1
|
De Sanctis MC, Baratta GA, Brucato JR, Castillo-Rogez J, Ciarniello M, Cozzolino F, De Angelis S, Ferrari M, Fulvio D, Germanà M, Mennella V, Pagnoscin S, Palumbo ME, Poggiali G, Popa C, Raponi A, Scirè C, Strazzulla G, Urso RG. Recent replenishment of aliphatic organics on Ceres from a large subsurface reservoir. SCIENCE ADVANCES 2024; 10:eadp3664. [PMID: 39321287 PMCID: PMC11423891 DOI: 10.1126/sciadv.adp3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Ceres hosts notable aliphatic-organic concentrations, ranging from approximately 5 to >30 weight % in specific surface areas. The origins and persistence of these organics are under debate due to the intense aliphatic organic signature and radiation levels in Ceres' orbit, which would typically lead to their destruction, hindering detection. To investigate this, we conducted laboratory experiments to replicate how the signature of the organic-rich regions would degrade due to radiation. Our findings indicate a fast degradation rate, implying the exposure of buried organics within the past few million years. This degradation rate, coupled with observed quantities, implies that the aliphatics must be present in substantial quantities within the shallow subsurface. Our estimates suggest an initial aliphatic abundance 2 to 30 times greater than currently observed, surpassing significantly the levels found in carbonaceous chondrites, indicating either a significant concentration or remarkable purity.
Collapse
Affiliation(s)
- Maria Cristina De Sanctis
- INAF-Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Giuseppe A Baratta
- INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - John R Brucato
- INAF- Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi, 5, 50125 Firenze, Italy
| | - Julie Castillo-Rogez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Mauro Ciarniello
- INAF-Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Fabio Cozzolino
- NAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy
| | - Simone De Angelis
- INAF-Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Marco Ferrari
- INAF-Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Daniele Fulvio
- INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Massimo Germanà
- INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Vito Mennella
- NAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy
| | - Silvia Pagnoscin
- INAF- Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi, 5, 50125 Firenze, Italy
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via Giovanni Sansone 1, 50019 Firenze, Italy
| | | | - Giovanni Poggiali
- INAF- Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi, 5, 50125 Firenze, Italy
| | - Ciprian Popa
- NAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy
| | - Andrea Raponi
- INAF-Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Carlotta Scirè
- INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Giovanni Strazzulla
- INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | | |
Collapse
|
2
|
Merino P, Martínez L, Santoro G, Martínez JI, Lauwaet K, Accolla M, Ruiz Del Arbol N, Sánchez-Sánchez C, Martín-Jimenez A, Otero R, Piantek M, Serrate D, Lebrón-Aguilar R, Quintanilla-López JE, Mendez J, De Andres PL, Martín-Gago JA. n-Alkanes formed by methyl-methylene addition as a source of meteoritic aliphatics. Commun Chem 2024; 7:165. [PMID: 39080475 PMCID: PMC11289383 DOI: 10.1038/s42004-024-01248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Aliphatics prevail in asteroids, comets, meteorites and other bodies in our solar system. They are also found in the interstellar and circumstellar media both in gas-phase and in dust grains. Among aliphatics, linear alkanes (n-CnH2n+2) are known to survive in carbonaceous chondrites in hundreds to thousands of parts per billion, encompassing sequences from CH4 to n-C31H64. Despite being systematically detected, the mechanism responsible for their formation in meteorites has yet to be identified. Based on advanced laboratory astrochemistry simulations, we propose a gas-phase synthesis mechanism for n-alkanes starting from carbon and hydrogen under conditions of temperature and pressure that mimic those found in carbon-rich circumstellar envelopes. We characterize the analogs generated in a customized sputter gas aggregation source using a combination of atomically precise scanning tunneling microscopy, non-contact atomic force microscopy and ex-situ gas chromatography-mass spectrometry. Within the formed carbon nanostructures, we identify the presence of n-alkanes with sizes ranging from n-C8H18 to n-C32H66. Ab-initio calculations of formation free energies, kinetic barriers, and kinetic chemical network modelling lead us to propose a gas-phase growth mechanism for the formation of large n-alkanes based on methyl-methylene addition (MMA). In this process, methylene serves as both a reagent and a catalyst for carbon chain growth. Our study provides evidence of an aliphatic gas-phase synthesis mechanism around evolved stars and provides a potential explanation for its presence in interstellar dust and meteorites.
