1
|
Jayasinghe SA, Kennedy F, McMinn A, Martin A. Bacterial Utilisation of Aliphatic Organics: Is the Dwarf Planet Ceres Habitable? Life (Basel) 2022; 12:821. [PMID: 35743852 PMCID: PMC9224870 DOI: 10.3390/life12060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
The regolith environment and associated organic material on Ceres is analogous to environments that existed on Earth 3-4 billion years ago. This has implications not only for abiogenesis and the theory of transpermia, but it provides context for developing a framework to contrast the limits of Earth's biosphere with extraterrestrial environments of interest. In this study, substrate utilisation by the ice-associated bacterium Colwellia hornerae was examined with respect to three aliphatic organic hydrocarbons that may be present on Ceres: dodecane, isobutyronitrile, and dioctyl-sulphide. Following inoculation into a phyllosilicate regolith spiked with a hydrocarbon (1% or 20% organic concentration wt%), cell density, electron transport activity, oxygen consumption, and the production of ATP, NADPH, and protein in C. hornerae was monitored for a period of 32 days. Microbial growth kinetics were correlated with changes in bioavailable carbon, nitrogen, and sulphur. We provide compelling evidence that C. hornerae can survive and grow by utilising isobutyronitrile and, in particular, dodecane. Cellular growth, electron transport activity, and oxygen consumption increased significantly in dodecane at 20 wt% compared to only minor growth at 1 wt%. Importantly, the reduction in total carbon, nitrogen, and sulphur observed at 20 wt% is attributed to biotic, rather than abiotic, processes. This study illustrates that short-term bacterial incubation studies using exotic substrates provide a useful indicator of habitability. We suggest that replicating the regolith environment of Ceres warrants further study and that this dwarf planet could be a valid target for future exploratory missions.
Collapse
Affiliation(s)
- Sahan A. Jayasinghe
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Fraser Kennedy
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Andrew Martin
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
2
|
Nordheim TA, Castillo-Rogez JC, Villarreal MN, Scully JEC, Costello ES. The Radiation Environment of Ceres and Implications for Surface Sampling. ASTROBIOLOGY 2022; 22:509-519. [PMID: 35447049 DOI: 10.1089/ast.2021.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ceres is a large water-rich dwarf planet located within the asteroid belt. Its surface displays evidence of material sourced from a deep subsurface liquid brine layer within recent geologic time, making it a candidate ocean world with possible present-day activity. However, Ceres lacks a substantial atmosphere and likely does not possess a global magnetic field. Therefore, any material emplaced or exposed on the surface will be subject to weathering by charged particles of solar and galactic origin. We have evaluated the effect of charged particle radiation on material within the near-surface of Ceres and find that the timescale for radiation-induced modification and destruction of organics and endogenic material is ∼100 Myr to 1 Gyr within the top 10-20 cm of the surface. Furthermore, we find that the timescale for sterilization of any putative living organisms contained within material at these depths is <500 kyr. Future missions to the surface may therefore consider targeting regions with geologic ages that fall between these two timescales to avoid the risk of backward contamination while ensuring that sampled material is not heavily radiation processed.
Collapse
Affiliation(s)
- T A Nordheim
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J C Castillo-Rogez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M N Villarreal
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J E C Scully
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - E S Costello
- University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Hawaii Institute of Geophysics and Planetology, Honolulu, Hawaii, USA
| |
Collapse
|
3
|
Elkins-Tanton LT, Asphaug E, Bell JF, Bierson CJ, Bills BG, Bottke WF, Courville SW, Dibb SD, Jun I, Lawrence DJ, Marchi S, McCoy TJ, Merayo JMG, Oran R, O’Rourke JG, Park RS, Peplowski PN, Prettyman TH, Raymond CA, Weiss BP, Wieczorek MA, Zuber MT. Distinguishing the Origin of Asteroid (16) Psyche. SPACE SCIENCE REVIEWS 2022; 218:17. [PMID: 35431348 PMCID: PMC9005435 DOI: 10.1007/s11214-022-00880-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/16/2022] [Indexed: 06/02/2023]
Abstract
The asteroid (16) Psyche may be the metal-rich remnant of a differentiated planetesimal, or it may be a highly reduced, metal-rich asteroidal material that never differentiated. The NASA Psyche mission aims to determine Psyche's provenance. Here we describe the possible solar system regions of origin for Psyche, prior to its likely implantation into the asteroid belt, the physical and chemical processes that can enrich metal in an asteroid, and possible meteoritic analogs. The spacecraft payload is designed to be able to discriminate among possible formation theories. The project will determine Psyche's origin and formation by measuring any strong remanent magnetic fields, which would imply it was the core of a differentiated body; the scale of metal to silicate mixing will be determined by both the neutron spectrometers and the filtered images; the degree of disruption between metal and rock may be determined by the correlation of gravity with composition; some mineralogy (e.g., modeled silicate/metal ratio, and inferred existence of low-calcium pyroxene or olivine, for example) will be detected using filtered images; and the nickel content of Psyche's metal phase will be measured using the GRNS.
