1
|
Malla RK, Weichselbaum A, Wei TC, Konik RM. Detecting Multipartite Entanglement Patterns Using Single-Particle Green's Functions. PHYSICAL REVIEW LETTERS 2024; 133:260202. [PMID: 39879022 DOI: 10.1103/physrevlett.133.260202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
We present a protocol for detecting multipartite entanglement in itinerant many-body electronic systems using single-particle Green's functions. To achieve this, we first establish a connection between the quantum Fisher information and single-particle Green's functions by constructing a set of witness operators built out of single electron creation and destruction operators in a doubled system. This set of witness operators is indexed by a momentum k. We compute the quantum Fisher information for these witness operators and show that for thermal ensembles it can be expressed as an autoconvolution of the single-particle spectral function. We then apply our framework to a one-dimensional fermionic system to showcase its effectiveness in detecting entanglement in itinerant electron models. We observe that the detected entanglement level is sensitive to the wave vector associated with witness operator. Our protocol will permit detecting entanglement in many-body systems using scanning tunneling microscopy and angle-resolved photoemission spectroscopy, two spectroscopies that measure the single-particle Green's function. It offers the prospect of the experimental detection of entanglement through spectroscopies beyond the established route of measuring the dynamical spin response.
Collapse
Affiliation(s)
- Rajesh K Malla
- Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA
| | - Andreas Weichselbaum
- Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA
| | - Tzu-Chieh Wei
- State University of New York at Stony Brook, C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, Stony Brook, New York 11794, USA
| | - Robert M Konik
- Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA
| |
Collapse
|
2
|
Seo J, Lu Z, Park S, Yang J, Xia F, Ye S, Yao Y, Han T, Shi L, Watanabe K, Taniguchi T, Yacoby A, Ju L. On-Chip Terahertz Spectroscopy for Dual-Gated van der Waals Heterostructures at Cryogenic Temperatures. NANO LETTERS 2024; 24:15060-15067. [PMID: 39535826 DOI: 10.1021/acs.nanolett.4c04137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Van der Waals heterostructures have emerged as a versatile platform to study correlated and topological electron physics. Spectroscopy experiments in the THz regime are crucial since the energy of THz photons matches that of relevant excitations and charge dynamics. However, their micrometer size and complex (dual-)gated structures have challenged such measurements. Here, we demonstrate on-chip THz spectroscopy on a dual-gated bilayer graphene device at liquid helium temperature. To avoid unwanted THz absorption by metallic gates, we developed a scheme of operation by combining semiconducting gates and optically controlled gating. This allows us to measure the clean THz response of graphene without being affected by the gates. We observed the THz signatures of electric-field-induced bandgap opening at the charge neutrality. We measured Drude conductivities at varied charge densities and extracted key parameters including effective masses and scattering rates. This work paves the way for studying novel emergent phenomena in dual-gated two-dimensional materials.
Collapse
Affiliation(s)
- Junseok Seo
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhengguang Lu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seunghyun Park
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jixiang Yang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fangzhou Xia
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shenyong Ye
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuxuan Yao
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tonghang Han
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lihan Shi
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Amir Yacoby
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Long Ju
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Ding W, Grefe S, Paschen S, Si Q. Anomalous Hall Effect and Quantum Criticality in Geometrically Frustrated Heavy Fermion Metals. PHYSICAL REVIEW LETTERS 2024; 133:106504. [PMID: 39303255 DOI: 10.1103/physrevlett.133.106504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/21/2024] [Accepted: 07/09/2024] [Indexed: 09/22/2024]
Abstract
Studies on the heavy-fermion pyrochlore iridate (Pr_{2}Ir_{2}O_{7}) point to the role of time-reversal-symmetry breaking in geometrically frustrated Kondo lattices. Here, we address the effect of Kondo coupling and chiral spin liquids in a J_{1}-J_{2} model on a square lattice and a model on a kagome lattice via a large-N method, based on a fermionic representation of the spin operators, and consider a new mechanism for anomalous Hall effect for the chiral phases. We calculate the anomalous Hall response for the chiral states of both the Kondo destroyed and Kondo screened phases. Across the quantum critical point, the anomalous Hall coefficient jumps when a sudden reconstruction of Fermi surfaces occurs. We discuss the implications of our results for the heavy-fermion pyrochlore iridate and propose an interface structure based on Kondo insulators to explore such effects further.