Collapse
Affiliation(s)
- P Merino
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
| | - L Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - G Santoro
- Instituto de Estructura de la Materia (IEM), CSIC, Serrano 121, 28006, Madrid, Spain
| | - J I Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - K Lauwaet
- Instituto Madrileño de Estudios Avanzados IMDEA Nanociencia, Madrid, Spain
| | - M Accolla
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
- INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - N Ruiz Del Arbol
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - C Sánchez-Sánchez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - A Martín-Jimenez
- Instituto Madrileño de Estudios Avanzados IMDEA Nanociencia, Madrid, Spain
| | - R Otero
- Instituto Madrileño de Estudios Avanzados IMDEA Nanociencia, Madrid, Spain
- Dep. De Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IFIMAC, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M Piantek
- Laboratorio de Microscopias Avanzadas, Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018, Zaragoza, Spain
| | - D Serrate
- Laboratorio de Microscopias Avanzadas, Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018, Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-UNIZAR, 50009, Zaragoza, Spain
| | - R Lebrón-Aguilar
- Instituto de Química-Física "Blas Cabrera" (IQF), CSIC, Serrano, 119, 28006, Madrid, Spain
| | - J E Quintanilla-López
- Instituto de Química-Física "Blas Cabrera" (IQF), CSIC, Serrano, 119, 28006, Madrid, Spain
| | - J Mendez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - P L De Andres
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - J A Martín-Gago
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| |
Collapse
|
3
|
Preston LJ, Jungblut AD, Montgomery W, Ballard CJ, Wilbraham J. The Preservation and Spectral Detection of Historic Museum Specimen Microbial Mat Biosignatures Within Martian Dust: Lessons Learned for Mars Exploration and Sample Return. ASTROBIOLOGY 2024; 24:684-697. [PMID: 38979614 DOI: 10.1089/ast.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The key building blocks for life on Mars could be preserved within potentially habitable paleo-depositional settings with their detection possible by utilizing mid-infrared spectroscopy; however, a definite identification and confirmation of organic or even biological origin will require the samples to be returned to Earth. In the present study, Fourier-transform infrared (FTIR) spectroscopic techniques were used to characterize both mineralogical and organic materials within Mars dust simulant JSC Mars-1 and ancient Antarctic cyanobacterial microbial mats from 1901 to 1904 Discovery Expedition. When FTIR spectroscopy is applied to cyanobacterial microbial mat communities, the resulting spectra will reflect the average biochemical composition of the mats rather than taxa-specific spectral patterns of the individual organisms and can thus be considered as a total chemical analysis of the mat colony. This study also highlights the potential difficulties in the detection of these communities on Mars and which spectral biosignatures will be most detectable within geological substrates. Through the creation and analysis of a suite of dried microbial mat material and Martian dust simulant mixtures, the spectral signatures and wavenumber positions of CHx aliphatic hydrocarbons and the C-O and O-H bands of polysaccharides remained detectable and may be detectable within sample mixtures obtained through Mars Sample Return activities.
Collapse
Affiliation(s)
- Louisa J Preston
- Department of Space & Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Anne D Jungblut
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Wren Montgomery
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Connor J Ballard
- Department of Space & Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
| | - Jo Wilbraham
- Life Sciences Department, Natural History Museum, London, United Kingdom
| |
Collapse
|
4
|
Styczinski MJ, Cooper ZS, Glaser DM, Lehmer O, Mierzejewski V, Tarnas J. Chapter 7: Assessing Habitability Beyond Earth. ASTROBIOLOGY 2024; 24:S143-S163. [PMID: 38498826 DOI: 10.1089/ast.2021.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.
Collapse
Affiliation(s)
- M J Styczinski
- University of Washington, Seattle, Washington, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Z S Cooper
- University of Washington, Seattle, Washington, USA
| | - D M Glaser
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - O Lehmer
- NASA Ames Research Center, Moffett Field, California, USA
| | - V Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | - J Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
5
|
Schaible MJ, Szeinbaum N, Bozdag GO, Chou L, Grefenstette N, Colón-Santos S, Rodriguez LE, Styczinski MJ, Thweatt JL, Todd ZR, Vázquez-Salazar A, Adams A, Araújo MN, Altair T, Borges S, Burton D, Campillo-Balderas JA, Cangi EM, Caro T, Catalano E, Chen K, Conlin PL, Cooper ZS, Fisher TM, Fos SM, Garcia A, Glaser DM, Harman CE, Hermis NY, Hooks M, Johnson-Finn K, Lehmer O, Hernández-Morales R, Hughson KHG, Jácome R, Jia TZ, Marlow JJ, McKaig J, Mierzejewski V, Muñoz-Velasco I, Nural C, Oliver GC, Penev PI, Raj CG, Roche TP, Sabuda MC, Schaible GA, Sevgen S, Sinhadc P, Steller LH, Stelmach K, Tarnas J, Tavares F, Trubl G, Vidaurri M, Vincent L, Weber JM, Weng MM, Wilpiszeki RL, Young A. Chapter 1: The Astrobiology Primer 3.0. ASTROBIOLOGY 2024; 24:S4-S39. [PMID: 38498816 DOI: 10.1089/ast.2021.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.
