Institute for Molecules and Materials , Radboud University , Toernooiveld 7c , NL-6525ED Nijmegen , The Netherlands.,I. Physikalisches Institut , Universität zu Köln , Zülpicher Str. 77 , D-50937 Köln , Germany
| | - Pavol Jusko
- I. Physikalisches Institut , Universität zu Köln , Zülpicher Str. 77 , D-50937 Köln , Germany
| | - Britta Redlich
- FELIX Laboratory, Institute for Molecules and Materials , Radboud University , Toernooiveld 7c , NL-6525ED Nijmegen , The Netherlands
| | - Jürgen Gauss
- Institut für Physikalische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Stephan Schlemmer
- I. Physikalisches Institut , Universität zu Köln , Zülpicher Str. 77 , D-50937 Köln , Germany
| |
Collapse
|
33
|
Császár AG, Fábri C, Sarka J. Quasistructural molecules. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Attila G. Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University Budapest Hungary
- MTA‐ELTE Complex Chemical Systems Research Group Budapest Hungary
| | - Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University Budapest Hungary
- MTA‐ELTE Complex Chemical Systems Research Group Budapest Hungary
| | - János Sarka
- Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas USA
| |
Collapse
|
34
|
Zeng HJ, Yang N, Johnson MA. Introductory lecture: advances in ion spectroscopy: from astrophysics to biology. Faraday Discuss 2019; 217:8-33. [PMID: 31094388 DOI: 10.1039/c9fd00030e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This introduction provides a historical context for the development of ion spectroscopy over the past half century by following the evolution of experimental methods to the present state-of-the-art. Rather than attempt a comprehensive review, we focus on how early work on small ions, carried out with fluorescence, direct absorption, and photoelectron spectroscopy, evolved into powerful technologies that can now address complex chemical problems ranging from catalysis to biophysics. One of these developments is the incorporation of cooling and temperature control to enable the general application of "messenger tagging" vibrational spectroscopy, first carried out using ionized supersonic jets and then with buffer gas cooling in radiofrequency ion traps. Some key advances in the application of time-resolved pump-probe techniques to follow ultrafast dynamics are also discussed, as are significant benchmarks in the refinement of ion mobility to allow spectroscopic investigation of large biopolymers with well-defined shapes. We close with a few remarks on challenges and opportunities to explore molecular level mechanics that drive macroscopic behavior.
Collapse
Affiliation(s)
- Helen J Zeng
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| | - Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Császár AG, Szidarovszky T, Asvany O, Schlemmer S. Fingerprints of microscopic superfluidity in HHe n+ clusters. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1585984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Attila G. Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research Group, Budapest, Hungary
| | - Tamás Szidarovszky
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research Group, Budapest, Hungary
| | - Oskar Asvany
- I. Physikalisches Institut, Universität zu Köln, Köln, Germany
| | | |
Collapse
|
36
|
Fore ME, McCoy AB. Statistical Analysis of the Effect of Deuteration on Quantum Delocalization in CH5+. J Phys Chem A 2019; 123:4623-4631. [DOI: 10.1021/acs.jpca.9b02685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meredith E. Fore
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anne B. McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
37
|
Salomon T, Töpfer M, Schreier P, Schlemmer S, Kohguchi H, Surin L, Asvany O. Double resonance rotational spectroscopy of He-HCO . Phys Chem Chem Phys 2019; 21:3440-3445. [PMID: 30191208 DOI: 10.1039/c8cp04532a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ground state of He-HCO+ is investigated using a recently developed double resonance technique, consisting of a rotational transition followed by a vibrational transition into a dissociative state. In order to derive precise predictions for the rotational states, the high resolution infrared predissociation spectroscopy of the v1 C-H stretching mode is revisited. Eleven pure rotational transitions are measured via the double resonance method. A least squares fit of these transitions to a standard linear rotor Hamiltonian reveals that the semirigid rotor model cannot fully describe the loosely bound He-HCO+ complex. The novel double resonance technique is compared with other action spectroscopic schemes, and some potential future applications are presented.
