1
|
Piper AJ, Liu Q, Camacho Garibay A, Kiesewetter D, Leshchenko V, Bækhøj JE, Agostini P, Schafer KJ, DiMauro LF, Tang Y. Attosecond Clocking and Control of Strong Field Quantum Trajectories. PHYSICAL REVIEW LETTERS 2025; 134:073201. [PMID: 40053974 DOI: 10.1103/physrevlett.134.073201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/14/2024] [Accepted: 12/03/2024] [Indexed: 03/09/2025]
Abstract
We introduce a quantum trajectory selector method capable of resolving individual quantum trajectories responsible for strong-field phenomena in real time, revealing the dependence of the electron dynamics on the ionization time. Using an attosecond extreme ultraviolet pulse train, we select the moment of ionization and measure the rates of rescattered electron emission and double ionization driven by a phase locked near IR (1.77 or 2.4 μm) field. We show that there is an intensity-dependent shift in the ionization time associated with double ionization, and we clock this shift as it varies by 250 as. The quantum trajectory selector provides a new attosecond paradigm for expanding our understanding of recollision-driven physics.
Collapse
Affiliation(s)
- Andrew J Piper
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - Qiaoyi Liu
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | | | | | | | - Jens E Bækhøj
- Louisiana State University, Department of Physics & Astronomy, Baton Rouge, Louisiana 70803, USA
| | - Pierre Agostini
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - Kenneth J Schafer
- Louisiana State University, Department of Physics & Astronomy, Baton Rouge, Louisiana 70803, USA
| | - Louis F DiMauro
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - Yaguo Tang
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Laurell H, Baños-Gutiérrez J, L'Huillier A, Busto D, Finkelstein-Shapiro D. A multidimensional approach to quantum state tomography of photoelectron wavepackets. Sci Rep 2025; 15:3937. [PMID: 39890824 PMCID: PMC11785803 DOI: 10.1038/s41598-025-86701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
There is a growing interest in reconstructing the density matrix of photoelectron wavepackets, in particular in complex systems where decoherence can be introduced either by a partial measurement of the system or through coupling with a stochastic environment. To this end, several methods to reconstruct the density matrix, quantum state tomography protocols, have been developed and tested on photoelectrons ejected from noble gases following absorption of extreme ultraviolet (XUV) photons from attosecond pulses. It remains a challenge to obtain model-free, single scan protocols that can reconstruct the density matrix with high fidelities. Current methods require extensive measurements or involve complex fitting of the signal. Efficient single-scan reconstructions would be of great help to increase the number of systems that can be studied. We propose a new and more efficient protocol that is able to reconstruct the continuous variable density matrix of a photoelectron in a single time delay scan. It is based on measuring the coherences of a photoelectron created by absorption of an XUV pulse using a broadband infrared (IR) probe that is scanned in time and a narrowband IR reference that is temporally fixed to the XUV pulse. We illustrate its performance for a Fano resonance in He as well as mixed states in Ar arising from spin-orbit splitting. We show that the protocol results in excellent fidelities and near-perfect estimation of the purity.
Collapse
Affiliation(s)
- H Laurell
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Department of Physics, Lund University, Box 118, 22100, Lund, Sweden
| | - J Baños-Gutiérrez
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico,Circuito Exterior, Ciudad Universitaria, Alcaldía Coyoacàn C.P., 04510, Mexico City, Mexico
| | - A L'Huillier
- Department of Physics, Lund University, Box 118, 22100, Lund, Sweden
| | - D Busto
- Department of Physics, Lund University, Box 118, 22100, Lund, Sweden
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - D Finkelstein-Shapiro
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico,Circuito Exterior, Ciudad Universitaria, Alcaldía Coyoacàn C.P., 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
Muchová E, Gopakumar G, Unger I, Öhrwall G, Céolin D, Trinter F, Wilkinson I, Chatzigeorgiou E, Slavíček P, Hergenhahn U, Winter B, Caleman C, Björneholm O. Attosecond formation of charge-transfer-to-solvent states of aqueous ions probed using the core-hole-clock technique. Nat Commun 2024; 15:8903. [PMID: 39406706 PMCID: PMC11480494 DOI: 10.1038/s41467-024-52740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na+, Mg2+, and Al3+ ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed. Using the core-hole-clock method, based on Auger-Meitner (AM) decay upon 1s excitation or ionization of the respective ions, upper limits are estimated for the metal-atom electron delocalization times to the neighboring water molecules. These delocalization processes represent the first steps in the formation of hydrated electrons, which are determined to take place on a timescale ranging from several hundred attoseconds (as) below the 1s ionization threshold to only 20 as far above the 1s ionization threshold. The decrease in the delocalization times as a function of the photon energy is continuous. This indicates that the excited electrons remain in the vicinity of the studied ions even above the ionization threshold, i.e., metal-ion electronic resonances associated with the CTTS state manifolds are formed. The three studied isoelectronic ions exhibit quantitative differences in their electron energetics and delocalization times, which are linked to the character of the respective excited states.
Collapse
Affiliation(s)
- E Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.
| | - G Gopakumar
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - I Unger
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - G Öhrwall
- MAX IV Laboratory, Lund University, Box 118, SE-22100, Lund, Sweden
| | - D Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex, Paris, France
| | - F Trinter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - I Wilkinson
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - E Chatzigeorgiou
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - P Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - U Hergenhahn
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - B Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - C Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - O Björneholm
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
4
|
Ge P, Dou Y, Han M, Fang Y, Deng Y, Wu C, Gong Q, Liu Y. Spatiotemporal imaging and shaping of electron wave functions using novel attoclock interferometry. Nat Commun 2024; 15:497. [PMID: 38216557 PMCID: PMC10786904 DOI: 10.1038/s41467-024-44775-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Electrons detached from atoms by photoionization carry valuable information about light-atom interactions. Characterizing and shaping the electron wave function on its natural timescale is of paramount importance for understanding and controlling ultrafast electron dynamics in atoms, molecules and condensed matter. Here we propose a novel attoclock interferometry to shape and image the electron wave function in atomic photoionization. Using a combination of a strong circularly polarized second harmonic and a weak linearly polarized fundamental field, we spatiotemporally modulate the atomic potential barrier and shape the electron wave functions, which are mapped into a temporal interferometry. By analyzing the two-color phase-resolved and angle-resolved photoelectron interference, we are able to reconstruct the spatiotemporal evolution of the shaping on the amplitude and phase of electron wave function in momentum space within the optical cycle, from which we identify the quantum nature of strong-field ionization and reveal the effect of the spatiotemporal properties of atomic potential on the departing electron. This study provides a new approach for spatiotemporal shaping and imaging of electron wave function in intense light-matter interactions and holds great potential for resolving ultrafast electronic dynamics in molecules, solids, and liquids.