Collapse
Affiliation(s)
- Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M J Styczinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- University of Washington, Seattle, Washington, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA
| | | | - Dana Burton
- Department of Anthropology, George Washington University, Washington DC, USA
| | | | - Eryn M Cangi
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | - Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Z S Cooper
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Santiago Mestre Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amanda Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - D M Glaser
- Arizona State University, Tempe, Arizona, USA
| | - Chester E Harman
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada, Spain
| | - M Hooks
- NASA Johnson Space Center, Houston, Texas, USA
| | - K Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Owen Lehmer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kynan H G Hughson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jordan McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Veronica Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - George A Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Serhat Sevgen
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Kamil Stelmach
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - J Tarnas
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Frank Tavares
- Space Enabled Research Group, MIT Media Lab, Cambridge, Massachusetts, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica Vidaurri
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Department of Physics and Astronomy, Howard University, Washington DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
6
|
Jayasinghe SA, Kennedy F, McMinn A, Martin A. Bacterial Utilisation of Aliphatic Organics: Is the Dwarf Planet Ceres Habitable? Life (Basel) 2022; 12:821. [PMID: 35743852 PMCID: PMC9224870 DOI: 10.3390/life12060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
The regolith environment and associated organic material on Ceres is analogous to environments that existed on Earth 3-4 billion years ago. This has implications not only for abiogenesis and the theory of transpermia, but it provides context for developing a framework to contrast the limits of Earth's biosphere with extraterrestrial environments of interest. In this study, substrate utilisation by the ice-associated bacterium Colwellia hornerae was examined with respect to three aliphatic organic hydrocarbons that may be present on Ceres: dodecane, isobutyronitrile, and dioctyl-sulphide. Following inoculation into a phyllosilicate regolith spiked with a hydrocarbon (1% or 20% organic concentration wt%), cell density, electron transport activity, oxygen consumption, and the production of ATP, NADPH, and protein in C. hornerae was monitored for a period of 32 days. Microbial growth kinetics were correlated with changes in bioavailable carbon, nitrogen, and sulphur. We provide compelling evidence that C. hornerae can survive and grow by utilising isobutyronitrile and, in particular, dodecane. Cellular growth, electron transport activity, and oxygen consumption increased significantly in dodecane at 20 wt% compared to only minor growth at 1 wt%. Importantly, the reduction in total carbon, nitrogen, and sulphur observed at 20 wt% is attributed to biotic, rather than abiotic, processes. This study illustrates that short-term bacterial incubation studies using exotic substrates provide a useful indicator of habitability. We suggest that replicating the regolith environment of Ceres warrants further study and that this dwarf planet could be a valid target for future exploratory missions.
Collapse
Affiliation(s)
- Sahan A. Jayasinghe
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Fraser Kennedy
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Andrew Martin
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
7
|
Nordheim TA, Castillo-Rogez JC, Villarreal MN, Scully JEC, Costello ES. The Radiation Environment of Ceres and Implications for Surface Sampling. ASTROBIOLOGY 2022; 22:509-519. [PMID: 35447049 DOI: 10.1089/ast.2021.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ceres is a large water-rich dwarf planet located within the asteroid belt. Its surface displays evidence of material sourced from a deep subsurface liquid brine layer within recent geologic time, making it a candidate ocean world with possible present-day activity. However, Ceres lacks a substantial atmosphere and likely does not possess a global magnetic field. Therefore, any material emplaced or exposed on the surface will be subject to weathering by charged particles of solar and galactic origin. We have evaluated the effect of charged particle radiation on material within the near-surface of Ceres and find that the timescale for radiation-induced modification and destruction of organics and endogenic material is ∼100 Myr to 1 Gyr within the top 10-20 cm of the surface. Furthermore, we find that the timescale for sterilization of any putative living organisms contained within material at these depths is <500 kyr. Future missions to the surface may therefore consider targeting regions with geologic ages that fall between these two timescales to avoid the risk of backward contamination while ensuring that sampled material is not heavily radiation processed.
Collapse
Affiliation(s)
- T A Nordheim
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J C Castillo-Rogez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M N Villarreal
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J E C Scully
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - E S Costello
- University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Hawaii Institute of Geophysics and Planetology, Honolulu, Hawaii, USA
| |
Collapse
|
8
|
Nathues A, Hoffmann M, Schmedemann N, Sarkar R, Thangjam G, Mengel K, Hernandez J, Hiesinger H, Pasckert JH. Brine residues and organics in the Urvara basin on Ceres. Nat Commun 2022; 13:927. [PMID: 35194036 PMCID: PMC8863799 DOI: 10.1038/s41467-022-28570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Ceres is a partially differentiated dwarf planet, as confirmed by NASA's Dawn mission. The Urvara basin (diameter ~170 km) is its third-largest impact feature, enabling insights into the cerean crust. Urvara's geology and mineralogy suggest a potential brine layer at the crust-mantle transition. Here we report new findings that help in understanding the structure and composition of the cerean crust. These results were derived by using the highest-resolution Framing Camera images acquired by Dawn at Ceres. Unexpectedly, we found meter-scale concentrated exposures of bright material (salts) along the crater's upper central ridge, which originate from an enormous depth, possibly from a deep-seated brine or salt reservoir. An extended resurfacing modified the southern floor ~100 Myr after crater formation (~250 Myr), long after the dissipation of the impact-generated heat. In this resurfaced area, one floor scarp shows a granular flow pattern of bright material, showing spectra consistent with the presence of organic material, the first such finding on Ceres beyond the vast Ernutet area. Our results strengthen the hypothesis that Ceres is and has been a geologically active world even in recent epochs, with salts and organic-rich material playing a major role in its evolution.