Collapse
Affiliation(s)
- Thomas Salomon
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Schwarz H, Asmis KR. Identification of Active Sites and Structural Characterization of Reactive Ionic Intermediates by Cryogenic Ion Trap Vibrational Spectroscopy. Chemistry 2019; 25:2112-2126. [PMID: 30623993 DOI: 10.1002/chem.201805836] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/07/2019] [Indexed: 01/02/2023]
Abstract
Cryogenic ion trap vibrational spectroscopy paired with quantum chemistry currently represents the most generally applicable approach for the structural investigation of gaseous cluster ions that are not amenable to direct absorption spectroscopy. Here, we give an overview of the most popular variants of infrared action spectroscopy and describe the advantages of using cryogenic ion traps in combination with messenger tagging and vibrational predissociation spectroscopy. We then highlight a few recent studies that apply this technique to identify highly reactive ionic intermediates and to characterize their reactive sites. We conclude by commenting on future challenges and potential developments in the field.
Collapse
Affiliation(s)
- Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany
| |
Collapse
|
39
|
Jusko P, Brünken S, Asvany O, Thorwirth S, Stoffels A, van der Meer L, Berden G, Redlich B, Oomens J, Schlemmer S. The FELion cryogenic ion trap beam line at the FELIX free-electron laser laboratory: infrared signatures of primary alcohol cations. Faraday Discuss 2019; 217:172-202. [DOI: 10.1039/c8fd00225h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The FELion beamline – a cryogenic 22-pole trap for vibrational spectroscopy of molecular ions at the FELIX Laboratory.
Collapse
Affiliation(s)
- Pavol Jusko
- I. Physikalisches Institut
- Universität zu Köln
- 50937 Köln
- Germany
| | - Sandra Brünken
- I. Physikalisches Institut
- Universität zu Köln
- 50937 Köln
- Germany
- Radboud University
| | - Oskar Asvany
- I. Physikalisches Institut
- Universität zu Köln
- 50937 Köln
- Germany
| | - Sven Thorwirth
- I. Physikalisches Institut
- Universität zu Köln
- 50937 Köln
- Germany
| | - Alexander Stoffels
- I. Physikalisches Institut
- Universität zu Köln
- 50937 Köln
- Germany
- Radboud University
| | - Lex van der Meer
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Giel Berden
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Britta Redlich
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Jos Oomens
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | | |
Collapse
|
40
|
Hua Z, Feng S, Zhou Z, Liang H, Chen Y, Zhao D. A cryogenic cylindrical ion trap velocity map imaging spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013101. [PMID: 30709209 DOI: 10.1063/1.5079264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
A cryogenic cylindrical ion trap velocity map imaging spectrometer has been developed to study photodissociation spectroscopy and dynamics of gaseous molecular ions and ionic complexes. A cylindrical ion trap made of oxygen-free copper is cryogenically cooled down to ∼7 K by using a closed cycle helium refrigerator and is coupled to a velocity map imaging (VMI) spectrometer. The cold trap is used to cool down the internal temperature of mass selected ions and to reduce the velocity spread of ions after extraction from the trap. For CO2 + ions, a rotational temperature of ∼12 K is estimated from the recorded [1 + 1] two-photon dissociation spectrum, and populations in spin-orbit excited X2Πg,1/2 and vibrationally excited states of CO2 + are found to be non-detectable, indicating an efficient internal cooling of the trapped ions. Based on the time-of-flight peak profile and the image of N3 +, the velocity spread of the ions extracted from the trap, both radially and axially, is interpreted as approximately ±25 m/s. An experimental image of fragmented Ar+ from 307 nm photodissociation of Ar2 + shows that, benefitting from the well-confined velocity spread of the cold Ar2 + ions, a VMI resolution of Δv/v ∼ 2.2% has been obtained. The current instrument resolution is mainly limited by the residual radial speed spread of the parent ions after extraction from the trap.