Collapse
Affiliation(s)
- Linda T. Elkins-Tanton
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | - Erik Asphaug
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 USA
| | - James F. Bell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | - Carver J. Bierson
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | | | | | - Samuel W. Courville
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | - Steven D. Dibb
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | - Insoo Jun
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - David J. Lawrence
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 USA
| | | | - Timothy J. McCoy
- Smithsonian National Museum of Natural History, Washington, DC 20013 USA
| | - Jose M. G. Merayo
- National Space Institute, Danish Technical University, Lyngby, Denmark
| | - Rona Oran
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 USA
| | - Joseph G. O’Rourke
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | - Ryan S. Park
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | | | | | | | - Benjamin P. Weiss
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 USA
| | - Mark A. Wieczorek
- Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Université Côte d’Azur, Nice, France
| | - Maria T. Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 USA
| |
Collapse
|
4
|
Shi X, Castillo-Rogez J, Hsieh H, Hui H, Ip WH, Lei H, Li JY, Tosi F, Zhou L, Agarwal J, Barucci A, Beck P, Bagatin AC, Capaccioni F, Coates AJ, Cremonese G, Duffard R, Grande M, Jaumann R, Jones GH, Kallio E, Lin Y, Mousis O, Nathues A, Oberst J, Sierks H, Ulamec S, Wang M. GAUSS - genesis of asteroids and evolution of the solar system: A sample return mission to Ceres. EXPERIMENTAL ASTRONOMY 2021; 54:713-744. [PMID: 36915624 PMCID: PMC9998589 DOI: 10.1007/s10686-021-09800-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2021] [Indexed: 06/18/2023]
Abstract
The goal of Project GAUSS (Genesis of Asteroids and evolUtion of the Solar System) is to return samples from the dwarf planet Ceres. Ceres is the most accessible candidate of ocean worlds and the largest reservoir of water in the inner Solar System. It shows active volcanism and hydrothermal activities in recent history. Recent evidence for the existence of a subsurface ocean on Ceres and the complex geochemistry suggest past habitability and even the potential for ongoing habitability. GAUSS will return samples from Ceres with the aim of answering the following top-level scientific questions: What is the origin of Ceres and what does this imply for the origin of water and other volatiles in the inner Solar System?What are the physical properties and internal structure of Ceres? What do they tell us about the evolutionary and aqueous alteration history of dwarf planets?What are the astrobiological implications of Ceres? Is it still habitable today?What are the mineralogical connections between Ceres and our current collections of carbonaceous meteorites?