Collapse
Affiliation(s)
- Peipei Ge
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yankun Dou
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Meng Han
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - Yiqi Fang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Yongkai Deng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, Jiangsu, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, Jiangsu, China.
| |
Collapse
|
5
|
Fu Y, Wang B, Wang K, Tang X, Li B, Yin Z, Han J, Lin CD, Jin C. Controlling laser-dressed resonance line shape using attosecond extreme-ultraviolet pulse with a spectral minimum. Proc Natl Acad Sci U S A 2024; 121:e2307836121. [PMID: 38170749 PMCID: PMC10786267 DOI: 10.1073/pnas.2307836121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
High-harmonic generation from a gas target exhibits sharp spectral features and rapid phase variation near the Cooper minimum. By applying spectral filtering, shaped isolated attosecond pulses can be generated where the pulse is split into two in the time domain. Using such shaped extreme-ultraviolet (XUV) pulses, we theoretically study attosecond transient absorption (ATA) spectra of helium [Formula: see text] autoionizing state which is resonantly coupled to the [Formula: see text] dark state by a time-delayed infrared laser. Our simulations show that the asymmetric [Formula: see text] Fano line shape can be readily tuned into symmetric Lorentzian within the time delay of a few tens of attoseconds. Such efficient control is due to the destructive interference in the generation of the [Formula: see text] state when it is excited by a strongly shaped XUV pulse. This is to be compared to prior experiments where tuning the line shape of a Fano resonance would take tens of femtoseconds. We also show that the predicted ATA spectral line shape can be observed experimentally after propagation in a gas medium. Our results suggest that strongly shaped attosecond XUV pulses offer the opportunity for controlling and probing fine features of narrow resonances on the few-ten attoseconds timescale.
Collapse
Affiliation(s)
- Yong Fu
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Bincheng Wang
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Kan Wang
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Xiangyu Tang
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Baochang Li
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Zhiming Yin
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Jiaxin Han
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - C. D. Lin
- Department of Physics, James R. Macdonald Laboratory, Kansas State University, Manhattan, KS66506
| | - Cheng Jin
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
- Ministry of Industry and Information Technology Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| |
Collapse
|
6
|
Ko JH, Park J, Yoo YJ, Chang S, Kang J, Wu A, Yang F, Kim S, Jeon H, Song YM. Full-Control and Switching of Optical Fano Resonance by Continuum State Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304310. [PMID: 37691086 PMCID: PMC10646235 DOI: 10.1002/advs.202304310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Fano resonance, known for its unique asymmetric line shape, has gained significant attention in photonics, particularly in sensing applications. However, it remains difficult to achieve controllable Fano parameters with a simple geometric structure. Here, a novel approach of using a thin-film optical Fano resonator with a porous layer to generate entire spectral shapes from quasi-Lorentzian to Lorentzian to Fano is proposed and experimentally demonstrated. The glancing angle deposition technique is utilized to create a polarization-dependent Fano resonator. By altering the linear polarization between s- and p-polarization, a switchable Fano device between quasi-Lorentz state and negative Fano state is demonstrated. This change in spectral shape is advantageous for detecting materials with a low-refractive index. A bio-particle sensing experiment is conducted that demonstrates an enhanced signal-to-noise ratio and prediction accuracy. Finally, the challenge of optimizing the film-based Fano resonator due to intricate interplay among numerous parameters, including layer thicknesses, porosity, and materials selection, is addressed. The inverse design tool is developed based on a multilayer perceptron model that allows fast computation for all ranges of Fano parameters. The method provides improved accuracy of the mean validation factor (MVF = 0.07, q-q') compared to the conventional exhaustive enumeration method (MVF = 0.37).
Collapse
Affiliation(s)
- Joo Hwan Ko
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Jin‐Hwi Park
- Artificial Intelligence Graduate SchoolGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Young Jin Yoo
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sehui Chang
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Jiwon Kang
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Aiguo Wu
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical Materials Technology and ApplicationChinese Academy of Sciences (CAS) KeyLaboratory of Magnetic Materials and DevicesZhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000China
| | - Fang Yang
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical Materials Technology and ApplicationChinese Academy of Sciences (CAS) KeyLaboratory of Magnetic Materials and DevicesZhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000China
| | - Sejeong Kim
- Department of Electrical and Electronic EngineeringUniversity of MelbourneParkville3010Australia
| | - Hae‐Gon Jeon
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
- Artificial Intelligence Graduate SchoolGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
- Artificial Intelligence Graduate SchoolGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| |
Collapse
|
7
|
de Ceglia D, Gandolfi M, Antonietta Vincenti M, Tognazzi A, Franceschini P, Cino AC, Ambrosio G, Baratto C, Li B, Camacho-Morales R, Neshev DN, De Angelis C. Transient guided-mode resonance metasurfaces with phase-transition materials. OPTICS LETTERS 2023; 48:2961-2964. [PMID: 37262254 DOI: 10.1364/ol.486733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
We investigate transient, photo-thermally induced metasurface effects in a planar thin-film multilayer based on a phase-transition material. Illumination of a properly designed multilayer with two obliquely incident and phase-coherent pulsed pumps induces a transient and reversible temperature pattern in the phase-transition layer. The deep periodic modulation of the refractive index, caused by the interfering pumps, produces a transient Fano-like spectral feature associated with a guided-mode resonance. A coupled opto-thermal model is employed to analyze the temporal dynamics of the transient metasurface and to evaluate its speed and modulation capabilities. Using near-infrared pump pulses with peak intensities of the order of 100 MW/cm2 and duration of a few picoseconds, we find that the characteristic time scale of the transient metasurface is of the order of nanoseconds. Our results indicate that inducing transient metasurface effects in films of phase-transition materials can lead to new opportunities for dynamic control of quality (Q)-factor in photonic resonances, and for light modulation and switching.
Collapse
|
8
|
He Y, Liu Z, Ott C, Pfeiffer AN, Sun S, Gaarde MB, Pfeifer T, Hu B. Resonant Perfect Absorption Yielded by Zero-Area Pulses. PHYSICAL REVIEW LETTERS 2022; 129:273201. [PMID: 36638297 DOI: 10.1103/physrevlett.129.273201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
We propose and study the manipulation of the macroscopic transient absorption of an ensemble of open two-level systems via temporal engineering. The key idea is to impose an ultrashort temporal gate on the polarization decay of the system by transient absorption spectroscopy, thus confining its free evolution and the natural reshaping of the excitation pulse. The numerical and analytical results demonstrate that even at moderate optical depths, the resonant absorption of light can be reduced or significantly enhanced by more than 5 orders of magnitude relative to that without laser manipulation. The achievement of the quasicomplete extinction of light at the resonant frequency, here referred to as resonant perfect absorption, arises from the full destructive interference between the excitation pulse and its subpulses developed and tailored during propagation, and is revealed to be connected with the formation of zero-area pulses in the time domain.