Collapse
Affiliation(s)
- A Nathues
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077, Goettingen, Germany.
| | - M Hoffmann
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077, Goettingen, Germany
| | - N Schmedemann
- Institut für Planetologie, WWU Münster, Münster, Germany
| | - R Sarkar
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077, Goettingen, Germany
| | - G Thangjam
- School of Earth and Planetary Sciences, National Institute of Science Education and Research, NISER, HBNI, Bhubaneswar, India
| | - K Mengel
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077, Goettingen, Germany
| | - J Hernandez
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077, Goettingen, Germany
| | - H Hiesinger
- Institut für Planetologie, WWU Münster, Münster, Germany
| | - J H Pasckert
- Institut für Planetologie, WWU Münster, Münster, Germany
| |
Collapse
|
9
|
Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles 2022; 26:7. [PMID: 34993644 PMCID: PMC8739323 DOI: 10.1007/s00792-021-01253-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
As we aim to expand human presence in space, we need to find viable approaches to achieve independence from terrestrial resources. Space biomining of the Moon, Mars and asteroids has been indicated as one of the promising approaches to achieve in-situ resource utilization by the main space agencies. Structural and expensive metals, essential mineral nutrients, water, oxygen and volatiles could be potentially extracted from extraterrestrial regolith and rocks using microbial-based biotechnologies. The use of bioleaching microorganisms could also be applied to space bioremediation, recycling of waste and to reinforce regenerative life support systems. However, the science around space biomining is still young. Relevant differences between terrestrial and extraterrestrial conditions exist, including the rock types and ores available for mining, and a direct application of established terrestrial biomining techniques may not be a possibility. It is, therefore, necessary to invest in terrestrial and space-based research of specific methods for space applications to learn the effects of space conditions on biomining and bioremediation, expand our knowledge on organotrophic and community-based bioleaching mechanisms, as well as on anaerobic biomining, and investigate the use of synthetic biology to overcome limitations posed by the space environments.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
10
|
Shi X, Castillo-Rogez J, Hsieh H, Hui H, Ip WH, Lei H, Li JY, Tosi F, Zhou L, Agarwal J, Barucci A, Beck P, Bagatin AC, Capaccioni F, Coates AJ, Cremonese G, Duffard R, Grande M, Jaumann R, Jones GH, Kallio E, Lin Y, Mousis O, Nathues A, Oberst J, Sierks H, Ulamec S, Wang M. GAUSS - genesis of asteroids and evolution of the solar system: A sample return mission to Ceres. EXPERIMENTAL ASTRONOMY 2021; 54:713-744. [PMID: 36915624 PMCID: PMC9998589 DOI: 10.1007/s10686-021-09800-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2021] [Indexed: 06/18/2023]
Abstract
The goal of Project GAUSS (Genesis of Asteroids and evolUtion of the Solar System) is to return samples from the dwarf planet Ceres. Ceres is the most accessible candidate of ocean worlds and the largest reservoir of water in the inner Solar System. It shows active volcanism and hydrothermal activities in recent history. Recent evidence for the existence of a subsurface ocean on Ceres and the complex geochemistry suggest past habitability and even the potential for ongoing habitability. GAUSS will return samples from Ceres with the aim of answering the following top-level scientific questions: What is the origin of Ceres and what does this imply for the origin of water and other volatiles in the inner Solar System?What are the physical properties and internal structure of Ceres? What do they tell us about the evolutionary and aqueous alteration history of dwarf planets?What are the astrobiological implications of Ceres? Is it still habitable today?What are the mineralogical connections between Ceres and our current collections of carbonaceous meteorites?
Collapse
Affiliation(s)
- Xian Shi
- Max Planck Institute for Solar System Research, Göttingen, Germany
- Present Address: Shanghai Astronomical Observatory, Shanghai, China
| | | | | | - Hejiu Hui
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Wing-Huen Ip
- Institute of Astronomy and Space Science, National Central University, Chung Li, Taiwan
| | - Hanlun Lei
- School of Astronomy and Space Science, Nanjing University, Nanjing, China
| | | | - Federico Tosi
- Istituto Nazionale di AstroFisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Liyong Zhou
- School of Astronomy and Space Science, Nanjing University, Nanjing, China
| | - Jessica Agarwal
- Max Planck Institute for Solar System Research, Göttingen, Germany
- Institute for Geophysics and Extraterrestrial Physics, Technical University Braunschweig, Braunschweig, Germany
| | - Antonella Barucci
- LESIA-Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, F-92195 Meudon, Principal Cedex, France
| | - Pierre Beck
- CNRS Institut de Planétologie et d’Astrophysique, Univ. Grenoble Alpes, Grenoble, France
| | - Adriano Campo Bagatin
- Universidad de Alicante, Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Alicante, Spain
| | - Fabrizio Capaccioni
- Istituto Nazionale di AstroFisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Andrew J. Coates
- Mullard Space Science Laboratory, University College London, Surrey, UK
| | | | - Rene Duffard
- Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain
| | | | - Ralf Jaumann
- Institute of Geological Sciences, Free University of Berlin, Berlin, Germany
| | - Geraint H. Jones
- Mullard Space Science Laboratory, University College London, Surrey, UK
| | - Esa Kallio
- School of Electrical Engineering, Aalto University, Aalto, Finland
| | - Yangting Lin
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Andreas Nathues
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Jürgen Oberst
- DLR Institute of Planetary Research, Berlin, Germany
| | - Holger Sierks
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Stephan Ulamec
- DLR Space Operations and Astronaut Training, Cologne, Germany
| | - Mingyuan Wang
- National Astronomical Observatory, Chinese Academy of Science, Beijing, China
| | | |
Collapse
|
11
|
Abstract
Ceres is the largest object in the main belt and it is also the most water-rich body in the inner solar system besides the Earth. The discoveries made by the Dawn Mission revealed that the composition of Ceres includes organic material, with a component of carbon globally present and also a high quantity of localized aliphatic organics in specific areas. The inferred mineralogy of Ceres indicates the long-term activity of a large body of liquid water that produced the alteration minerals discovered on its surface, including ammonia-bearing minerals. To explain the presence of ammonium in the phyllosilicates, Ceres must have accreted organic matter, ammonia, water and carbon present in the protoplanetary formation region. It is conceivable that Ceres may have also processed and transformed its own original organic matter that could have been modified by the pervasive hydrothermal alteration. The coexistence of phyllosilicates, magnetite, carbonates, salts, organics and a high carbon content point to rock–water alteration playing an important role in promoting widespread carbon occurrence.