Collapse
|
4
|
Reinhoffer C, Esser S, Esser S, Mashkovich EA, Germanskiy S, Gegenwart P, Anders F, van Loosdrecht PHM, Wang Z. Strong Terahertz Third-Harmonic Generation by Kinetic Heavy Quasiparticles in CaRuO_{3}. PHYSICAL REVIEW LETTERS 2024; 132:196501. [PMID: 38804953 DOI: 10.1103/physrevlett.132.196501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
We report on time-resolved nonlinear terahertz spectroscopy of a strongly correlated ruthenate, CaRuO_{3}, as a function of temperature, frequency, and terahertz field strength. Third-harmonic radiation for frequencies up to 2.1 THz is observed evidently at low temperatures below 80 K, where the low-frequency linear dynamical response deviates from the Drude model and a coherent heavy quasiparticle band emerges by strong correlations associated with the Hund's coupling. Phenomenologically, by taking an experimentally observed frequency-dependent scattering rate, the deviation of the field driven kinetics from the Drude behavior is reconciled in a time-dependent Boltzmann description, which allows an attribution of the observed third-harmonic generation to the terahertz field driven nonlinear kinetics of the heavy quasiparticles.
Collapse
Affiliation(s)
- Chris Reinhoffer
- Institute of Physics II, University of Cologne, 50937 Cologne, Germany
| | - Sven Esser
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Sebastian Esser
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | | | - Semyon Germanskiy
- Institute of Physics II, University of Cologne, 50937 Cologne, Germany
| | - Philipp Gegenwart
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Frithjof Anders
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | | | - Zhe Wang
- Institute of Physics II, University of Cologne, 50937 Cologne, Germany
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
5
|
Kyrk TM, Kennedy ER, Galeano-Cabral J, McCandless GT, Scott MC, Baumbach RE, Chan JY. Much more to explore with an oxidation state of nearly four: Pr valence instability in intermetallic m-Pr 2Co 3Ge 5. SCIENCE ADVANCES 2024; 10:eadl2818. [PMID: 38277457 PMCID: PMC10816709 DOI: 10.1126/sciadv.adl2818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
For some intermetallic compounds containing lanthanides, structural transitions can result in intermediate electronic states between trivalency and tetravalency; however, this is rarely observed for praseodymium compounds. The dominant trivalency of praseodymium limits potential discoveries of emergent quantum states in itinerant 4f1 systems accessible using Pr4+-based compounds. Here, we use in situ powder x-ray diffraction and in situ electron energy-loss spectroscopy (EELS) to identify an intermetallic example of a dominantly Pr4+ state in the polymorphic system Pr2Co3Ge5. The structure-valence transition from a nearly full Pr4+ electronic state to a typical Pr3+ state shows the potential of Pr-based intermetallic compounds to host valence-unstable states and provides an opportunity to discover previously unknown quantum phenomena. In addition, this work emphasizes the need for complementary techniques like EELS when evaluating the magnetic and electronic properties of Pr intermetallic systems to reveal details easily overlooked when relying on bulk magnetic measurements alone.
Collapse
Affiliation(s)
- Trent M. Kyrk
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Ellis R. Kennedy
- Department of Materials Science and Engineering, Univeristy of California, Berkeley, Berkeley, CA 94720, USA
| | - Jorge Galeano-Cabral
- FAMU-FSU College of Engineering, Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | | | - Mary C. Scott
- Department of Materials Science and Engineering, Univeristy of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan E. Baumbach
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
- Department of Physics, Florida State University, Tallahassee, FL 32310, USA
| | - Julia Y. Chan
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
6
|
Chen L, Lowder DT, Bakali E, Andrews AM, Schrenk W, Waas M, Svagera R, Eguchi G, Prochaska L, Wang Y, Setty C, Sur S, Si Q, Paschen S, Natelson D. Shot noise in a strange metal. Science 2023; 382:907-911. [PMID: 37995251 DOI: 10.1126/science.abq6100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Strange-metal behavior has been observed in materials ranging from high-temperature superconductors to heavy fermion metals. In conventional metals, current is carried by quasiparticles; although it has been suggested that quasiparticles are absent in strange metals, direct experimental evidence is lacking. We measured shot noise to probe the granularity of the current-carrying excitations in nanowires of the heavy fermion strange metal YbRh2Si2. When compared with conventional metals, shot noise in these nanowires is strongly suppressed. This suppression cannot be attributed to either electron-phonon or electron-electron interactions in a Fermi liquid, which suggests that the current is not carried by well-defined quasiparticles in the strange-metal regime that we probed. Our work sets the stage for similar studies of other strange metals.