Collapse
Affiliation(s)
- Yu He
- School of Nuclear Science and Technology and Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Zuoye Liu
- School of Nuclear Science and Technology and Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China
| | - Christian Ott
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Adrian N Pfeiffer
- Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich Schiller University, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Shaohua Sun
- School of Nuclear Science and Technology and Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China
| | - Mette B Gaarde
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Bitao Hu
- School of Nuclear Science and Technology and Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
9
|
Borrego-Varillas R, Lucchini M, Nisoli M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:066401. [PMID: 35294930 DOI: 10.1088/1361-6633/ac5e7f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Since the first demonstration of the generation of attosecond pulses (1 as = 10-18s) in the extreme-ultraviolet spectral region, several measurement techniques have been introduced, at the beginning for the temporal characterization of the pulses, and immediately after for the investigation of electronic and nuclear ultrafast dynamics in atoms, molecules and solids with unprecedented temporal resolution. The attosecond spectroscopic tools established in the last two decades, together with the development of sophisticated theoretical methods for the interpretation of the experimental outcomes, allowed to unravel and investigate physical processes never observed before, such as the delay in photoemission from atoms and solids, the motion of electrons in molecules after prompt ionization which precede any notable nuclear motion, the temporal evolution of the tunneling process in dielectrics, and many others. This review focused on applications of attosecond techniques to the investigation of ultrafast processes in atoms, molecules and solids. Thanks to the introduction and ongoing developments of new spectroscopic techniques, the attosecond science is rapidly moving towards the investigation, understanding and control of coupled electron-nuclear dynamics in increasingly complex systems, with ever more accurate and complete investigation techniques. Here we will review the most common techniques presenting the latest results in atoms, molecules and solids.
Collapse
Affiliation(s)
- Rocío Borrego-Varillas
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Matteo Lucchini
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
10
|
Zhu B, Fu Z, Chen Y, Peng S, Jin C, Fan G, Zhang S, Wang S, Ru H, Tian C, Wang Y, Kapteyn H, Murnane M, Tao Z. Spatially homogeneous few-cycle compression of Yb lasers via all-solid-state free-space soliton management. OPTICS EXPRESS 2022; 30:2918-2932. [PMID: 35209423 DOI: 10.1364/oe.443942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The high power and variable repetition-rate of Yb femtosecond lasers makes them very attractive for ultrafast science. However, for capturing sub-200 fs dynamics, efficient, high-fidelity and high-stability pulse compression techniques are essential. Spectral broadening using an all-solid-state free-space geometry is particularly attractive, as it is simple, robust and low-cost. However, spatial and temporal losses caused by spatio-spectral inhomogeneities have been a major challenge to date, due to coupled space-time dynamics associated with unguided nonlinear propagation. In this work, we use all-solid-state free-space compressors to demonstrate compression of 170 fs pulses at a wavelength of 1030nm from a Yb:KGW laser to ∼9.2 fs, with a highly spatially homogeneous mode. This is achieved by ensuring that the nonlinear beam propagation in periodic layered Kerr media occurs in spatial soliton modes, and by confining the nonlinear phase through each material layer to less than 1.0 rad. A remarkable spatio-spectral homogeneity of ∼0.87 can be realized, which yields a high efficiency of >50% for few-cycle compression. The universality of the method is demonstrated by implementing high-quality pulse compression under a wide range of laser conditions. The high spatiotemporal quality and the exceptional stability of the compressed pulses are further verified by high-harmonic generation. Our predictive method offers a compact and cost-effective solution for high-quality few-cycle-pulse generation from Yb femtosecond lasers, and will enable broad applications in ultrafast science and extreme nonlinear optics.
Collapse
|
11
|
Multilevel Laser Induced Continuum Structure. ENTROPY 2021; 23:e23070891. [PMID: 34356432 PMCID: PMC8303234 DOI: 10.3390/e23070891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/16/2022]
Abstract
Laser-induced-continuum-structure (LICS) allows for coherent control techniques to be applied in a Raman type system with an intermediate continuum state. The standard LICS problem involves two bound states coupled to one or more continua. In this paper, we discuss the simplest non-trivial multistate generalization of LICS which couples two bound levels, each composed of two degenerate states through a common continuum state. We reduce the complexity of the system by switching to a rotated basis of the bound states, in which different sub-systems of lower dimension evolve independently. We derive the trapping condition and explore the dynamics of the sub-systems under different initial conditions.
Collapse
|
12
|
Harkema N, Cariker C, Lindroth E, Argenti L, Sandhu A. Autoionizing Polaritons in Attosecond Atomic Ionization. PHYSICAL REVIEW LETTERS 2021; 127:023202. [PMID: 34296926 DOI: 10.1103/physrevlett.127.023202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/25/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Light-induced states and Autler-Townes splitting of laser-coupled states are common features in the photoionization spectra of laser-dressed atoms. The entangled light-matter character of metastable Autler-Townes multiplets, which makes them autoionizing polaritons, however, is still largely unexplored. We employ attosecond transient-absorption spectroscopy in argon to study the formation of polariton multiplets between the 3s^{-1}4p and several light-induced states. We measure a controllable stabilization of the polaritons against ionization, in excellent agreement with ab initio theory. Using an extension of the Jaynes-Cummings model to autoionizing states, we show that this stabilization is due to the destructive interference between the Auger decay and the radiative ionization of the polaritonic components. These results give new insights into the optical control of electronic structure in the continuum and unlock the door to applications of radiative stabilization in metastable polyelectronic systems.
Collapse
Affiliation(s)
- N Harkema
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| | - C Cariker
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - E Lindroth
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - L Argenti
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
- CREOL, University of Central Florida, Orlando, Florida 32816, USA
| | - A Sandhu
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
13
|
Bello RY, Martín F, Palacios A. Attosecond laser control of photoelectron angular distributions in XUV-induced ionization of H 2. Faraday Discuss 2021; 228:378-393. [PMID: 33566038 DOI: 10.1039/d0fd00114g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigate how attosecond XUV pump/IR probe schemes can be used to exert control on the ionization dynamics of the hydrogen molecule. The aim is to play with all available experimental parameters in the problem, namely the XUV pump-IR probe delay, the energy and emission direction of the produced photo-ions, as well as combinations of them, to uncover control strategies that can lead to preferential electron ejection directions. We do so by accurately solving the time-dependent Schrödinger equation, with inclusion of both electronic and nuclear motions, as well as the coupling between them. We show that both the IR pulse and the nuclear motion can be used to break the molecular inversion symmetry, thus leading to asymmetric molecular-frame photoelectron angular distributions. The preferential electron emission direction can thus be tuned by varying the pump-probe delay, by choosing specific ranges of proton kinetic energies, or both. We expect that similar control strategies could be used in more complex molecules containing light nuclei.
Collapse
Affiliation(s)
- Roger Y Bello
- Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720, USA
| | | | | |
Collapse
|
14
|
Luo S, Liu J, Li X, Zhang D, Yu X, Ren D, Li M, Yang Y, Wang Z, Ma P, Wang C, Zhao J, Zhao Z, Ding D. Revealing Molecular Strong Field Autoionization Dynamics. PHYSICAL REVIEW LETTERS 2021; 126:103202. [PMID: 33784162 DOI: 10.1103/physrevlett.126.103202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The novel strong field autoionization (SFAI) dynamics is identified and investigated by channel-resolved angular streaking measurements of two electrons and two ions for the double-ionized CO. Comparing with the laser-assisted autoionization calculations, we demonstrate the electrons from SFAI are generated from the field-induced decay of the autoionizing state with a following acceleration in the laser fields. The energy-dependent photoelectron angular distributions further reveal that the subcycle ac-Stark effect modulates the lifetime of the autoionizing state and controls the emission of SFAI electrons in molecular frame. Our results pave the way to control the emission of resonant high-harmonic generation and trace the electron-electron correlation and electron-nuclear coupling by strong laser fields. The lifetime modulation of quantum systems in the strong laser field has great potential for quantum manipulation of chemical reactions and beyond.