Collapse
Affiliation(s)
- Xian Shi
- Max Planck Institute for Solar System Research, Göttingen, Germany
- Present Address: Shanghai Astronomical Observatory, Shanghai, China
| | | | | | - Hejiu Hui
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Wing-Huen Ip
- Institute of Astronomy and Space Science, National Central University, Chung Li, Taiwan
| | - Hanlun Lei
- School of Astronomy and Space Science, Nanjing University, Nanjing, China
| | | | - Federico Tosi
- Istituto Nazionale di AstroFisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Liyong Zhou
- School of Astronomy and Space Science, Nanjing University, Nanjing, China
| | - Jessica Agarwal
- Max Planck Institute for Solar System Research, Göttingen, Germany
- Institute for Geophysics and Extraterrestrial Physics, Technical University Braunschweig, Braunschweig, Germany
| | - Antonella Barucci
- LESIA-Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, F-92195 Meudon, Principal Cedex, France
| | - Pierre Beck
- CNRS Institut de Planétologie et d’Astrophysique, Univ. Grenoble Alpes, Grenoble, France
| | - Adriano Campo Bagatin
- Universidad de Alicante, Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Alicante, Spain
| | - Fabrizio Capaccioni
- Istituto Nazionale di AstroFisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Andrew J. Coates
- Mullard Space Science Laboratory, University College London, Surrey, UK
| | | | - Rene Duffard
- Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain
| | | | - Ralf Jaumann
- Institute of Geological Sciences, Free University of Berlin, Berlin, Germany
| | - Geraint H. Jones
- Mullard Space Science Laboratory, University College London, Surrey, UK
| | - Esa Kallio
- School of Electrical Engineering, Aalto University, Aalto, Finland
| | - Yangting Lin
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Andreas Nathues
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Jürgen Oberst
- DLR Institute of Planetary Research, Berlin, Germany
| | - Holger Sierks
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Stephan Ulamec
- DLR Space Operations and Astronaut Training, Cologne, Germany
| | - Mingyuan Wang
- National Astronomical Observatory, Chinese Academy of Science, Beijing, China
| | | |
Collapse
|
5
|
Abstract
Ceres is the largest object in the main belt and it is also the most water-rich body in the inner solar system besides the Earth. The discoveries made by the Dawn Mission revealed that the composition of Ceres includes organic material, with a component of carbon globally present and also a high quantity of localized aliphatic organics in specific areas. The inferred mineralogy of Ceres indicates the long-term activity of a large body of liquid water that produced the alteration minerals discovered on its surface, including ammonia-bearing minerals. To explain the presence of ammonium in the phyllosilicates, Ceres must have accreted organic matter, ammonia, water and carbon present in the protoplanetary formation region. It is conceivable that Ceres may have also processed and transformed its own original organic matter that could have been modified by the pervasive hydrothermal alteration. The coexistence of phyllosilicates, magnetite, carbonates, salts, organics and a high carbon content point to rock–water alteration playing an important role in promoting widespread carbon occurrence.
Collapse
|
6
|
Laboratory Investigations Coupled to VIR/Dawn Observations to Quantify the Large Concentrations of Organic Matter on Ceres. MINERALS 2021. [DOI: 10.3390/min11070719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Organic matter directly observed at the surface of an inner planetary body is quite infrequent due to the usual low abundance of such matter and the limitation of the infrared technique. Fortuitously, the Dawn mission has revealed, thanks to the Visible and InfraRed mapping spectrometer (VIR), large areas rich in organic matter at the surface of Ceres, near Ernutet crater. The origin of the organic matter and its abundance in association with minerals, as indicated by the low altitude VIR data, remains unclear, but multiple lines of evidence support an endogenous origin. Here, we report an experimental investigation to determine the abundance of the aliphatic carbon signature observed on Ceres. We produced relevant analogues containing ammoniated-phyllosilicates, carbonates, aliphatic carbons (coals), and magnetite or amorphous carbon as darkening agents, and measured their reflectance by infrared spectroscopy. Measurements of these organic-rich analogues were directly compared to the VIR spectra taken from different locations around Ernutet crater. We found that the absolute reflectance of our analogues is at least two orders of magnitude higher than Ceres, but the depths of absorption bands match nicely the ones of the organic-rich Ceres spectra. The choices of the different components are discussed in comparison with VIR data. Relative abundances of the components are extrapolated from the spectra and mixture composition, considering that the differences in reflectance level is mainly due to optical effects. Absorption bands of Ceres’ organic-rich spectra are best reproduced by around 20 wt.% of carbon (a third being aliphatic carbons), in association with around 20 wt.% of carbonates, 15 wt.% of ammoniated-phyllosilicate, 20 wt.% of Mg-phyllosilicates, and 25 wt.% of darkening agent. Results also highlight the pertinence to use laboratory analogues in addition to models for planetary surface characterization. Such large quantities of organic materials near Ernutet crater, in addition to the amorphous carbon suspected on a global scale, requires a concentration mechanism whose nature is still unknown but that could potentially be relevant to other large volatile-rich bodies.