Collapse
Affiliation(s)
- Liyang Chen
- Applied Physics Graduate Program, Rice University, TX 77005, USA
| | - Dale T Lowder
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA
| | - Emine Bakali
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Aaron Maxwell Andrews
- Institute of Solid State Electronics, TU Wien, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - Werner Schrenk
- Center for Micro and Nanostructures, TU Wien, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - Monika Waas
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Robert Svagera
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Gaku Eguchi
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Lukas Prochaska
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Yiming Wang
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA
| | - Chandan Setty
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA
| | - Shouvik Sur
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA
| | - Qimiao Si
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA
| | - Silke Paschen
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Douglas Natelson
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
7
|
Wang H, Park TB, Kim J, Jang H, Bauer ED, Thompson JD, Park T. Evidence for charge delocalization crossover in the quantum critical superconductor CeRhIn 5. Nat Commun 2023; 14:7341. [PMID: 37957188 PMCID: PMC10643617 DOI: 10.1038/s41467-023-42965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The nature of charge degrees-of-freedom distinguishes scenarios for interpreting the character of a second order magnetic transition at zero temperature, that is, a magnetic quantum critical point (QCP). Heavy-fermion systems are prototypes of this paradigm, and in those, the relevant question is where, relative to a magnetic QCP, does the Kondo effect delocalize their f-electron degrees-of-freedom. Herein, we use pressure-dependent Hall measurements to identify a finite-temperature scale Eloc that signals a crossover from f-localized to f-delocalized character. As a function of pressure, Eloc(P) extrapolates smoothly to zero temperature at the antiferromagnetic QCP of CeRhIn5 where its Fermi surface reconstructs, hallmarks of Kondo-breakdown criticality that generates critical magnetic and charge fluctuations. In 4.4% Sn-doped CeRhIn5, however, Eloc(P) extrapolates into its magnetically ordered phase and is decoupled from the pressure-induced magnetic QCP, which implies a spin-density-wave (SDW) type of criticality that produces only critical fluctuations of the SDW order parameter. Our results demonstrate the importance of experimentally determining Eloc to characterize quantum criticality and the associated consequences for understanding the pairing mechanism of superconductivity that reaches a maximum Tc in both materials at their respective magnetic QCP.
Collapse
Affiliation(s)
- Honghong Wang
- Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University, Suwon, South Korea
- Department of Physics, Sungkyunkwan University, Suwon, South Korea
| | - Tae Beom Park
- Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University, Suwon, South Korea
- Department of Physics, Sungkyunkwan University, Suwon, South Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon, South Korea
| | - Jihyun Kim
- Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University, Suwon, South Korea
- Department of Physics, Sungkyunkwan University, Suwon, South Korea
| | - Harim Jang
- Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University, Suwon, South Korea
- Department of Physics, Sungkyunkwan University, Suwon, South Korea
| | - Eric D Bauer
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Tuson Park
- Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University, Suwon, South Korea.
- Department of Physics, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
8
|
Yang CJ, Kliemt K, Krellner C, Kroha J, Fiebig M, Pal S. Critical slowing down near a magnetic quantum phase transition with fermionic breakdown. NATURE PHYSICS 2023; 19:1605-1610. [PMID: 37970535 PMCID: PMC10635820 DOI: 10.1038/s41567-023-02156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/23/2023] [Indexed: 11/17/2023]
Abstract
When a system close to a continuous phase transition is subjected to perturbations, it takes an exceptionally long time to return to equilibrium. This critical slowing down is observed universally in the dynamics of bosonic excitations, such as order-parameter collective modes, but it is not generally expected to occur for fermionic excitations. Here using terahertz time-domain spectroscopy, we find evidence for fermionic critical slowing down in YbRh2Si2 close to a quantum phase transition between an antiferromagnetic phase and a heavy Fermi liquid. In the latter phase, the relevant quasiparticles are a quantum superposition of itinerant and localized electronic states with a strongly enhanced effective mass. As the temperature is lowered on the heavy-Fermi-liquid side of the transition, the heavy-fermion spectral weight builds up until the Kondo temperature TK ≈ 25 K, then decays towards the quantum phase transition and is, thereafter, followed by a logarithmic rise of the quasiparticle excitation rate below 10 K. A two-band heavy-Fermi-liquid theory shows that this is indicative of the fermionic critical slowing down associated with heavy-fermion breakdown near the quantum phase transition. The critical exponent of this breakdown could be used to classify this system among a wider family of fermionic quantum phase transitions that is yet to be fully explored.
Collapse
Affiliation(s)
- Chia-Jung Yang
- Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Kristin Kliemt
- Physikalisches Institut, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Cornelius Krellner
- Physikalisches Institut, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Johann Kroha
- Physikalisches Institut and Bethe Center for Theoretical Physics, Universität Bonn, Bonn, Germany
| | - Manfred Fiebig
- Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Shovon Pal
- Department of Materials, ETH Zurich, Zurich, Switzerland
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni, India
| |
Collapse
|
9
|
Hu H, Si Q. Coupled topological flat and wide bands: Quasiparticle formation and destruction. SCIENCE ADVANCES 2023; 9:eadg0028. [PMID: 37467334 DOI: 10.1126/sciadv.adg0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Flat bands amplify correlation effects and are of extensive current interest. They provide a platform to explore both topology in correlated settings and correlation physics enriched by topology. Recent experiments in correlated kagome metals have found evidence for strange-metal behavior. A major theoretical challenge is to study the effect of local Coulomb repulsion when the band topology obstructs a real-space description. In a variant to the kagome lattice, we identify an orbital-selective Mott transition in any system of coupled topological flat and wide bands. This was made possible by the construction of exponentially localized and Kramers-doublet Wannier functions, which, in turn, leads to an effective Kondo-lattice description. Our findings show how quasiparticles are formed in such coupled topological flat-wide band systems and, equally important, how they are destroyed. Our work provides a conceptual framework for the understanding of the existing and emerging strange-metal properties in kagome metals and beyond.