Collapse
Affiliation(s)
- Sizuo Luo
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jinlei Liu
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Xiaokai Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Dongdong Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xitao Yu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Dianxiang Ren
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Mingxuan Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yizhang Yang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zhenzhen Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Pan Ma
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Chuncheng Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jing Zhao
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Zengxiu Zhao
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Dajun Ding
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Litvinenko KL, Le NH, Redlich B, Pidgeon CR, Abrosimov NV, Andreev Y, Huang Z, Murdin BN. The multi-photon induced Fano effect. Nat Commun 2021; 12:454. [PMID: 33469024 PMCID: PMC7815926 DOI: 10.1038/s41467-020-20534-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
The ordinary Fano effect occurs in many-electron atoms and requires an autoionizing state. With such a state, photo-ionization may proceed via pathways that interfere, and the characteristic asymmetric resonance structures appear in the continuum. Here we demonstrate that Fano structure may also be induced without need of auto-ionization, by dressing the continuum with an ordinary bound state in any atom by a coupling laser. Using multi-photon processes gives complete, ultra-fast control over the interference. We show that a line-shape index q near unity (maximum asymmetry) may be produced in hydrogenic silicon donors with a relatively weak beam. Since the Fano lineshape has both constructive and destructive interference, the laser control opens the possibility of state-selective detection with enhancement on one side of resonance and invisibility on the other. We discuss a variety of atomic and molecular spectroscopies, and in the case of silicon donors we provide a calculation for a qubit readout application. Fano resonances occur in many platforms that have auto-ionizing states. Here the authors show that auto-ionizing states are not required for multi-photon Fano resonance in a Si:P system with significant screening by using a pump-probe method.
Collapse
Affiliation(s)
- K L Litvinenko
- Department of Physics, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK.
| | - Nguyen H Le
- Department of Physics, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK
| | - B Redlich
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - C R Pidgeon
- Institute of Photonics and Quantum Science, SUPA, Heriot-Watt University, Edinburgh, UK
| | - N V Abrosimov
- Leibniz-Institut für Kristallzüchtung (IKZ), Berlin, Germany
| | - Y Andreev
- Institute of Monitoring of Climatic and Ecological Systems of SB RAS, 10/3, Academicheskii Avenue, Tomsk, 634055, Russia.,National Research Tomsk State University, 1, Novosobornaya Strasse, Tomsk, 634050, Russia
| | - Zhiming Huang
- State Key Laboratory of Infrared Physics and Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, CAS, 500 Yutian Road, Shanghai, 200083, China
| | - B N Murdin
- Department of Physics, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
16
|
Azoury D, Krüger M, Bruner BD, Smirnova O, Dudovich N. Direct measurement of Coulomb-laser coupling. Sci Rep 2021; 11:495. [PMID: 33436698 PMCID: PMC7803985 DOI: 10.1038/s41598-020-79805-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
The Coulomb interaction between a photoelectron and its parent ion plays an important role in a large range of light-matter interactions. In this paper we obtain a direct insight into the Coulomb interaction and resolve, for the first time, the phase accumulated by the laser-driven electron as it interacts with the Coulomb potential. Applying extreme-ultraviolet interferometry enables us to resolve this phase with attosecond precision over a large energy range. Our findings identify a strong laser-Coulomb coupling, going beyond the standard recollision picture within the strong-field framework. Transformation of the results to the time domain reveals Coulomb-induced delays of the electrons along their trajectories, which vary by tens of attoseconds with the laser field intensity.
Collapse
Affiliation(s)
- Doron Azoury
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael Krüger
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Physics and Solid State Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Barry D Bruner
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Olga Smirnova
- Max-Born-Institut, Max-Born-Straße 2A, 12489, Berlin, Germany.,Technische Universität Berlin, Ernst-Ruska-Gebäude, Hardenbergstraße 36A, 10623, Berlin, Germany
| | - Nirit Dudovich
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
17
|
Marroux HJB, Fidler AP, Ghosh A, Kobayashi Y, Gokhberg K, Kuleff AI, Leone SR, Neumark DM. Attosecond spectroscopy reveals alignment dependent core-hole dynamics in the ICl molecule. Nat Commun 2020; 11:5810. [PMID: 33199683 PMCID: PMC7669856 DOI: 10.1038/s41467-020-19496-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/13/2020] [Indexed: 11/08/2022] Open
Abstract
The removal of electrons located in the core shells of molecules creates transient states that live between a few femtoseconds to attoseconds. Owing to these short lifetimes, time-resolved studies of these states are challenging and complex molecular dynamics driven solely by electronic correlation are difficult to observe. Here, we obtain few-femtosecond core-excited state lifetimes of iodine monochloride by using attosecond transient absorption on iodine 4d-16p transitions around 55 eV. Core-level ligand field splitting allows direct access of excited states aligned along and perpendicular to the ICl molecular axis. Lifetimes of 3.5 ± 0.4 fs and 4.3 ± 0.4 fs are obtained for core-hole states parallel to the bond and 6.5 ± 0.6 fs and 6.9 ± 0.6 fs for perpendicular states, while nuclear motion is essentially frozen on this timescale. Theory shows that the dramatic decrease of lifetime for core-vacancies parallel to the covalent bond is a manifestation of non-local interactions with the neighboring Cl atom of ICl.
Collapse
Affiliation(s)
- Hugo J B Marroux
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015, Lausanne, Switzerland.
| | - Ashley P Fidler
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aryya Ghosh
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
| | - Yuki Kobayashi
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Kirill Gokhberg
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
- ELI-ALPS, W. Sandner utca 3, Szeged, 6728, Hungary
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Physics, University of California, Berkeley, CA, 94720, USA.
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Jahnke T, Hergenhahn U, Winter B, Dörner R, Frühling U, Demekhin PV, Gokhberg K, Cederbaum LS, Ehresmann A, Knie A, Dreuw A. Interatomic and Intermolecular Coulombic Decay. Chem Rev 2020; 120:11295-11369. [PMID: 33035051 PMCID: PMC7596762 DOI: 10.1021/acs.chemrev.0c00106] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed.