Collapse
|
7
|
Dwarf planet (1) Ceres surface bluing due to high porosity resulting from sublimation. Nat Commun 2021; 12:274. [PMID: 33436561 PMCID: PMC7804090 DOI: 10.1038/s41467-020-20494-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/04/2020] [Indexed: 11/10/2022] Open
Abstract
The Dawn mission found that the dominant colour variation on the surface of dwarf planet Ceres is a change of the visible spectral slope, where fresh impact craters are surrounded by blue (negative spectral-sloped) ejecta. The origin of this colour variation is still a mystery. Here we investigate a scenario in which an impact mixes the phyllosilicates present on the surface of Ceres with the water ice just below. In our experiment, Ceres analogue material is suspended in liquid water to create intimately mixed ice particles, which are sublimated under conditions approximating those on Ceres. The sublimation residue has a highly porous, foam-like structure made of phyllosilicates that scattered light in similar blue fashion as the Ceres surface. Our experiment provides a mechanism for the blue colour of fresh craters that can naturally emerge from the Ceres environment. The origin of blue ejecta around the fresh craters of dwarf planet Ceres is unknown. Here, the authors show that the blue color results from high porosity of the surface, induced by sublimation of ice-phyllosilicate mixture produced by impacts.
Collapse
|
8
|
Raponi A, De Sanctis MC, Giacomo Carrozzo F, Ciarniello M, Rousseau B, Ferrari M, Ammannito E, De Angelis S, Vinogradoff V, Castillo-Rogez JC, Tosi F, Frigeri A, Formisano M, Zambon F, Raymond CA, Russell CT. Organic Material on Ceres: Insights from Visible and Infrared Space Observations. Life (Basel) 2020; 11:life11010009. [PMID: 33374247 PMCID: PMC7823631 DOI: 10.3390/life11010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
The NASA/Dawn mission has acquired unprecedented measurements of the surface of the dwarf planet Ceres, the composition of which is a mixture of ultra-carbonaceous material, phyllosilicates, carbonates, organics, Fe-oxides, and volatiles as determined by remote sensing instruments including the VIR imaging spectrometer. We performed a refined analysis merging visible and infrared observations of Ceres’ surface for the first time. The overall shape of the combined spectrum suggests another type of silicate not previously considered, and we confirmed a large abundance of carbon material. More importantly, by analyzing the local spectra of the organic-rich region of the Ernutet crater, we identified a reddening in the visible range, strongly correlated to the aliphatic signature at 3.4 µm. Similar reddening was found in the bright material making up Cerealia Facula in the Occator crater. This implies that organic material might be present in the source of the faculae, where brines and organics are mixed in an environment that may be favorable for prebiotic chemistry.
Collapse
Affiliation(s)
- Andrea Raponi
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
- Correspondence:
| | - Maria Cristina De Sanctis
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Filippo Giacomo Carrozzo
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Mauro Ciarniello
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Batiste Rousseau
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Marco Ferrari
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | | | - Simone De Angelis
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Vassilissa Vinogradoff
- Physique des Interactions Ioniques et Moléculaires, PIIM, Université d’Aix-Marseille, 13013 Marseille, France;
| | - Julie C. Castillo-Rogez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (J.C.C.-R.); (C.A.R.)
| | - Federico Tosi
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Alessandro Frigeri
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Michelangelo Formisano
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Francesca Zambon
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Carol A. Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (J.C.C.-R.); (C.A.R.)
| | - Christopher T. Russell
- Earth Planetary and Space Sciences, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
9
|
Burbine TH, Greenwood RC. Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres. SPACE SCIENCE REVIEWS 2020; 216:59. [PMID: 32624627 PMCID: PMC7319314 DOI: 10.1007/s11214-020-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the "Grand Tack" model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community.
Collapse
Affiliation(s)
- Thomas H. Burbine
- Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075 USA
| | - Richard C. Greenwood
- Planetary and Space Sciences, School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| |
Collapse
|
10
|
Castillo-Rogez JC, Neveu M, Scully JEC, House CH, Quick LC, Bouquet A, Miller K, Bland M, De Sanctis MC, Ermakov A, Hendrix AR, Prettyman TH, Raymond CA, Russell CT, Sherwood BE, Young E. Ceres: Astrobiological Target and Possible Ocean World. ASTROBIOLOGY 2020; 20:269-291. [PMID: 31904989 DOI: 10.1089/ast.2018.1999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ceres, the most water-rich body in the inner solar system after Earth, has recently been recognized to have astrobiological importance. Chemical and physical measurements obtained by the Dawn mission enabled the quantification of key parameters, which helped to constrain the habitability of the inner solar system's only dwarf planet. The surface chemistry and internal structure of Ceres testify to a protracted history of reactions between liquid water, rock, and likely organic compounds. We review the clues on chemical composition, temperature, and prospects for long-term occurrence of liquid and chemical gradients. Comparisons with giant planet satellites indicate similarities both from a chemical evolution standpoint and in the physical mechanisms driving Ceres' internal evolution.