Collapse
Affiliation(s)
- Haoyu Hu
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA
| | - Qimiao Si
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA
| |
Collapse
|
10
|
Gleis A, Li JW, von Delft J. Controlled Bond Expansion for Density Matrix Renormalization Group Ground State Search at Single-Site Costs. PHYSICAL REVIEW LETTERS 2023; 130:246402. [PMID: 37390431 DOI: 10.1103/physrevlett.130.246402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 07/02/2023]
Abstract
DMRG ground state search algorithms employing symmetries must be able to expand virtual bond spaces by adding or changing symmetry sectors if these lower the energy. Traditional single-site DMRG does not allow bond expansion; two-site DMRG does, but at much higher computational costs. We present a controlled bond expansion (CBE) algorithm that yields two-site accuracy and convergence per sweep, at single-site costs. Given a matrix product state Ψ defining a variational space, CBE identifies parts of the orthogonal space carrying significant weight in HΨ and expands bonds to include only these. CBE-DMRG uses no mixing parameters and is fully variational. Using CBE-DMRG, we show that the Kondo-Heisenberg model on a width 4 cylinder features two distinct phases differing in their Fermi surface volumes.
Collapse
Affiliation(s)
- Andreas Gleis
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Jheng-Wei Li
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Jan von Delft
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| |
Collapse
|
11
|
Baykusheva DR, Kalthoff MH, Hofmann D, Claassen M, Kennes DM, Sentef MA, Mitrano M. Witnessing Nonequilibrium Entanglement Dynamics in a Strongly Correlated Fermionic Chain. PHYSICAL REVIEW LETTERS 2023; 130:106902. [PMID: 36962013 DOI: 10.1103/physrevlett.130.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Many-body entanglement in condensed matter systems can be diagnosed from equilibrium response functions through the use of entanglement witnesses and operator-specific quantum bounds. Here, we investigate the applicability of this approach for detecting entangled states in quantum systems driven out of equilibrium. We use a multipartite entanglement witness, the quantum Fisher information, to study the dynamics of a paradigmatic fermion chain undergoing a time-dependent change of the Coulomb interaction. Our results show that the quantum Fisher information is able to witness distinct signatures of multipartite entanglement both near and far from equilibrium that are robust against decoherence. We discuss implications of these findings for probing entanglement in light-driven quantum materials with time-resolved optical and x-ray scattering methods.
Collapse
Affiliation(s)
| | - Mona H Kalthoff
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Damian Hofmann
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Martin Claassen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dante M Kennes
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
- Institut für Theorie der Statistischen Physik, RWTH Aachen University, 52056 Aachen, Germany and JARA-Fundamentals of Future Information Technology, 52056 Aachen, Germany
| | - Michael A Sentef
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Matteo Mitrano
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
12
|
Kobayashi H, Sakaguchi Y, Kitagawa H, Oura M, Ikeda S, Kuga K, Suzuki S, Nakatsuji S, Masuda R, Kobayashi Y, Seto M, Yoda Y, Tamasaku K, Komijani Y, Chandra P, Coleman P. Observation of a critical charge mode in a strange metal. Science 2023. [PMID: 36862771 DOI: 10.1126/science.abc4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Understanding the strange metallic behavior that develops at the brink of localization in quantum materials requires probing the underlying electronic charge dynamics. Using synchrotron radiation-based Mössbauer spectroscopy, we studied the charge fluctuations of the strange metal phase of β-YbAlB4 as a function of temperature and pressure. We found that the usual single absorption peak in the Fermi-liquid regime splits into two peaks upon entering the critical regime. We interpret this spectrum as a single nuclear transition, modulated by nearby electronic valence fluctuations whose long time scales are further enhanced by the formation of charged polarons. These critical charge fluctuations may prove to be a distinct signature of strange metals.