Collapse
Affiliation(s)
- Till Jahnke
- Institut
für Kernphysik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Uwe Hergenhahn
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Max
Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald, Germany
- Leibniz
Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
| | - Bernd Winter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Reinhard Dörner
- Institut
für Kernphysik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Ulrike Frühling
- Institut
für Experimentalphysik and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Philipp V. Demekhin
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Kirill Gokhberg
- Physical-Chemistry
Institute, Ruprecht-Karls University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Lorenz S. Cederbaum
- Physical-Chemistry
Institute, Ruprecht-Karls University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Arno Ehresmann
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - André Knie
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Andreas Dreuw
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Bound-State Electron Dynamics Driven by Near-Resonantly Detuned Intense and Ultrashort Pulsed XUV Fields. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report on numerical results revealing line-shape asymmetry changes of electronic transitions in atoms near-resonantly driven by intense extreme-ultraviolet (XUV) electric fields by monitoring their transient absorption spectrum after transmission through a moderately dense atomic medium. Our numerical model utilizes ultrashort broadband XUV laser pulses varied in their intensity (1014–1015 W/cm2) and detuning nearly out of resonance for a quantitative evaluation of the absorption line-shape asymmetry. It will be shown how transient energy shifts of the bound electronic states can be linked to these asymmetry changes in the case of an ultrashort XUV driving pulse temporally shorter than the lifetime of the resonant excitation, and how the asymmetry can be controlled by the near-resonant detuning of the XUV pulse. In the case of a two-level system, the numerical model is compared to an analytical calculation, which helps to uncover the underlying mechanism for the detuning- and intensity-induced line-shape modification and links it to the generalized Rabi frequency. To further apply the numerical model to recent experimental results of the near-resonant dressing of the 2s2p doubly excited state in helium by an ultrashort XUV free-electron laser pulse we extend the two-level model with an ionization continuum, thereby enabling the description of transmission-type (Fraunhofer-like) transient absorption of a strongly laser-coupled autoionizing state.
Collapse
|
20
|
Abstract
We investigated theoretically the time dependence of ultra-short laser pulse scattering by an atom at the high-frequency limit for the spectral and total probability of the process using new expression which we derived in this paper. We established that the time dependence of spectral scattering is presented by the curve with the maximum for sufficiently large detuning of scattering frequency from the carrier frequency of the pulse, while the total scattering probability is always the monotonically increasing function of time. We also studied the dependence of scattering probability on pulse duration at the long-time limit. It was shown that, at the long-pulse limit, the scattering probability is a linear function of pulse duration, while in the opposite case, it is a function with maximum. The position of this maximum is determined by the detuning of the scattering frequency from the carrier frequency of the pulse.
Collapse
|
21
|
Dong W, Hu H, Zhao Z. Time-resolved recombination by attosecond-controlled high harmonic generation. OPTICS EXPRESS 2020; 28:22490-22499. [PMID: 32752509 DOI: 10.1364/oe.398027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
We theoretically investigate the coherent control of strong-field high-harmonic generation in the presence of an isolated attosecond pulse. It is found that the rapid modulation of the controlled signal exhibits interference fringe structures in the delay-dependent spectra. By comparing the classical trajectory model with quantum mechanical calculation, it is demonstrated that the fringes are resulted from the interference between the photon- and the tunnelling-initiated recombination pathways. The relative recombination times for the two paths are reconstructed from the interference fringes, which provides a novel scheme for optical observation of the interplay of the photionization and tunneling ionization electron dynamics in attosecond resolution.
Collapse
|
22
|
Agueny H. Quantum control and characterization of ultrafast ionization with orthogonal two-color laser pulses. Sci Rep 2020; 10:239. [PMID: 31937810 PMCID: PMC6959349 DOI: 10.1038/s41598-019-57125-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 11/23/2022] Open
Abstract
We study ultrafast ionization dynamics using orthogonally polarized two-color (OTC) laser pulses involving the resonant "first plus second" (ω + 2ω) scheme. The scheme is illustrated by numerical simulations of the time-dependent Schrödinger equation and recording the photoelectron momentum distribution. On the basis of the simulations of this resonant ionization, we identify signatures of the dynamic Autler-Townes effect and dynamic interference, in which their characterization is not possible in the spectral domain. Taking advantage of the OTC scheme we show that these dynamical effects, which occur at the same time scale, can be characterized in momentum space by controlling the spatial quantum interference. In particular, we show that with the use of this control scheme, one can tailor the properties of the control pulse to lead to enhancement of the ionization rate through the Autler-Townes effect without affecting the dynamic interference. This enhancement is shown to result from constructive interferences between partial photoelectron waves having opposite-parity, and found to manifest by symmetry-breaking of the momentum distribution. The scenario is investigated for a prototype of a hydrogen atom and is broadly applicable to other systems. Our findings may have applications for photoelectron interferometers to control the electron dynamics in time and space, and for accurate temporal characterization of attosecond pulses.
Collapse
Affiliation(s)
- Hicham Agueny
- Department of Physics and Technology, University of Bergen, Allegt. 55, N-5007, Bergen, Norway.
| |
Collapse
|
23
|
Ott C, Aufleger L, Ding T, Rebholz M, Magunia A, Hartmann M, Stooß V, Wachs D, Birk P, Borisova GD, Meyer K, Rupprecht P, da Costa Castanheira C, Moshammer R, Attar AR, Gaumnitz T, Loh ZH, Düsterer S, Treusch R, Ullrich J, Jiang Y, Meyer M, Lambropoulos P, Pfeifer T. Strong-Field Extreme-Ultraviolet Dressing of Atomic Double Excitation. PHYSICAL REVIEW LETTERS 2019; 123:163201. [PMID: 31702368 DOI: 10.1103/physrevlett.123.163201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 06/10/2023]
Abstract
We report on the experimental observation of a strong-field dressing of an autoionizing two-electron state in helium with intense extreme-ultraviolet laser pulses from a free-electron laser. The asymmetric Fano line shape of this transition is spectrally resolved, and we observe modifications of the resonance asymmetry structure for increasing free-electron-laser pulse energy on the order of few tens of Microjoules. A quantum-mechanical calculation of the time-dependent dipole response of this autoionizing state, driven by classical extreme-ultraviolet (XUV) electric fields, evidences strong-field-induced energy and phase shifts of the doubly excited state, which are extracted from the Fano line-shape asymmetry. The experimental results obtained at the Free-Electron Laser in Hamburg (FLASH) thus correspond to transient energy shifts on the order of a few meV, induced by strong XUV fields. These results open up a new way of performing nonperturbative XUV nonlinear optics for the light-matter interaction of resonant electronic transitions in atoms at short wavelengths.
Collapse
Affiliation(s)
- Christian Ott
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Lennart Aufleger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Thomas Ding
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Marc Rebholz
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Alexander Magunia
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Maximilian Hartmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Veit Stooß
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - David Wachs
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Paul Birk
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Gergana D Borisova
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Kristina Meyer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Patrick Rupprecht
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | - Robert Moshammer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Andrew R Attar
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Thomas Gaumnitz
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, and Division of Physics and Applied Physics, School of Physical and Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Joachim Ullrich
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Yuhai Jiang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Michael Meyer
- European XFEL, GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Peter Lambropoulos
- Department of Physics, University of Crete and IESL-FORTH, 71003 Heraklion, Crete, Greece
| | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
24
|
Donsa S, Douguet N, Burgdörfer J, Březinová I, Argenti L. Circular Holographic Ionization-Phase Meter. PHYSICAL REVIEW LETTERS 2019; 123:133203. [PMID: 31697555 DOI: 10.1103/physrevlett.123.133203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 06/10/2023]
Abstract
We propose an attosecond extreme ultraviolet pump IR-probe photoionization protocol that employs pairs of counterrotating consecutive harmonics and angularly resolved photoelectron detection, thereby providing a direct measurement of ionization phases. The present method, which we call circular holographic ionization-phase meter, gives also access to the phase of photoemission amplitudes of even-parity continuum states from a single time-delay measurement since the relative phase of one- and two-photon ionization pathways is imprinted in the photoemission anisotropy. The method is illustrated with ab initio simulations of photoionization via autoionizing resonances in helium. The rapid phase excursion in the transition amplitude to both the dipole-allowed (2s2p)^{1}P^{o} and the dipole-forbidden (2p^{2})^{1}D^{e} states are faithfully reproduced.