Collapse
|
12
|
Laboratory Investigations Coupled to VIR/Dawn Observations to Quantify the Large Concentrations of Organic Matter on Ceres. MINERALS 2021. [DOI: 10.3390/min11070719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Organic matter directly observed at the surface of an inner planetary body is quite infrequent due to the usual low abundance of such matter and the limitation of the infrared technique. Fortuitously, the Dawn mission has revealed, thanks to the Visible and InfraRed mapping spectrometer (VIR), large areas rich in organic matter at the surface of Ceres, near Ernutet crater. The origin of the organic matter and its abundance in association with minerals, as indicated by the low altitude VIR data, remains unclear, but multiple lines of evidence support an endogenous origin. Here, we report an experimental investigation to determine the abundance of the aliphatic carbon signature observed on Ceres. We produced relevant analogues containing ammoniated-phyllosilicates, carbonates, aliphatic carbons (coals), and magnetite or amorphous carbon as darkening agents, and measured their reflectance by infrared spectroscopy. Measurements of these organic-rich analogues were directly compared to the VIR spectra taken from different locations around Ernutet crater. We found that the absolute reflectance of our analogues is at least two orders of magnitude higher than Ceres, but the depths of absorption bands match nicely the ones of the organic-rich Ceres spectra. The choices of the different components are discussed in comparison with VIR data. Relative abundances of the components are extrapolated from the spectra and mixture composition, considering that the differences in reflectance level is mainly due to optical effects. Absorption bands of Ceres’ organic-rich spectra are best reproduced by around 20 wt.% of carbon (a third being aliphatic carbons), in association with around 20 wt.% of carbonates, 15 wt.% of ammoniated-phyllosilicate, 20 wt.% of Mg-phyllosilicates, and 25 wt.% of darkening agent. Results also highlight the pertinence to use laboratory analogues in addition to models for planetary surface characterization. Such large quantities of organic materials near Ernutet crater, in addition to the amorphous carbon suspected on a global scale, requires a concentration mechanism whose nature is still unknown but that could potentially be relevant to other large volatile-rich bodies.
Collapse
|
13
|
Cockell CS, Wordsworth R, Whiteford N, Higgins PM. Minimum Units of Habitability and Their Abundance in the Universe. ASTROBIOLOGY 2021; 21:481-489. [PMID: 33513037 DOI: 10.1089/ast.2020.2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the search for habitability is a much-vaunted objective in the study of planetary environments, the material requirements for an environment to be habitable can be met with relatively few ingredients. In this hypothesis paper, the minimum material requirements for habitability are first re-evaluated, necessarily based on life "as we know it." From this vantage point, we explore examples of the minimum number of material requirements for habitable conditions to arise in a planetary environment, which we illustrate with "minimum habitability diagrams." These requirements raise the hypothesis that habitable conditions may be common throughout the universe. If the hypothesis was accepted, then the discovery of life would remain an important discovery, but habitable conditions on their own would be an unremarkable feature of the material universe. We discuss how minimum units of habitability provide a parsimonious way to consider the minimum number of geological inferences about a planetary body, and the minimum number of atmospheric components that must be measured, for example in the case of exoplanets, to be able to make assessments of habitability.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Robin Wordsworth
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Niall Whiteford
- Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, UK
| | - Peter M Higgins
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, UK
| |
Collapse
|
14
|
Wiens RC, Maurice S, Robinson SH, Nelson AE, Cais P, Bernardi P, Newell RT, Clegg S, Sharma SK, Storms S, Deming J, Beckman D, Ollila AM, Gasnault O, Anderson RB, André Y, Michael Angel S, Arana G, Auden E, Beck P, Becker J, Benzerara K, Bernard S, Beyssac O, Borges L, Bousquet B, Boyd K, Caffrey M, Carlson J, Castro K, Celis J, Chide B, Clark K, Cloutis E, Cordoba EC, Cousin A, Dale M, Deflores L, Delapp D, Deleuze M, Dirmyer M, Donny C, Dromart G, George Duran M, Egan M, Ervin J, Fabre C, Fau A, Fischer W, Forni O, Fouchet T, Fresquez R, Frydenvang J, Gasway D, Gontijo I, Grotzinger J, Jacob X, Jacquinod S, Johnson JR, Klisiewicz RA, Lake J, Lanza N, Laserna J, Lasue J, Le Mouélic S, Legett C, Leveille R, Lewin E, Lopez-Reyes G, Lorenz R, Lorigny E, Love SP, Lucero B, Madariaga JM, Madsen M, Madsen S, Mangold N, Manrique JA, Martinez JP, Martinez-Frias J, McCabe KP, McConnochie TH, McGlown JM, McLennan SM, Melikechi N, Meslin PY, Michel JM, Mimoun D, Misra A, Montagnac G, Montmessin F, Mousset V, Murdoch N, Newsom H, Ott LA, Ousnamer ZR, Pares L, Parot Y, Pawluczyk R, Glen Peterson C, Pilleri P, Pinet P, Pont G, Poulet F, Provost C, Quertier B, Quinn H, Rapin W, Reess JM, Regan AH, Reyes-Newell AL, Romano PJ, Royer C, Rull F, Sandoval B, Sarrao JH, Sautter V, Schoppers MJ, Schröder S, Seitz D, Shepherd T, Sobron P, Dubois B, Sridhar V, Toplis MJ, Torre-Fdez I, Trettel IA, Underwood M, Valdez A, Valdez J, Venhaus D, Willis P. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. SPACE SCIENCE REVIEWS 2021; 217:4. [PMID: 33380752 PMCID: PMC7752893 DOI: 10.1007/s11214-020-00777-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/27/2020] [Indexed: 05/16/2023]
Abstract
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( 105 - 7070 cm - 1 Raman shift relative to the 532 nm green laser beam) with 12 cm - 1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.