Collapse
Affiliation(s)
- Hisao Kobayashi
- Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Hyogo 678-1297, Japan.,RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Yui Sakaguchi
- Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Hyogo 678-1297, Japan
| | - Hayato Kitagawa
- Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Hyogo 678-1297, Japan.,RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Momoko Oura
- Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Hyogo 678-1297, Japan.,RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Shugo Ikeda
- Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Hyogo 678-1297, Japan.,RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Kentaro Kuga
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Shintaro Suzuki
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Satoru Nakatsuji
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan.,Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Trans-scale Quantum Science Institute, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ryo Masuda
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan.,Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan.,Graduate School of Science and Technology, Hirosaki University, Aomori 036-8561 Japan
| | - Yasuhiro Kobayashi
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan.,Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - Makoto Seto
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan.,Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | | | - Yashar Komijani
- Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011, USA.,Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| | - Premala Chandra
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| | - Piers Coleman
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA.,Hubbard Theory Consortium, Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
13
|
Scheie A, Benton O, Taillefumier M, Jaubert LDC, Sala G, Jalarvo N, Koohpayeh SM, Shannon N. Dynamical Scaling as a Signature of Multiple Phase Competition in Yb_{2}Ti_{2}O_{7}. PHYSICAL REVIEW LETTERS 2022; 129:217202. [PMID: 36461963 DOI: 10.1103/physrevlett.129.217202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/25/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Yb_{2}Ti_{2}O_{7} is a celebrated example of a pyrochlore magnet with highly frustrated, anisotropic exchange interactions. To date, attention has largely focused on its unusual, static properties, many of which can be understood as coming from the competition between different types of magnetic order. Here we use inelastic neutron scattering with exceptionally high energy resolution to explore the dynamical properties of Yb_{2}Ti_{2}O_{7}. We find that spin correlations exhibit dynamical scaling, analogous to behavior found near to a quantum critical point. We show that the observed scaling collapse can be explained within a phenomenological theory of multiple-phase competition, and confirm that a scaling collapse is also seen in semiclassical simulations of a microscopic model of Yb_{2}Ti_{2}O_{7}. These results suggest that dynamical scaling may be general to systems with competing ground states.
Collapse
Affiliation(s)
- A Scheie
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - O Benton
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden 01187, Germany
| | - M Taillefumier
- ETH Zurich, Swiss National Supercomputing Centre (CSCS), HIT G-floor Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland
| | - L D C Jaubert
- CNRS, Université de Bordeaux, LOMA, UMR 5798, 33400 Talence, France
| | - G Sala
- Spallation Neutron Source, Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - N Jalarvo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S M Koohpayeh
- Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - N Shannon
- Theory of Quantum Matter Unit, Okinawa Institute of Science and Technology Graduate University, Onna son, Okinawa 904-0495, Japan
| |
Collapse
|
14
|
Mihalyuk AN, Gruznev DV, Bondarenko LV, Tupchaya AY, Vekovshinin YE, Eremeev SV, Zotov AV, Saranin AA. A 2D heavy fermion CePb 3 kagome material on silicon: emergence of unique spin polarized states for spintronics. NANOSCALE 2022; 14:14732-14740. [PMID: 36172823 DOI: 10.1039/d2nr04280k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report on the successful synthesis of a 2D atomically thin heavy-fermion CePb3 kagome compound on a Si(111) surface. Growth and morphology were controlled and characterized through scanning tunneling microscopy observations revealing the high crystalline quality of the sample. Angle-resolved photoelectron spectroscopy measurements revealed the giant highly-anisotropic Rashba-like spin splitting of the surface states and semi-metallic character of the spectrum. According to the DFT calculations, the occupied hole and unoccupied electron states with huge spin-orbit splitting and out-of-plane spin polarization reside at the M̄ points near the Fermi level EF, which is ≈100 meV above the experimental one. The out-of-plane FM magnetization was found to be preferred with Ce spin and orbital magnetic momenta values of 0.895μB and -0.840μB, respectively. The spin-split states near EF are primarily formed by Pb pxy orbitals with the admixing of Ce d and f electrons due to the Ce f-d hybridization acquired asymmetry with respect to the sign of k∥. The observed electronic structure of the CePb3/Si(111)√3 × √3 system is rather unique and in the hole-doped state, like in our experiment, can be enabled in the tunable spin current regime, which makes it a prospective 2D material for spintronic applications.
Collapse
Affiliation(s)
- Alexey N Mihalyuk
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 690950 Vladivostok, Russia
| | - Dimitry V Gruznev
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Leonid V Bondarenko
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Alexandra Y Tupchaya
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Yuriy E Vekovshinin
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Sergey V Eremeev
- Institute of Strength Physics and Materials Science, Tomsk 634055, Russia
| | - Andrey V Zotov
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Alexander A Saranin
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| |
Collapse
|
15
|
Dzsaber S, Zocco DA, McCollam A, Weickert F, McDonald R, Taupin M, Eguchi G, Yan X, Prokofiev A, Tang LMK, Vlaar B, Winter LE, Jaime M, Si Q, Paschen S. Control of electronic topology in a strongly correlated electron system. Nat Commun 2022; 13:5729. [PMID: 36175415 PMCID: PMC9523050 DOI: 10.1038/s41467-022-33369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022] Open
Abstract
It is becoming increasingly clear that breakthrough in quantum applications necessitates materials innovation. In high demand are conductors with robust topological states that can be manipulated at will. This is what we demonstrate in the present work. We discover that the pronounced topological response of a strongly correlated "Weyl-Kondo" semimetal can be genuinely manipulated-and ultimately fully suppressed-by magnetic fields. We understand this behavior as a Zeeman-driven motion of Weyl nodes in momentum space, up to the point where the nodes meet and annihilate in a topological quantum phase transition. The topologically trivial but correlated background remains unaffected across this transition, as is shown by our investigations up to much larger fields. Our work lays the ground for systematic explorations of electronic topology, and boosts the prospect for topological quantum devices.