Collapse
Affiliation(s)
- S Donsa
- Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, EU
| | - N Douguet
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - J Burgdörfer
- Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, EU
| | - I Březinová
- Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, EU
| | - L Argenti
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
- CREOL, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
25
|
Yuan G, Jiang S, Wang Z, Hua W, Yu C, Jin C, Lu R. The role of transition dipole phase in atomic attosecond transient absorption from the multi-level model. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:054102. [PMID: 31649962 PMCID: PMC6796354 DOI: 10.1063/1.5124441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Based on a multilevel model considering enough bound electronic states of atoms, we theoretically study the role of the transition dipole phase (TDP) in the attosecond transient absorption (ATA) spectrum of helium in intense laser fields. By solving the stationary Schrödinger equation with B-spline basis sets, we first calculate the transition dipole moments with well-defined phases between the bound states. Using the modified multilevel model, we reveal that the TDP plays an important role in determining the spectral structures if two or more paths populate the excited states from the ground state. Our multilevel model with the accurate TDP is convenient to address the origin of atomic ATA spectral structures by freely removing or adding specific electronic states and has been justified by comparing with the ATA spectra via directly solving the time-dependent Schrödinger equation. Hopefully, further incorporating macroscopic propagation into the model will provide indepth physical insights into experimental ATA spectra.
Collapse
Affiliation(s)
- Guanglu Yuan
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Shicheng Jiang
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Ziwen Wang
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Weijie Hua
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Chao Yu
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | | | | |
Collapse
|
26
|
Barreau L, Petersson CLM, Klinker M, Camper A, Marante C, Gorman T, Kiesewetter D, Argenti L, Agostini P, González-Vázquez J, Salières P, DiMauro LF, Martín F. Disentangling Spectral Phases of Interfering Autoionizing States from Attosecond Interferometric Measurements. PHYSICAL REVIEW LETTERS 2019; 122:253203. [PMID: 31347882 DOI: 10.1103/physrevlett.122.253203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/15/2019] [Indexed: 06/10/2023]
Abstract
We have determined spectral phases of Ne autoionizing states from extreme ultraviolet and midinfrared attosecond interferometric measurements and ab initio full-electron time-dependent theoretical calculations in an energy interval where several of these states are coherently populated. The retrieved phases exhibit a complex behavior as a function of photon energy, which is the consequence of the interference between paths involving various resonances. In spite of this complexity, we show that phases for individual resonances can still be obtained from experiment by using an extension of the Fano model of atomic resonances. As simultaneous excitation of several resonances is a common scenario in many-electron systems, the present work paves the way to reconstruct electron wave packets coherently generated by attosecond pulses in systems larger than helium.
Collapse
Affiliation(s)
- Lou Barreau
- LIDYL, CEA, CNRS, and Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - C Leon M Petersson
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Markus Klinker
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antoine Camper
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - Carlos Marante
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Timothy Gorman
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | | | - Luca Argenti
- Department of Physics and CREOL, University of Central Florida, Orlando, Florida 32816, USA
| | - Pierre Agostini
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | | | - Pascal Salières
- LIDYL, CEA, CNRS, and Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Louis F DiMauro
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
27
|
Geneaux R, Marroux HJB, Guggenmos A, Neumark DM, Leone SR. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170463. [PMID: 30929624 PMCID: PMC6452051 DOI: 10.1098/rsta.2017.0463] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 05/07/2023]
Abstract
Attosecond science opened the door to observing nuclear and electronic dynamics in real time and has begun to expand beyond its traditional grounds. Among several spectroscopic techniques, X-ray transient absorption spectroscopy has become key in understanding matter on ultrafast time scales. In this review, we illustrate the capabilities of this unique tool through a number of iconic experiments. We outline how coherent broadband X-ray radiation, emitted in high-harmonic generation, can be used to follow dynamics in increasingly complex systems. Experiments performed in both molecules and solids are discussed at length, on time scales ranging from attoseconds to picoseconds, and in perturbative or strong-field excitation regimes. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Romain Geneaux
- Department of Chemistry, University of California, Berkeley 94720, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Hugo J. B. Marroux
- Department of Chemistry, University of California, Berkeley 94720, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Alexander Guggenmos
- Department of Chemistry, University of California, Berkeley 94720, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley 94720, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley 94720, CA, USA
- Department of Physics, University of California, Berkeley 94720, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| |
Collapse
|
28
|
Stooß V, Hartmann M, Birk P, Borisova GD, Ding T, Blättermann A, Ott C, Pfeifer T. XUV-beamline for attosecond transient absorption measurements featuring a broadband common beam-path time-delay unit and in situ reference spectrometer for high stability and sensitivity. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:053108. [PMID: 31153289 DOI: 10.1063/1.5091069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Measuring bound-state quantum dynamics, excited and driven by strong fields, is achievable by time-resolved absorption spectroscopy. Here, a vacuum beamline for spectroscopy in the attosecond temporal and extreme ultraviolet (XUV) spectral range is presented, which is a tool for observing and controlling nonequilibrium electron dynamics. In particular, we introduce a technique to record an XUV absorption signal and the corresponding reference simultaneously, which greatly improves the signal quality. The apparatus is based on a common beam path design for XUV and near-infrared (NIR) laser light in a vacuum. This ensures minimal spatiotemporal fluctuations between the strong NIR laser and the XUV excitation and reference beams, while the grazing incidence optics enable broadband spectral coverage. The apparatus combines high spectral and temporal resolution together with an increase in sensitivity to weak absorption signatures by an order of magnitude. This opens up new possibilities for studying strong-field-driven electron dynamics in bound systems on their natural attosecond time scale.