Collapse
Affiliation(s)
| | - Sylvestre Maurice
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | | | | | - Philippe Cais
- Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Bordeaux, France
| | - Pernelle Bernardi
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Meudon, France
| | | | - Sam Clegg
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | | | | | | | | | - Olivier Gasnault
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Ryan B. Anderson
- U.S. Geological Survey Astrogeology Science Center, Flagstaff, AZ USA
| | - Yves André
- Centre National d’Etudes Spatiales, Toulouse, France
| | | | - Gorka Arana
- University of Basque Country, UPV/EHU, Bilbao, Spain
| | | | - Pierre Beck
- Institut de Planétologie et d’Astrophysique de Grenoble, Université Grenoble Alpes, Grenoble, France
| | | | - Karim Benzerara
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | - Sylvain Bernard
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | - Olivier Beyssac
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | - Louis Borges
- Los Alamos National Laboratory, Los Alamos, NM USA
| | - Bruno Bousquet
- Centre Lasers Intenses et Applications, University of Bordeaux, Bordeaux, France
| | - Kerry Boyd
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | | | - Kepa Castro
- University of Basque Country, UPV/EHU, Bilbao, Spain
| | - Jorden Celis
- Los Alamos National Laboratory, Los Alamos, NM USA
| | - Baptiste Chide
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
- Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), Toulouse, France
| | - Kevin Clark
- Jet Propulsion Laboratory/Caltech, Pasadena, CA USA
| | | | | | - Agnes Cousin
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | | | | | | | | | | | | | - Gilles Dromart
- Univ Lyon, ENSL, Univ Lyon 1, CNRS, LGL-TPE, 69364 Lyon, France
| | | | | | - Joan Ervin
- Jet Propulsion Laboratory/Caltech, Pasadena, CA USA
| | - Cecile Fabre
- GeoRessources, Université de Lorraine, Nancy, France
| | - Amaury Fau
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | | | - Olivier Forni
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Thierry Fouchet
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Meudon, France
| | | | | | | | | | | | - Xavier Jacob
- Institut de mécanique des fluides de Toulouse (CNRS, INP, Univ. Toulouse), Toulouse, France
| | - Sophie Jacquinod
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Meudon, France
| | | | | | - James Lake
- Los Alamos National Laboratory, Los Alamos, NM USA
| | - Nina Lanza
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Jeremie Lasue
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Stéphane Le Mouélic
- Laboratoire de Planétologie et Géodynamique, Université de Nantes, Université d’Angers, CNRS UMR 6112, Nantes, France
| | - Carey Legett
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Eric Lewin
- Institut de Planétologie et d’Astrophysique de Grenoble, Université Grenoble Alpes, Grenoble, France
| | | | - Ralph Lorenz
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Eric Lorigny
- Centre National d’Etudes Spatiales, Toulouse, France
| | | | | | | | | | - Soren Madsen
- Jet Propulsion Laboratory/Caltech, Pasadena, CA USA
| | - Nicolas Mangold
- Laboratoire de Planétologie et Géodynamique, Université de Nantes, Université d’Angers, CNRS UMR 6112, Nantes, France
| | | | | | | | | | | | | | | | | | - Pierre-Yves Meslin
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | | | - David Mimoun
- Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), Toulouse, France
| | | | | | - Franck Montmessin
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Paris, France
| | | | - Naomi Murdoch
- Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), Toulouse, France
| | | | - Logan A. Ott
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Laurent Pares
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Yann Parot
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | | | | | - Paolo Pilleri
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Patrick Pinet
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Gabriel Pont
- Centre National d’Etudes Spatiales, Toulouse, France
| | | | | | - Benjamin Quertier
- Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Bordeaux, France
| | | | - William Rapin
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | - Jean-Michel Reess
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Meudon, France
| | - Amy H. Regan
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | | | - Clement Royer
- Institut d’Astrophysique Spatiale (IAS), Orsay, France
| | | | | | | | - Violaine Sautter
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | | | - Susanne Schröder
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Optical Sensor Systems, Berlin, Germany
| | - Daniel Seitz
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | | | - Bruno Dubois
- Université de Toulouse; UPS-OMP, Toulouse, France
| | | | - Michael J. Toplis
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | | | | | | | | | - Jacob Valdez
- Los Alamos National Laboratory, Los Alamos, NM USA
| | - Dawn Venhaus
- Los Alamos National Laboratory, Los Alamos, NM USA
| | - Peter Willis
- Jet Propulsion Laboratory/Caltech, Pasadena, CA USA
| |
Collapse
|
15
|
Raponi A, De Sanctis MC, Giacomo Carrozzo F, Ciarniello M, Rousseau B, Ferrari M, Ammannito E, De Angelis S, Vinogradoff V, Castillo-Rogez JC, Tosi F, Frigeri A, Formisano M, Zambon F, Raymond CA, Russell CT. Organic Material on Ceres: Insights from Visible and Infrared Space Observations. Life (Basel) 2020; 11:life11010009. [PMID: 33374247 PMCID: PMC7823631 DOI: 10.3390/life11010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
The NASA/Dawn mission has acquired unprecedented measurements of the surface of the dwarf planet Ceres, the composition of which is a mixture of ultra-carbonaceous material, phyllosilicates, carbonates, organics, Fe-oxides, and volatiles as determined by remote sensing instruments including the VIR imaging spectrometer. We performed a refined analysis merging visible and infrared observations of Ceres’ surface for the first time. The overall shape of the combined spectrum suggests another type of silicate not previously considered, and we confirmed a large abundance of carbon material. More importantly, by analyzing the local spectra of the organic-rich region of the Ernutet crater, we identified a reddening in the visible range, strongly correlated to the aliphatic signature at 3.4 µm. Similar reddening was found in the bright material making up Cerealia Facula in the Occator crater. This implies that organic material might be present in the source of the faculae, where brines and organics are mixed in an environment that may be favorable for prebiotic chemistry.