Collapse
Affiliation(s)
- Sami Dzsaber
- Institute of Solid State Physics, Vienna University of Technology, 1040, Vienna, Austria
| | - Diego A Zocco
- Institute of Solid State Physics, Vienna University of Technology, 1040, Vienna, Austria
| | - Alix McCollam
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, 6525 ED, Nijmegen, The Netherlands
| | | | - Ross McDonald
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Mathieu Taupin
- Institute of Solid State Physics, Vienna University of Technology, 1040, Vienna, Austria
| | - Gaku Eguchi
- Institute of Solid State Physics, Vienna University of Technology, 1040, Vienna, Austria
| | - Xinlin Yan
- Institute of Solid State Physics, Vienna University of Technology, 1040, Vienna, Austria
| | - Andrey Prokofiev
- Institute of Solid State Physics, Vienna University of Technology, 1040, Vienna, Austria
| | - Lucas M K Tang
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, 6525 ED, Nijmegen, The Netherlands
| | - Bryan Vlaar
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, 6525 ED, Nijmegen, The Netherlands
| | | | - Marcelo Jaime
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Qimiao Si
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX, 77005, USA
| | - Silke Paschen
- Institute of Solid State Physics, Vienna University of Technology, 1040, Vienna, Austria.
| |
Collapse
|
16
|
Lai Y, Chan JY, Baumbach RE. Electronic landscape of the f-electron intermetallics with the ThCr 2Si 2 structure. SCIENCE ADVANCES 2022; 8:eabp8264. [PMID: 35947661 PMCID: PMC9365280 DOI: 10.1126/sciadv.abp8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Although strongly correlated f-electron systems are well known as reservoirs for quantum phenomena, a persistent challenge is to design specific states. What is often missing are simple ways to determine whether a given compound can be expected to exhibit certain behaviors and what tuning vector(s) would be useful to select the ground state. In this review, we address this question by aggregating information about Ce, Eu, Yb, and U compounds with the ThCr2Si2 structure. We construct electronic/magnetic state maps that are parameterized in terms of unit cell volumes and d-shell filling, which reveals useful trends including that (i) the magnetic and nonmagnetic examples are well separated, and (ii) the crossover regions harbor the examples with exotic states. These insights are used to propose structural/chemical regions of interest in these and related materials, with the goal of accelerating discovery of the next generation of f-electron quantum materials.
Collapse
Affiliation(s)
- You Lai
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Ryan E. Baumbach
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
17
|
Abstract
In traditional metals, the temperature (
T
) dependence of electrical resistivity vanishes at low or high
T
, albeit for different reasons. Here, we review a class of materials, known as “strange” metals, that can violate both of these principles. In strange metals, the change in slope of the resistivity as the mean free path drops below the lattice constant, or as
T
→ 0, can be imperceptible, suggesting continuity between the charge carriers at low and high
T
. We focus on transport and spectroscopic data on candidate strange metals in an effort to isolate and identify a unifying physical principle. Special attention is paid to quantum criticality, Planckian dissipation, Mottness, and whether a new gauge principle is needed to account for the nonlocal transport seen in these materials.
Collapse
Affiliation(s)
- Philip W. Phillips
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois, Urbana, IL 61801, USA
| | - Nigel E. Hussey
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, Netherlands
| | - Peter Abbamonte
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Meng F, Ge M, Wei W, Rahman A, Liu W, Wang A, Zhao J, Fan J, Ma C, Pi L, Zhang L, Zhang Y. Tricritical-point phase diagram in PrCu 9Sn 4. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:155803. [PMID: 35086086 DOI: 10.1088/1361-648x/ac4f7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Tricritical phenomenon appearing in multiple phases is a fundamental and attractive issue in condensed-matter physics. In this work, a field-modulated tricritical phenomenon is realized in single-crystal PrCu9Sn4. The magnetization under variable directions of field indicates strong magnetic anisotropy in PrCu9Sn4, which reveals ferromagnetic coupling forH//c. A paramagnetic-to-ferromagnetic magnetic transition occurs withH//catTC= 11.7 K, which is evidenced to be of a first-ordered type. The systematical study of the critical behavior gives thatβ= 0.195(8),γ= 0.911(1), andδ= 0.0592(1) forH//cconsistent with a tricritical mean-field model, which suggests a field-modulated tricritical phenomenon. A detailedH-Tphase diagram around the tricritical point (TCP) is constructed for single-crystal PrCu9Sn4forH//c, where ferromagnetic state, forced ferromagnetic phase and paramagnetic state meet at the TCP (Htr= 799 kOe,Ttr= 11.3 K). The single-crystal PrCu9Sn4supplies a platform to deep investigate the field-modulated magnetic couplings and tricritical phenomenon.