Collapse
Affiliation(s)
| | - Marc Neveu
- Sciences and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, Maryland
- University of Maryland College Park, Greenbelt, Maryland
| | - Jennifer E C Scully
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Christopher H House
- Department of Geosciences,Penn State Astrobiology Research Center, The Pennsylvania State University, University Park, Pennsylvania
| | - Lynnae C Quick
- Sciences and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Alexis Bouquet
- LAM (Laboratoire d'Astrophysique de Marseille), Aix Marseille Université, CNRS, UMR 7326, Marseille, France
| | - Kelly Miller
- Southwest Research Institute, San Antonio, Texas
| | | | | | - Anton Ermakov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - Carol A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Christopher T Russell
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California
| | | | - Edward Young
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California
| |
Collapse
|
11
|
Duarte KD, Schmidt BE, Chilton HT, Hughson KHG, Sizemore HG, Ferrier KL, Buffo JJ, Scully JEC, Nathues A, Platz T, Landis M, Byrne S, Bland M, Russell CT, Raymond CA. Landslides on Ceres: Diversity and Geologic Context. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2019; 124:3329-3343. [PMID: 32355585 PMCID: PMC7185231 DOI: 10.1029/2018je005673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 06/11/2023]
Abstract
Landslides are among the most widespread geologic features on Ceres. Using data from Dawn's Framing Camera, landslides were previously classified based upon geomorphologic characteristics into one of three archetypal categories, Type 1(T1), Type 2 (T2), and Type 3 (T3). Due to their geologic context, variation in age, and physical characteristics, most landslides on Ceres are, however, intermediate in their morphology and physical properties between the archetypes of each landslide class. Here we describe the varied morphology of individual intermediate landslides, identify geologic controls that contribute to this variation, and provide first-order quantification of the physical properties of the continuum of Ceres's surface flows. These intermediate flows appear in varied settings and show a range of characteristics, including those found at contacts between craters, those having multiple trunks or lobes; showing characteristics of both T2 and T3 landslides; material slumping on crater rims; very small, ejecta-like flows; and those appearing inside of catenae. We suggest that while their morphologies can vary, the distribution and mechanical properties of intermediate landslides do not differ significantly from that of archetypal landslides, confirming a link between landslides and subsurface ice. We also find that most intermediate landslides are similar to Type 2 landslides and formed by shallow failure. Clusters of these features suggest ice enhancement near Juling, Kupalo and Urvara craters. Since the majority of Ceres's landslides fall in the intermediate landslide category, placing their attributes in context contributes to a better understanding of Ceres's shallow subsurface and the nature of ground ice.
Collapse
Affiliation(s)
- K. D. Duarte
- School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - B. E. Schmidt
- School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - H. T. Chilton
- School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - K. H. G. Hughson
- School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaGAUSA
- Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesCAUSA
| | | | - K. L. Ferrier
- School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - J. J. Buffo
- School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - J. E. C. Scully
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - A. Nathues
- Max‐Planck Institute for Solar System ResearchKatlenburg‐LindauGermany
| | - T. Platz
- Max‐Planck Institute for Solar System ResearchKatlenburg‐LindauGermany
| | - M. Landis
- Lunar and Planetary LaboratoryUniversity of ArizonaTucsonAZUSA
- USGSFlagstaffAZUSA
| | - S. Byrne
- Lunar and Planetary LaboratoryUniversity of ArizonaTucsonAZUSA
| | - M. Bland
- Now at Boulder Laboratory for Atmospheric and Space PhysicsUniversity of Colorado BoulderBoulderCOUSA
| | - C. T. Russell
- Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesCAUSA
| | - C. A. Raymond
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
12
|
Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem Rev 2019; 120:4660-4689. [DOI: 10.1021/acs.chemrev.9b00474] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel P. Glavin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Aaron S. Burton
- NASA Johnson Space Center, Houston, Texas 77058, United States
| | - Jamie E. Elsila
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - José C. Aponte