Collapse
Affiliation(s)
- Zefeng Hua
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shaowen Feng
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengfang Zhou
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hao Liang
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yang Chen
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dongfeng Zhao
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
41
|
Meir Z, Hegi G, Najafian K, Sinhal M, Willitsch S. State-selective coherent motional excitation as a new approach for the manipulation, spectroscopy and state-to-state chemistry of single molecular ions. Faraday Discuss 2019; 217:561-583. [PMID: 31041946 DOI: 10.1039/c8fd00195b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present theoretical and experimental progress towards a new approach for the precision spectroscopy, coherent manipulation and state-to-state chemistry of single isolated molecular ions in the gas phase. Our method uses a molecular beam for creating packets of rotationally cold neutrals from which a single molecule is state-selectively ionized and trapped inside a radiofrequency ion trap. In addition to the molecular ion, a single co-trapped atomic ion is used to cool the molecular external degrees of freedom to the ground state of the trap and to detect the molecular state using state-selective coherent motional excitation from a modulated optical-dipole force acting on the molecule. We present a detailed discussion and theoretical characterization of the present approach. We simulate the molecular signal experimentally using a single atomic ion, indicating that different rovibronic molecular states can be resolved and individually detected with our method. The present approach for the coherent control and non-destructive detection of the quantum state of a single molecular ion opens up new perspectives for precision spectroscopies relevant for, e.g., tests of fundamental physical theories and the development of new types of clocks based on molecular vibrational transitions. It will also enable the observation and control of chemical reactions of single particles on the quantum level. While focusing on N2+ as a prototypical example in the present work, our method is applicable to a wide range of diatomic and polyatomic molecules.
Collapse
Affiliation(s)
- Ziv Meir
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.
| | - Gregor Hegi
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.
| | - Kaveh Najafian
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.
| | - Mudit Sinhal
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.
| | - Stefan Willitsch
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.
| |
Collapse
|
42
|
Szalay V, Viglaska D, Rey M. Internal- and rho-axis systems of molecules with one large amplitude internal motion: The geometry of rho. J Chem Phys 2018; 149:244118. [PMID: 30599722 DOI: 10.1063/1.5056217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The internal-axis system (IAS) of molecules with a large amplitude internal motion (LAM) is determined by integrating the kinematic equation of the IAS by Lie-group and Lie-algebraic methods. Numerical examples on hydrogen peroxide, nitrous acid, and acetaldehyde demonstrate the methods. By exploiting the special product structure of the solution matrix, simple methods are devised for calculating the transformation to the rho-axis system (RAS) along with the value of the parameter ρ characterizing a RAS rotational-LAM kinetic energy operator. The parameter ρ so calculated agrees exactly with that one obtained by the Floquet method as shown in the example of acetaldehyde. Geometrical interpretation of ρ is given. The advantageous property of the RAS over the IAS in retaining simple periodic boundary conditions is numerically demonstrated.
Collapse
Affiliation(s)
- Viktor Szalay
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Dominika Viglaska
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| | - Michael Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
43
|
Gnanasekar SP, Arunan E. Inter/Intramolecular Bonds in TH5+ (T = C/Si/Ge): H2 as Tetrel Bond Acceptor and the Uniqueness of Carbon Bonds. J Phys Chem A 2018; 123:1168-1176. [DOI: 10.1021/acs.jpca.8b09778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sharon Priya Gnanasekar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Elangannan Arunan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
44
|
Uhl F, Marx D. Helium Tagging of Protonated Methane in Messenger Spectroscopy: Does It Interfere with the Fluxionality of CH5
+
? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Felix Uhl
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| |
Collapse
|
45
|
Uhl F, Marx D. Helium Tagging of Protonated Methane in Messenger Spectroscopy: Does It Interfere with the Fluxionality of CH5
+
? Angew Chem Int Ed Engl 2018; 57:14792-14795. [DOI: 10.1002/anie.201808531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Felix Uhl
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| |
Collapse
|
46
|
Lakhmanskaya O, Simpson M, Murauer S, Nötzold M, Endres E, Kokoouline V, Wester R. Rotational Spectroscopy of a Triatomic Molecular Anion. PHYSICAL REVIEW LETTERS 2018; 120:253003. [PMID: 29979079 DOI: 10.1103/physrevlett.120.253003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Rotational transitions of the nonlinear triatomic molecular anion NH_{2}^{-} have been observed by terahertz spectroscopy in a cryogenic radio frequency ion trap. Absorption of terahertz photons has been probed by rotational state-dependent photodetachment of the trapped negative ions near the detachment threshold. Using this two-photon scheme, the two lowest rotational transitions for the asymmetric top rotor NH_{2}^{-} have been found. For the para nuclear spin configuration, the 1_{0}←0_{0} transition frequency was determined to be 933 954(2) MHz, and for the ortho configuration the 1_{+1}←1_{-1} transition frequency was determined to be 447 375(3) MHz. This result appears to preclude the recent tentative assignment of an interstellar absorption feature to NH_{2}^{-}.