Collapse
Affiliation(s)
- Veit Stooß
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Maximilian Hartmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Paul Birk
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Gergana D Borisova
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Thomas Ding
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | - Christian Ott
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
29
|
Omiste JJ, Madsen LB. Effects of core space and excitation levels on ground-state correlation and photoionization dynamics of Be and Ne. J Chem Phys 2019; 150:084305. [DOI: 10.1063/1.5082940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Juan J. Omiste
- Chemical Physics Theory Group, Department of Chemistry, Center for Quantum Information and Quantum Control, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Lars Bojer Madsen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
30
|
Electron correlation driven non-adiabatic relaxation in molecules excited by an ultrashort extreme ultraviolet pulse. Nat Commun 2019; 10:337. [PMID: 30659172 PMCID: PMC6338739 DOI: 10.1038/s41467-018-08131-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022] Open
Abstract
The many-body quantum nature of molecules determines their static and dynamic properties, but remains the main obstacle in their accurate description. Ultrashort extreme ultraviolet pulses offer a means to reveal molecular dynamics at ultrashort timescales. Here, we report the use of time-resolved electron-momentum imaging combined with extreme ultraviolet attosecond pulses to study highly excited organic molecules. We measure relaxation timescales that increase with the state energy. High-level quantum calculations show these dynamics are intrinsic to the time-dependent many-body molecular wavefunction, in which multi-electronic and non-Born−Oppenheimer effects are fully entangled. Hints of coherent vibronic dynamics, which persist despite the molecular complexity and high-energy excitation, are also observed. These results offer opportunities to understand the molecular dynamics of highly excited species involved in radiation damage and astrochemistry, and the role of quantum mechanical effects in these contexts. The many-body quantum nature of molecules determines their static and dynamic properties, but remains the main obstacle in their accurate description. Here, the authors employ ultrafast spectroscopic methods to explore the dynamics of highly excited organic molecules, revealing many-body effects and hints of coherent vibronic dynamics which persist despite their molecular complexity.
Collapse
|
31
|
Hütten K, Mittermair M, Stock S, Beerwerth R, Shirvanyan V, Riemensberger J, Duensing A, Heider R, Wagner MS, Guggenmos A, Fritzsche S, Kabachnik NM, Kienberger R, Bernhardt B. Ultrafast quantum control of ionization dynamics. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920506001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The unprecedented combination of transient absorption and ion mass spectroscopy with attosecond resolution is used to study and control the complex multidimensional excitation and decay cascade of an ultrafast Auger process in krypton.
Collapse
|
32
|
Jain A, Gaumnitz T, Kheifets A, Wörner HJ. Using a passively stable attosecond beamline for relative photoemission time delays at high XUV photon energies. OPTICS EXPRESS 2018; 26:28604-28620. [PMID: 30470034 DOI: 10.1364/oe.26.028604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/26/2018] [Indexed: 06/09/2023]
Abstract
We present and demonstrate an experimental scheme that enables overlap-free reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) measurements at high extreme-ultraviolet (XUV) photon energies. A compact passively-stabilized attosecond beamline employing a multilayer (ML) mirror allows us to obtain XUV pulses consisting of only two odd high-harmonic orders from an attosecond pulse train (APT). We compare our new technique to existing schemes that are used to perform RABBITT measurements and discuss how our scheme resolves the limitations imposed by spectral complexity of the harmonic comb at high photon energies. We further demonstrate first applications of our scheme for rare gases and gas mixtures, and show that this scheme can be extended to gas-molecule mixtures.
Collapse
|
33
|
Ultrafast Dynamics of High-Harmonic Generation in Terms of Complex Floquet Spectral Analysis. Symmetry (Basel) 2018. [DOI: 10.3390/sym10080313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We studied the high-harmonic generation (HHG) of a two-level-system (TLS) driven by an intense monochromatic phase-locked laser based on complex spectral analysis with the Floquet method. In contrast with phenomenological approaches, this analysis deals with the whole process as a coherent quantum process based on microscopic dynamics. We have obtained the time-frequency resolved spectrum of spontaneous HHG single-photon emission from an excited TLS driven by a laser field. Characteristic spectral features of the HHG, such as the plateau and cutoff, are reproduced by the present model. Because the emitted high-harmonic photon is represented as a superposition of different frequencies, the Fano profile appears in the long-time spectrum as a result of the quantum interference of the emitted photon. We reveal that the condition of the quantum interference depends on the initial phase of the driving laser field. We have also clarified that the change in spectral features from the short-time regime to the long-time regime is attributed to the interference between the interference from the Floquet resonance states and the dressed radiation field.
Collapse
|
34
|
Bello RY, Canton SE, Jelovina D, Bozek JD, Rude B, Smirnova O, Ivanov MY, Palacios A, Martín F. Reconstruction of the time-dependent electronic wave packet arising from molecular autoionization. SCIENCE ADVANCES 2018; 4:eaat3962. [PMID: 30151427 PMCID: PMC6108568 DOI: 10.1126/sciadv.aat3962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Autoionizing resonances are paradigmatic examples of two-path wave interferences between direct photoionization, which takes a few attoseconds, and ionization via quasi-bound states, which takes much longer. Time-resolving the evolution of these interferences has been a long-standing goal, achieved recently in the helium atom owing to progress in attosecond technologies. However, already for the hydrogen molecule, similar time imaging has remained beyond reach due to the complex interplay between fast nuclear and electronic motions. We show how vibrationally resolved photoelectron spectra of H2 allow one to reconstruct the associated subfemtosecond autoionization dynamics by using the ultrafast nuclear dynamics as an internal clock, thus forgoing ultrashort pulses. Our procedure should be general for autoionization dynamics in molecules containing light nuclei, which are ubiquitous in chemistry and biology.
Collapse
Affiliation(s)
- Roger Y. Bello
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sophie E. Canton
- Extreme Light Infrastructure Attosecond Light Pulse Source, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged 6720, Hungary
- Attosecond Science Group, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Denis Jelovina
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - John D. Bozek
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Bruce Rude
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Olga Smirnova
- Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, D-12489 Berlin, Germany
- Technische Universität Berlin, Ernst-Ruska-Gebäude, Hardenbergstr. 36 A, 10623 Berlin, Germany
| | - Mikhail Y. Ivanov
- Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, D-12489 Berlin, Germany
- Department of Physics, Imperial College London, South Kensington Campus, SW72AZ London, UK
- Institute of Physics, Humboldt University Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - Alicia Palacios
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
35
|
Finkelstein-Shapiro D, Pullerits T, Hansen T. Two-dimensional Fano lineshapes: Excited-state absorption contributions. J Chem Phys 2018; 148:184201. [PMID: 29764148 DOI: 10.1063/1.5019376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.
Collapse
Affiliation(s)
| | - Tõnu Pullerits
- Division of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Thorsten Hansen
- Department of Chemistry, University of Copenhagen, DK 2100 Copenhagen, Denmark
| |
Collapse
|
36
|
Attosecond-Resolved Electron Dynamics in Many-Electron Atoms: Quantitative Theory and Comparison with Measurements. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Anisotropic photoemission time delays close to a Fano resonance. Nat Commun 2018; 9:955. [PMID: 29511164 PMCID: PMC5840338 DOI: 10.1038/s41467-018-03009-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 01/12/2018] [Indexed: 11/24/2022] Open
Abstract
Electron correlation and multielectron effects are fundamental interactions that govern many physical and chemical processes in atomic, molecular and solid state systems. The process of autoionization, induced by resonant excitation of electrons into discrete states present in the spectral continuum of atomic and molecular targets, is mediated by electron correlation. Here we investigate the attosecond photoemission dynamics in argon in the 20–40 eV spectral range, in the vicinity of the 3s−1np autoionizing resonances. We present measurements of the differential photoionization cross section and extract energy and angle-dependent atomic time delays with an attosecond interferometric method. With the support of a theoretical model, we are able to attribute a large part of the measured time delay anisotropy to the presence of autoionizing resonances, which not only distort the phase of the emitted photoelectron wave packet but also introduce an angular dependence. Ionization time delays are of interest in understanding the photoionization mechanism in atoms and molecules in ultra-short time scales. Here the authors investigate the angular dependence of photoionization time delays in the presence of an autoionizing resonance in argon atom using RABBITT technique.