Collapse
Affiliation(s)
- Andrea Raponi
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
- Correspondence:
| | - Maria Cristina De Sanctis
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Filippo Giacomo Carrozzo
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Mauro Ciarniello
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Batiste Rousseau
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Marco Ferrari
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | | | - Simone De Angelis
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Vassilissa Vinogradoff
- Physique des Interactions Ioniques et Moléculaires, PIIM, Université d’Aix-Marseille, 13013 Marseille, France;
| | - Julie C. Castillo-Rogez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (J.C.C.-R.); (C.A.R.)
| | - Federico Tosi
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Alessandro Frigeri
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Michelangelo Formisano
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Francesca Zambon
- Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; (M.C.D.S.); (F.G.C.); (M.C.); (B.R.); (M.F.); (S.D.A.); (F.T.); (A.F.); (M.F.); (F.Z.)
| | - Carol A. Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (J.C.C.-R.); (C.A.R.)
| | - Christopher T. Russell
- Earth Planetary and Space Sciences, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
16
|
Simon AA, Kaplan HH, Hamilton VE, Lauretta DS, Campins H, Emery JP, Barucci MA, DellaGiustina DN, Reuter DC, Sandford SA, Golish DR, Lim LF, Ryan A, Rozitis B, Bennett CA. Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu. Science 2020; 370:science.abc3522. [PMID: 33033153 DOI: 10.1126/science.abc3522] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 11/02/2022]
Abstract
Asteroid (101955) Bennu is a dark asteroid on an Earth-crossing orbit that is thought to have assembled from the fragments of an ancient collision. We use spatially resolved visible and near-infrared spectra of Bennu to investigate its surface properties and composition. In addition to a hydrated phyllosilicate band, we detect a ubiquitous 3.4-micrometer absorption feature, which we attribute to a mix of organic and carbonate materials. The shape and depth of this absorption feature vary across Bennu's surface, spanning the range seen among similar main-belt asteroids. The distribution of the absorption feature does not correlate with temperature, reflectance, spectral slope, or hydrated minerals, although some of those characteristics correlate with each other. The deepest 3.4-micrometer absorptions occur on individual boulders. The variations may be due to differences in abundance, recent exposure, or space weathering.
Collapse
Affiliation(s)
- Amy A Simon
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA.
| | | | | | - Dante S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Humberto Campins
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Joshua P Emery
- Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - M Antonietta Barucci
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Université de Paris, Sorbonne Université, Meudon, France
| | | | - Dennis C Reuter
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | - Dathon R Golish
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Lucy F Lim
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Andrew Ryan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Benjamin Rozitis
- School of Physical Sciences, The Open University, Milton Keynes, UK
| | - Carina A Bennett
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Kaplan HH, Lauretta DS, Simon AA, Hamilton VE, DellaGiustina DN, Golish DR, Reuter DC, Bennett CA, Burke KN, Campins H, Connolly HC, Dworkin JP, Emery JP, Glavin DP, Glotch TD, Hanna R, Ishimaru K, Jawin ER, McCoy TJ, Porter N, Sandford SA, Ferrone S, Clark BE, Li JY, Zou XD, Daly MG, Barnouin OS, Seabrook JA, Enos HL. Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history. Science 2020; 370:science.abc3557. [PMID: 33033155 DOI: 10.1126/science.abc3557] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/24/2020] [Indexed: 11/02/2022]
Abstract
The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System. We present spectra of the Nightingale crater region on near-Earth asteroid Bennu with a distinct infrared absorption around 3.4 micrometers. Corresponding images of boulders show centimeters-thick, roughly meter-long bright veins. We interpret the veins as being composed of carbonates, similar to those found in aqueously altered carbonaceous chondrite meteorites. If the veins on Bennu are carbonates, fluid flow and hydrothermal deposition on Bennu's parent body would have occurred on kilometer scales for thousands to millions of years. This suggests large-scale, open-system hydrothermal alteration of carbonaceous asteroids in the early Solar System.
