1
|
Peng J, Huang G. Selective photocatalytic degradation of tetracycline by metal-free heterojunction surface imprinted photocatalyst based on magnetic fly ash. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
From Symmetry Breaking via Charge Migration to
Symmetry Restoration in Electronic Ground and
Excited States: Quantum Control on the Attosecond
Time Scale. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article starts with an introductory survey of previous work on breaking and restoringthe electronic structure symmetry of atoms and molecules by means of two laser pulses. Accordingly,the first pulse breaks the symmetry of the system in its ground state with irreducible representationIRREPg by exciting it to a superposition of the ground state and an excited state with differentIRREPe. The superposition state is non-stationary, representing charge migration with period T inthe sub- to few femtosecond time domains. The second pulse stops charge migration and restoressymmetry by de-exciting the superposition state back to the ground state. Here, we present a newstrategy for symmetry restoration: The second laser pulse excites the superposition state to the excitedstate, which has the same symmetry as the ground state, but different IRREPe. The success dependson perfect time delay between the laser pulses, with precision of few attoseconds. The new strategyis demonstrated by quantum dynamics simulation for an oriented model system, benzene.
Collapse
|
3
|
Xiao XR, Wang MX, Liang H, Gong Q, Peng LY. Proposal for Measuring Electron Displacement Induced by a Short Laser Pulse. PHYSICAL REVIEW LETTERS 2019; 122:053201. [PMID: 30822010 DOI: 10.1103/physrevlett.122.053201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 06/09/2023]
Abstract
In laser-matter interaction, most previous studies have focused on the change of the electron momentum induced by the external fields. Here, we theoretically investigate the electron displacement induced by an ultrashort pulse, whose precise waveform is hard to determine experimentally. We propose and numerically demonstrate a scheme to accurately measure the electron displacement using a ruler formed by the interfering spirals in the photoelectron momentum distribution generated by two oppositely circularly polarized pulses. The scheme is robust against the focusing volume effects and the jitter of the carrier envelope phase of the two circular pulses. The ability to measure the electron displacement by an arbitrary pulse may pave the way to quantitative control of the charge migration in matter on the scale of Ångström.
Collapse
Affiliation(s)
- Xiang-Ru Xiao
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Mu-Xue Wang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Hao Liang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Liang-You Peng
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
4
|
Liu C, Manz J, Ohmori K, Sommer C, Takei N, Tremblay JC, Zhang Y. Attosecond Control of Restoration of Electronic Structure Symmetry. PHYSICAL REVIEW LETTERS 2018; 121:173201. [PMID: 30411939 DOI: 10.1103/physrevlett.121.173201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Laser pulses can break the electronic structure symmetry of atoms and molecules by preparing a superposition of states with different irreducible representations. Here, we discover the reverse process, symmetry restoration, by means of two circularly polarized laser pulses. The laser pulse for symmetry restoration is designed as a copy of the pulse for symmetry breaking. Symmetry restoration is achieved if the time delay is chosen such that the superposed states have the same phases at the temporal center. This condition must be satisfied with a precision of a few attoseconds. Numerical simulations are presented for the C_{6}H_{6} molecule and ^{87}Rb atom. The experimental feasibility of symmetry restoration is demonstrated by means of high-contrast time-dependent Ramsey interferometry of the ^{87}Rb atom.
Collapse
Affiliation(s)
- ChunMei Liu
- Freie Universität Berlin, Institut für Chemie und Biochemie, 14195 Berlin, Germany
| | - Jörn Manz
- Freie Universität Berlin, Institut für Chemie und Biochemie, 14195 Berlin, Germany
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Kenji Ohmori
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
- SOKENDAI (The Graduate University of Advanced Studies), Myodaiji, Okazaki 444-8585, Japan
| | - Christian Sommer
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
- SOKENDAI (The Graduate University of Advanced Studies), Myodaiji, Okazaki 444-8585, Japan
- Max-Planck-Institut für die Physik des Lichts, 91058 Erlangen, Germany
| | - Nobuyuki Takei
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
- SOKENDAI (The Graduate University of Advanced Studies), Myodaiji, Okazaki 444-8585, Japan
| | | | - Yichi Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
5
|
Kanno M, Inada N, Kono H. Single-active-electron analysis of laser-polarization effects on atomic/molecular multiphoton excitation. J Chem Phys 2017; 147:154310. [DOI: 10.1063/1.4994876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Manabu Kanno
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Nobuyoshi Inada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hirohiko Kono
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Attosecond angular flux of partial charges on the carbon atoms of benzene in non-aromatic excited state. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Diestler DJ, Hermann G, Manz J. Charge Migration in Eyring, Walter and Kimball’s 1944 Model of the Electronically Excited Hydrogen-Molecule Ion. J Phys Chem A 2017. [DOI: 10.1021/acs.jpca.7b04714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis J. Diestler
- University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gunter Hermann
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jörn Manz
- State
Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
8
|
Ding H, Jia D, Manz J, Yang Y. Reconstruction of the electronic flux during adiabatic attosecond charge migration in HCCI+. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1287967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Ding
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| |
Collapse
|
9
|
Jia D, Manz J, Paulus B, Pohl V, Tremblay JC, Yang Y. Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|