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- Catholic University of America, Washington, D.C. 20064, United States
| | - Jason P. Dworkin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
13
|
Arevalo R, Selliez L, Briois C, Carrasco N, Thirkell L, Cherville B, Colin F, Gaubicher B, Farcy B, Li X, Makarov A. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1875-1886. [PMID: 30048021 DOI: 10.1002/rcm.8244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The investigation of cryogenic planetary environments as potential harbors for extant life and/or contemporary sites of organic synthesis represents an emerging focal point in planetary exploration. Next generation instruments need to be capable of unambiguously determining elemental and/or molecular stoichiometry via highly accurate mass measurements and the separation of isobaric interferences. METHODS An Orbitrap™ analyzer adapted for spaceflight (referred to as the CosmOrbitrap), coupled with a commercial pulsed UV laser source (266 nm), was used to successfully characterize a variety of planetary analog samples via ultrahigh resolution laser desorption/ablation mass spectrometry. The materials analyzed in this study include: jarosite (a hydrous sulfate detected on Mars); magnesium sulfate (a potential component of the subsurface ocean on Europa); uracil (a nucleobase of RNA); and a variety of amino acids. RESULTS The instrument configuration tested here enables: measurement of major elements and organic molecules with ultrahigh mass resolution (m/Δm ≥ 120,000, FWHM); quantification of isotopic abundances with <1.0% (2σ) precision; and identification of highly accurate masses within 3.2 ppm of absolute values. The analysis of a residue of a dilute solution of amino acids demonstrates the capacity to detect twelve amino acids in positive ion mode at concentrations as low as ≤1 pmol/mm2 while maintaining mass resolution and accuracy requirements. CONCLUSIONS The CosmOrbitrap mass analyzer is highly sensitive and delivers mass resolution/accuracy unmatched by any instrument sent into orbit or launched into deep space. This prototype instrument, which maps to a spaceflight implementation, represents a mission-enabling technology capable of advancing planetary exploration for decades to come.
Collapse
Affiliation(s)
- Ricardo Arevalo
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Laura Selliez
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), 78280, Guyancourt, France
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Nathalie Carrasco
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), 78280, Guyancourt, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Barnabé Cherville
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Fabrice Colin
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Bertrand Gaubicher
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Benjamin Farcy
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Xiang Li
- Center for Space Science & Technology, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | | |
Collapse
|
14
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
15
|
Clark BC, Kolb VM. Comet Pond II: Synergistic Intersection of Concentrated Extraterrestrial Materials and Planetary Environments to Form Procreative Darwinian Ponds. Life (Basel) 2018; 8:E12. [PMID: 29751593 PMCID: PMC6027224 DOI: 10.3390/life8020012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
In the “comet pond” model, a rare combination of circumstances enables the entry and landing of pristine organic material onto a planetary surface with the creation of a pond by a soft impact and melting of entrained ices. Formation of the constituents of the comet in the cold interstellar medium and our circumstellar disk results in multiple constituents at disequilibrium which undergo rapid chemical reactions in the warmer, liquid environment. The planetary surface also provides minerals and atmospheric gases which chemically interact with the pond’s organic- and trace-element-rich constituents. Pond physical morphology and the heterogeneities imposed by gravitational forces (bottom sludge; surface scum) and weather result in a highly heterogeneous variety of macro- and microenvironments. Wet/dry, freeze/thaw, and natural chromatography processes further promote certain reaction sequences. Evaporation concentrates organics less volatile than water. Freezing concentrates all soluble organics into a residual liquid phase, including CH₃OH, HCN, etc. The pond’s evolutionary processes culminate in the creation of a Macrobiont with the metabolically equivalent capabilities of energy transduction and replication of RNA (or its progenitor informational macromolecule), from which smaller organisms can emerge. Planet-wide dispersal of microorganisms is achieved through wind transport, groundwater, and/or spillover from the pond into surface hydrologic networks.