Collapse
|
38
|
Ultrafast quantum control of ionization dynamics in krypton. Nat Commun 2018; 9:719. [PMID: 29459621 PMCID: PMC5818503 DOI: 10.1038/s41467-018-03122-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/19/2018] [Indexed: 11/08/2022] Open
Abstract
Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump–probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms. Photoionization of atoms and molecules is a complex process and requires sensitive probes to explore the ultrafast dynamics. Here the authors combine transient absorption and photo-ion spectroscopy methods to explore and control the attosecond pulse initiated excitation, ionization and Auger decay in Kr atoms.
Collapse
|
39
|
Chacón A, Ruiz C. Attosecond delay in the molecular photoionization of asymmetric molecules. OPTICS EXPRESS 2018; 26:4548-4562. [PMID: 29475304 DOI: 10.1364/oe.26.004548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
We report theoretical calculations of the delay in photoemission from CO with particular emphasis on the role of the ultrafast electronic bound dynamics. We study the delays in photoionization in the HOMO and HOMO-1 orbitals of the CO molecule by looking into the stereo Wigner time delay technique. That compares the delay in photoemission from electrons emitted to the left and right to extract structural and dynamical information of the ionization process. For this we apply two techniques: The attosecond streak camera and the time of flight technique. Although they should provide the same results we have found large discrepancies of up to 36 in the case of HOMO, while for the HOMO-1 we obtain the same results with the two techniques. We have found that the large time delays observed in the HOMO orbital with the streaking technique are a consequence of the resonant transition triggered by the streaking field. This resonant transition produces a bound electron wavepacket that modifies the measurements of delay in photoionization. As a result of this observation, our technique allows us to reconstruct the bound wavepacket dynamics induced by the streaking field. By measuring the expected value of the electron momentum along the polarization direction after the streaking field has finished, we can recover the relative phase between the complex amplitudes of the HOMO and LUMO orbitals. These theoretical calculations pave the way for the measurement of ultrafast bound-bound electron transitionsand its crucial role for the delay in photoemission observation.
Collapse
|
40
|
Moulet A, Bertrand JB, Klostermann T, Guggenmos A, Karpowicz N, Goulielmakis E. Soft x-ray excitonics. Science 2018; 357:1134-1138. [PMID: 28912241 DOI: 10.1126/science.aan4737] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/22/2017] [Indexed: 11/02/2022]
Abstract
The dynamic response of excitons in solids is central to modern condensed-phase physics, material sciences, and photonic technologies. However, study and control have hitherto been limited to photon energies lower than the fundamental band gap. Here we report application of attosecond soft x-ray and attosecond optical pulses to study the dynamics of core-excitons at the L2,3 edge of Si in silicon dioxide (SiO2). This attosecond x-ray absorption near-edge spectroscopy (AXANES) technique enables direct probing of the excitons' quasiparticle character, tracking of their subfemtosecond relaxation, the measurement of excitonic polarizability, and observation of dark core-excitonic states. Direct measurement and control of core-excitons in solids lay the foundation of x-ray excitonics.
Collapse
Affiliation(s)
- A Moulet
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
| | - J B Bertrand
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
| | - T Klostermann
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
| | - A Guggenmos
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
| | - N Karpowicz
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
| | - E Goulielmakis
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany.
| |
Collapse
|
41
|
Bolognesi P, Bañares L, Alcamí M. XUV/X-ray light and fast ions for ultrafast chemistry. Phys Chem Chem Phys 2018; 19:19533-19535. [PMID: 28744548 DOI: 10.1039/c7cp90137b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deposition of large amounts of energy in a molecule by XUV/X-ray photon absorption or fast-ion collision, triggers a set of complex ultrafast electronic and nuclear dynamics that allow a deep understanding and control of chemical reactivity. This themed issue showcases the research performed in the understanding, monitoring and control of these processes.
Collapse
Affiliation(s)
- P Bolognesi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, Monterotondo Scalo, Italy.
| | | | | |
Collapse
|
42
|
Wei Z, Li J, See ST, Loh ZH. Spin-Orbit State-Selective C-I Dissociation Dynamics of the CH 3I + X̃ Electronic State Induced by Intense Few-Cycle Laser Fields. J Phys Chem Lett 2017; 8:6067-6072. [PMID: 29190098 DOI: 10.1021/acs.jpclett.7b03022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Studies of ultrafast molecular dynamics induced by intense laser fields can reveal new approaches to manipulating chemical reactions in the strong-field regime. Here, we show that intense few-cycle laser pulses can induce the spin-orbit state-selective C-I dissociation of the iodomethane cation (CH3I+) in the X̃ electronic state. Irradiation of CH3I by 6 fs laser pulses with peak intensities of 1.9 × 1014 W/cm2 followed by femtosecond extreme ultraviolet probing of the iodine 4d core-level transitions reveals dissociation of the CH3I+ X̃ 2E1/2 state with a time constant of 0.76 ± 0.16 ps. By contrast, the X̃ 2E3/2 spin-orbit ground state does not exhibit any appreciable dissociation on the picosecond time scale. The observed spin-orbit state-selective dissociation of the X̃ state is rationalized in terms of the laser-induced coupling to the à state. Our results suggest that the intense-laser control of photodissociation channels can be potentially extended to spin-orbit split states.
Collapse
Affiliation(s)
- Zhengrong Wei
- Division of Chemistry and Biological Chemistry and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | - Jialin Li
- Division of Chemistry and Biological Chemistry and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | - Soo Teck See
- Division of Chemistry and Biological Chemistry and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
- Centre for Optical Fibre Technology, The Photonics Institute, Nanyang Technological University , Singapore 639798, Singapore
| |
Collapse
|
43
|
Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Géneaux R, Légaré F, Petit S, Pons B, Porat G, Ruchon T, Taïeb R, Blanchet V, Mairesse Y. Attosecond-resolved photoionization of chiral molecules. Science 2017; 358:1288-1294. [DOI: 10.1126/science.aao5624] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/10/2017] [Indexed: 11/02/2022]
|
44
|
Isinger M, Squibb RJ, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold CL, Miranda M, Dahlström JM, Lindroth E, Feifel R, Gisselbrecht M, L’Huillier A. Photoionization in the time and frequency domain. Science 2017; 358:893-896. [DOI: 10.1126/science.aao7043] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 11/02/2022]
Abstract
Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10−18 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40–electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.
Collapse
Affiliation(s)
- M. Isinger
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - R. J. Squibb
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-41 296 Göteborg, Sweden
| | - D. Busto
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - S. Zhong
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - A. Harth
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - D. Kroon
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - S. Nandi
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - C. L. Arnold
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - M. Miranda
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - J. M. Dahlström
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - E. Lindroth
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - R. Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-41 296 Göteborg, Sweden
| | - M. Gisselbrecht
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - A. L’Huillier
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| |
Collapse
|
45
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|