Collapse
Affiliation(s)
- Olga Lakhmanskaya
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Malcolm Simpson
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Simon Murauer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Markus Nötzold
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Eric Endres
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Viatcheslav Kokoouline
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
- Department of Physics, University of Central Florida, 4111 Libra Drive, Physical Sciences Building 430, Orlando, Florida 32816-2385, USA
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
47
|
Kohguchi H, Jusko P, Yamada KMT, Schlemmer S, Asvany O. High-resolution infrared spectroscopy of O 2H + in a cryogenic ion trap. J Chem Phys 2018; 148:144303. [PMID: 29655341 DOI: 10.1063/1.5023633] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protonated oxygen molecule, O2H+, and its helium complex, He-O2H+, have been investigated by vibrational action spectroscopy in a cryogenic 22-pole ion trap. For the He-O2H+ complex, the frequencies of three vibrational bands have been determined by predissociation spectroscopy. The elusive O2H+ has been characterized for the first time by high-resolution rovibrational spectroscopy via its ν1 OH-stretching band. Thirty-eight rovibrational fine structure transitions with partly resolved hyperfine satellites were measured (56 resolved lines in total). Spectroscopic parameters were determined by fitting the observed lines with an effective Hamiltonian for an asymmetric rotor in a triplet electronic ground state, X̃3A'', yielding a band origin at 3016.73 cm-1. Based on these spectroscopic parameters, the rotational spectrum is predicted, but not yet detected.
Collapse
Affiliation(s)
- Hiroshi Kohguchi
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | - Pavol Jusko
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
| | | | - Stephan Schlemmer
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
| | - Oskar Asvany
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
| |
Collapse
|
48
|
Gerlich D. Infrared spectroscopy of cold trapped molecular ions using He-tagging. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800122] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dieter Gerlich
- Department of Physics; University of Technology; Chemnitz Germany
| |
Collapse
|
49
|
Esser A, Forbert H, Marx D. Tagging effects on the mid-infrared spectrum of microsolvated protonated methane. Chem Sci 2018; 9:1560-1573. [PMID: 29675201 PMCID: PMC5890325 DOI: 10.1039/c7sc04040g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Although bare protonated methane is by now essentially understood at the level of intramolecular large-amplitude motion, scrambling dynamics and broadband vibrational spectra, the microsolvated species still offer plenty of challenges. One aspect is the effect of the attached solvent molecules on the infrared absorption spectra of microsolvated CH5+ complexes compared to the bare parent molecule. In this study we analyze, based on ab initio molecular dynamics simulations, protonated methane molecules that have been microsolvated with up to three hydrogen molecules, i.e. CH5+·(H2) n . In particular, upon introducing a novel multi-channel maximum entropy methodology described herein, we are able to decompose the infrared spectra of these weakly-bound complexes in the frequency window from 1000 to 4500 cm-1 into additive single mode contributions. Detailed comparisons to the bare CH5+ parent reveal that these perturbed modes encode distinct features that depend on the exact microsolvation pattern. Beyond the specific case, such understanding is relevant to assess tagging artifacts in vibrational spectra of parent molecules based on messenger predissociation action spectroscopy.
Collapse
Affiliation(s)
- Alexander Esser
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| |
Collapse
|
50
|
Fábri C, Császár AG. Vibrational quantum graphs and their application to the quantum dynamics of CH5+. Phys Chem Chem Phys 2018; 20:16913-16917. [DOI: 10.1039/c8cp03019g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first application of quantum-graph theory to molecular vibrations helps understand the low-energy vibrational quantum dynamics of CH5+.
Collapse
Affiliation(s)
- Csaba Fábri
- Laboratory of Molecular Structure and Dynamics
- Institute of Chemistry
- Eötvös Loránd University
- H-1117 Budapest
- Hungary
| | - Attila G. Császár
- Laboratory of Molecular Structure and Dynamics
- Institute of Chemistry
- Eötvös Loránd University
- H-1117 Budapest
- Hungary
| |
Collapse
|