Collapse
Affiliation(s)
- Fanying Meng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, People's Republic of China
| | - Min Ge
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wensen Wei
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, People's Republic of China
| | - Azizur Rahman
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wei Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, People's Republic of China
| | - Aina Wang
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, People's Republic of China
| | - Jun Zhao
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, People's Republic of China
| | - Jiyu Fan
- Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, People's Republic of China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Li Pi
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, People's Republic of China
| | - Lei Zhang
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, People's Republic of China
| | - Yuheng Zhang
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, People's Republic of China
| |
Collapse
|
19
|
Taupin M, Paschen S. Are Heavy Fermion Strange Metals Planckian? CRYSTALS 2022; 12:251. [PMID: 35910592 PMCID: PMC8979306 DOI: 10.3390/cryst12020251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Strange metal behavior refers to a linear temperature dependence of the electrical resistivity that is not due to electron-phonon scattering. It is seen in numerous strongly correlated electron systems, from the heavy fermion compounds, via transition metal oxides and iron pnictides, to magic angle twisted bi-layer graphene, frequently in connection with unconventional or "high temperature" superconductivity. To achieve a unified understanding of these phenomena across the different materials classes is a central open problem in condensed matter physics. Tests whether the linear-in-temperature law might be dictated by Planckian dissipation-scattering with the rate∼ k B T / ℏ -are receiving considerable attention. Here we assess the situation for strange metal heavy fermion compounds. They allow to probe the regime of extreme correlation strength, with effective mass or Fermi velocity renormalizations in excess of three orders of magnitude. Adopting the same procedure as done in previous studies, i.e., assuming a simple Drude conductivity with the above scattering rate, we find that for these strongly renormalized quasiparticles, scattering is much weaker than Planckian, implying that the linear temperature dependence should be due to other effects. We discuss implications of this finding and point to directions for further work.
Collapse
Affiliation(s)
- Mathieu Taupin
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria;
| | - Silke Paschen
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria;
| |
Collapse
|
20
|
Signatures of a strange metal in a bosonic system. Nature 2022; 601:205-210. [PMID: 35022592 DOI: 10.1038/s41586-021-04239-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
Fermi liquid theory forms the basis for our understanding of the majority of metals: their resistivity arises from the scattering of well defined quasiparticles at a rate where, in the low-temperature limit, the inverse of the characteristic time scale is proportional to the square of the temperature. However, various quantum materials1-15-notably high-temperature superconductors1-10-exhibit strange-metallic behaviour with a linear scattering rate in temperature, deviating from this central paradigm. Here we show the unexpected signatures of strange metallicity in a bosonic system for which the quasiparticle concept does not apply. Our nanopatterned YBa2Cu3O7-δ (YBCO) film arrays reveal linear-in-temperature and linear-in-magnetic field resistance over extended temperature and magnetic field ranges. Notably, below the onset temperature at which Cooper pairs form, the low-field magnetoresistance oscillates with a period dictated by the superconducting flux quantum, h/2e (e, electron charge; h, Planck's constant). Simultaneously, the Hall coefficient drops and vanishes within the measurement resolution with decreasing temperature, indicating that Cooper pairs instead of single electrons dominate the transport process. Moreover, the characteristic time scale τ in this bosonic system follows a scale-invariant relation without an intrinsic energy scale: ħ/τ ≈ a(kBT + γμBB), where ħ is the reduced Planck's constant, a is of order unity7,8,11,12, kB is Boltzmann's constant, T is temperature, μB is the Bohr magneton and γ ≈ 2. By extending the reach of strange-metal phenomenology to a bosonic system, our results suggest that there is a fundamental principle governing their transport that transcends particle statistics.
Collapse
|
21
|
Else DV, Senthil T. Strange Metals as Ersatz Fermi Liquids. PHYSICAL REVIEW LETTERS 2021; 127:086601. [PMID: 34477402 DOI: 10.1103/physrevlett.127.086601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
A long-standing mystery of fundamental importance in correlated electron physics is to understand strange non-Fermi liquid metals that are seen in diverse quantum materials. A striking experimental feature of these metals is a resistivity that is linear in temperature (T). In this Letter we ask what it takes to obtain such non-Fermi liquid physics down to zero temperature in a translation invariant metal. If in addition the full frequency (ω) dependent conductivity satisfies ω/T scaling, we argue that the T-linear resistivity must come from the intrinsic physics of the low energy fixed point. Combining with earlier arguments that compressible translation invariant metals are "ersatz Fermi liquids" with an infinite number of emergent conserved quantities, we obtain powerful and practical conclusions. We show that there is necessarily a diverging susceptibility for an operator that is odd under inversion and time reversal symmetries, and has zero crystal momentum. We discuss a few other experimental consequences of our arguments, as well as potential loopholes, which necessarily imply other exotic phenomena.