Collapse
Affiliation(s)
- Benton C Clark
- Research Branch, Space Science Institute, Boulder, CO 80201, USA.
| | - Vera M Kolb
- Department of Chemistry, University of Wisconsin⁻Parkside, Kenosha, WI 53141, USA.
| |
Collapse
|
16
|
Raponi A, De Sanctis MC, Frigeri A, Ammannito E, Ciarniello M, Formisano M, Combe JP, Magni G, Tosi F, Carrozzo FG, Fonte S, Giardino M, Joy SP, Polanskey CA, Rayman MD, Capaccioni F, Capria MT, Longobardo A, Palomba E, Zambon F, Raymond CA, Russell CT. Variations in the amount of water ice on Ceres' surface suggest a seasonal water cycle. SCIENCE ADVANCES 2018; 4:eaao3757. [PMID: 29546238 PMCID: PMC5851659 DOI: 10.1126/sciadv.aao3757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
The dwarf planet Ceres is known to host a considerable amount of water in its interior, and areas of water ice were detected by the Dawn spacecraft on its surface. Moreover, sporadic water and hydroxyl emissions have been observed from space telescopes. We report the detection of water ice in a mid-latitude crater and its unexpected variation with time. The Dawn spectrometer data show a change of water ice signatures over a period of 6 months, which is well modeled as ~2-km2 increase of water ice. The observed increase, coupled with Ceres' orbital parameters, points to an ongoing process that seems correlated with solar flux. The reported variation on Ceres' surface indicates that this body is chemically and physically active at the present time.
Collapse
Affiliation(s)
- Andrea Raponi
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Maria Cristina De Sanctis
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Alessandro Frigeri
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | | | - Mauro Ciarniello
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Michelangelo Formisano
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Jean-Philippe Combe
- Bear Fight Institute, 22 Fiddler’s Road, P.O. Box 667, Winthrop, WA 98862, USA
| | - Gianfranco Magni
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Federico Tosi
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Filippo Giacomo Carrozzo
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Sergio Fonte
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Marco Giardino
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Steven P. Joy
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 603 Charles E. Young Drive, East, Los Angeles, CA 90095, USA
| | - Carol A. Polanskey
- NASA/Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Marc D. Rayman
- NASA/Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Fabrizio Capaccioni
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Maria Teresa Capria
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Andrea Longobardo
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Ernesto Palomba
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Francesca Zambon
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Carol A. Raymond
- NASA/Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Christopher T. Russell
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 603 Charles E. Young Drive, East, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Sizemore HG, Platz T, Schorghofer N, Prettyman TH, De Sanctis MC, Crown DA, Schmedemann N, Neesemann A, Kneissl T, Marchi S, Schenk PM, Bland MT, Schmidt BE, Hughson KHG, Tosi F, Zambon F, Mest SC, Yingst RA, Williams DA, Russell CT, Raymond CA. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution. GEOPHYSICAL RESEARCH LETTERS 2017; 44:6570-6578. [PMID: 28989206 PMCID: PMC5606497 DOI: 10.1002/2017gl073970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.
Collapse
Affiliation(s)
| | - T. Platz
- Max Planck Institute for Solar System ResearchGöttingenGermany
| | | | | | | | | | - N. Schmedemann
- Department of Earth SciencesFreie Universität BerlinBerlinGermany
| | - A. Neesemann
- Department of Earth SciencesFreie Universität BerlinBerlinGermany
| | - T. Kneissl
- Department of Earth SciencesFreie Universität BerlinBerlinGermany
| | - S. Marchi
- Southwest Research InstituteBoulderColoradoUSA
| | | | - M. T. Bland
- USGS Astrogeology Science CenterFlagstaffArizonaUSA
| | - B. E. Schmidt
- Department of Planetary and Space PhysicsGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - K. H. G. Hughson
- Department of Earth, Planetary, and Space SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - F. Tosi
- Istituto di Astrofisica e Planetologia Spaziali, INAFRomeItaly
| | - F. Zambon
- Istituto di Astrofisica e Planetologia Spaziali, INAFRomeItaly
| | - S. C. Mest
- Planetary Science InstituteTucsonArizonaUSA
| | | | - D. A. Williams
- School of Earth and Space SciencesArizona State UniversityTempeArizonaUSA
| | - C. T. Russell
- Department of Earth, Planetary, and Space SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - C. A. Raymond
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
18
|
Abstract
The Dawn spacecraft finds evidence for organic material and water ice on Ceres
Collapse
Affiliation(s)
- Michael Küppers
- European Space Astronomy Center, European Space Agency, Camino bajo del Castillo S/N, Madrid, Spain
| |
Collapse
|
19
|
Solar System’s biggest asteroid is an ancient ocean world. Nature 2016. [DOI: 10.1038/nature.2016.21166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|