Collapse
Affiliation(s)
- Dominic V Else
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Senthil
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
22
|
Nguyen DH, Sidorenko A, Taupin M, Knebel G, Lapertot G, Schuberth E, Paschen S. Superconductivity in an extreme strange metal. Nat Commun 2021; 12:4341. [PMID: 34290244 PMCID: PMC8295387 DOI: 10.1038/s41467-021-24670-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/28/2021] [Indexed: 11/09/2022] Open
Abstract
Some of the highest-transition-temperature superconductors across various materials classes exhibit linear-in-temperature 'strange metal' or 'Planckian' electrical resistivities in their normal state. It is thus believed by many that this behavior holds the key to unlock the secrets of high-temperature superconductivity. However, these materials typically display complex phase diagrams governed by various competing energy scales, making an unambiguous identification of the physics at play difficult. Here we use electrical resistivity measurements into the micro-Kelvin regime to discover superconductivity condensing out of an extreme strange metal state-with linear resistivity over 3.5 orders of magnitude in temperature. We propose that the Cooper pairing is mediated by the modes associated with a recently evidenced dynamical charge localization-delocalization transition, a mechanism that may well be pertinent also in other strange metal superconductors.
Collapse
Affiliation(s)
- D H Nguyen
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, Vienna, Austria
| | - A Sidorenko
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, Vienna, Austria
| | - M Taupin
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, Vienna, Austria
| | - G Knebel
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, Grenoble, France
| | - G Lapertot
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, Grenoble, France
| | - E Schuberth
- Technische Universität München, Garching, Germany
| | - S Paschen
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, Vienna, Austria.
| |
Collapse
|
23
|
Valentinis D, Zaanen J, van der Marel D. Propagation of shear stress in strongly interacting metallic Fermi liquids enhances transmission of terahertz radiation. Sci Rep 2021; 11:7105. [PMID: 33782440 PMCID: PMC8007721 DOI: 10.1038/s41598-021-86356-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/15/2021] [Indexed: 11/09/2022] Open
Abstract
A highlight of Fermi-liquid phenomenology, as explored in neutral [Formula: see text]He, is the observation that in the collisionless regime shear stress propagates as if one is dealing with the transverse phonon of a solid. The existence of this "transverse zero sound" requires that the quasiparticle mass enhancement exceeds a critical value. Could such a propagating shear stress also exist in strongly correlated electron systems? Despite some noticeable differences with the neutral case in the Galilean continuum, we arrive at the verdict that transverse zero sound should be generic for mass enhancement higher than 3. We present an experimental setup that should be exquisitely sensitive in this regard: the transmission of terahertz radiation through a thin slab of heavy-fermion material will be strongly enhanced at low temperature and accompanied by giant oscillations, which reflect the interference between light itself and the "material photon" being the actual manifestation of transverse zero sound in the charged Fermi liquid.
Collapse
Affiliation(s)
- D Valentinis
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
- Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede Straße 1, 76131, Karlsruhe, Germany
| | - J Zaanen
- Institute-Lorentz for Theoretical Physics, Leiden University, PO Box 9506, 2300 RA, Leiden, The Netherlands
| | - D van der Marel
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland.
| |
Collapse
|
24
|
Prochaska L, Li X, MacFarland DC, Andrews AM, Bonta M, Bianco EF, Yazdi S, Schrenk W, Detz H, Limbeck A, Si Q, Ringe E, Strasser G, Kono J, Paschen S. Singular charge fluctuations at a magnetic quantum critical point. Science 2020; 367:285-288. [DOI: 10.1126/science.aag1595] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/07/2019] [Accepted: 12/05/2019] [Indexed: 11/02/2022]
Affiliation(s)
- L. Prochaska
- Institute of Solid State Physics, Technischen Universität (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - X. Li
- Department of Electrical and Computer Engineering, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - D. C. MacFarland
- Institute of Solid State Physics, Technischen Universität (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
- Institute of Solid State Electronics, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - A. M. Andrews
- Institute of Solid State Electronics, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - M. Bonta
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - E. F. Bianco
- Department of Chemistry, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - S. Yazdi
- Department of Materials Science and Nanoengineering, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - W. Schrenk
- Center for Micro- and Nanostructures, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - H. Detz
- Center for Micro- and Nanostructures, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - A. Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Q. Si
- Department of Physics and Astronomy, Center for Quantum Materials, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - E. Ringe
- Department of Materials Science and Nanoengineering, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - G. Strasser
- Institute of Solid State Electronics, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
- Center for Micro- and Nanostructures, TU Wien, Nanocenter Campus Gußhaus, Gußhausstraße 25-25a, Gebäude CH, 1040 Vienna, Austria
| | - J. Kono
- Department of Electrical and Computer Engineering, 6100 Main Street, Rice University, Houston, TX 77005, USA
- Department of Materials Science and Nanoengineering, 6100 Main Street, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Center for Quantum Materials, 6100 Main Street, Rice University, Houston, TX 77005, USA
| | - S. Paschen
- Institute of Solid State Physics, Technischen Universität (TU) Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
- Department of Physics and Astronomy, Center for Quantum Materials, 6100 Main Street, Rice University, Houston, TX 77005, USA
| |
Collapse
|