Collapse
Affiliation(s)
- H H Kaplan
- NASA Goddard Space Flight Center, Greenbelt, MD, USA. .,Southwest Research Institute, Boulder, CO, USA
| | - D S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - A A Simon
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | - D N DellaGiustina
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - D R Golish
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - D C Reuter
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - C A Bennett
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - K N Burke
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - H Campins
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - H C Connolly
- Department of Geology, School of Earth and Environment, Rowan University, Glassboro, NJ, USA.,Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - J P Dworkin
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J P Emery
- Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - D P Glavin
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - T D Glotch
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - R Hanna
- Jackson School of Geosciences, University of Texas, Austin, TX, USA
| | - K Ishimaru
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - E R Jawin
- Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - T J McCoy
- Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - N Porter
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - S A Sandford
- NASA Ames Research Center, Mountain View, CA, USA
| | - S Ferrone
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA
| | - B E Clark
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA
| | - J-Y Li
- Planetary Science Institute, Tucson, AZ, USA
| | - X-D Zou
- Planetary Science Institute, Tucson, AZ, USA
| | - M G Daly
- Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada
| | - O S Barnouin
- John Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - J A Seabrook
- Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada
| | - H L Enos
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
18
|
Organic Molecules: Is It Possible to Distinguish Aromatics from Aliphatics Collected by Space Missions in High-Speed Impacts? SCI 2020. [DOI: 10.3390/sci2030056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A prime site of astrobiological interest within the Solar System is the interior ocean of Enceladus. This ocean has already been shown to contain organic molecules, and is thought to have the conditions necessary for more complex organic biomolecules to emerge and potentially even life itself. This sub-surface ocean has been accessed by Cassini, an unmanned spacecraft that interacted with the water plumes ejected naturally from Enceladus. The encounter speed with these plumes and their contents, was between 5 and 15 km s−1. Encounters at such speeds allow analysis of vapourised material from submicron-sized particles within the plume, but sampling micron-sized particles remains an open question. The latter particles can impact metal targets exposed on the exterior of future spacecraft, producing impact craters lined with impactor residue, which can then be analysed. Although there is considerable literature on how mineral grains behave in such high-speed impacts, and also on the relationship between the crater residue and the original grain composition, far less is known regarding the behaviour of organic particles. Here we consider a deceptively simple yet fundamental scientific question: for impacts at speeds of around 5−6 kms−1 would the impactor residue alone be sufficient to enable us to recognise the signature conferred by organic particles? Furthermore, would it be possible to identify the organic molecules involved, or at least distinguish between aromatic and aliphatic chemical structures? For polystyrene (aromatic-rich) and polymethylmethacrylate (solely aliphatic) latex particles impinging at around 5 km s−1 onto metal targets, we find that sufficient residue is retained at the impact site to permit identification of a carbon-rich projectile, but not of the particular molecules involved, nor is it currently possible to discriminate between aromatic-rich and solely aliphatic particles. This suggests that an alternative analytical method to simple impacts on metal targets is required to enable successful collection of organic samples in a fly-by Enceladus mission, or, alternatively, a lower encounter speed is required.
Collapse
|
19
|
Organic Molecules: Is It Possible to Distinguish Aromatics from Aliphatics Collected by Space Missions in High-Speed Impacts? SCI 2020. [DOI: 10.3390/sci2020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A prime site of astrobiological interest within the Solar System is the interior ocean of Enceladus. This ocean has already been shown to contain organic molecules, and is thought to have the conditions necessary for more complex organic biomolecules to emerge and potentially even life itself. This sub-surface ocean has been accessed by Cassini, an unmanned spacecraft that interacted with the water plumes ejected naturally from Enceladus. The encounter speed with these plumes and their contents, was between 5 and 15 km s−1. Encounters at such speeds allow analysis of vapourised material from submicron-sized particles within the plume, but sampling micron-sized particles remains an open question. The latter particles can impact metal targets exposed on the exterior of future spacecraft, producing impact craters lined with impactor residue, which can then be analysed. Although there is considerable literature on how mineral grains behave in such high-speed impacts, and also on the relationship between the crater residue and the original grain composition, far less is known regarding the behaviour of organic particles. Here we consider a deceptively simple yet fundamental scientific question: for impacts at speeds of around 5–6 kms−1 would the impactor residue alone be sufficient to enable us to recognise the signature conferred by organic particles? Furthermore, would it be possible to identify the organic molecules involved, or at least distinguish between aromatic and aliphatic chemical structures? For polystyrene (aromatic-rich) and poly(methyl methacrylate) (solely aliphatic) latex particles impinging at around 5 km s−1 onto metal targets, we find that sufficient residue is retained at the impact site to permit identification of a carbon-rich projectile, but not of the particular molecules involved, nor is it currently possible to discriminate between aromatic-rich and solely aliphatic particles. This suggests that an alternative analytical method to simple impacts on metal targets is required to enable successful collection of organic samples in a fly-by Enceladus mission, or, alternatively, a lower encounter speed is required.
Collapse
|
20
|
Organic Molecules: Is It Possible To Distinguish Aromatics From Aliphatics Collected By Space Missions in High-Speed Impacts. SCI 2020. [DOI: 10.3390/sci2010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A prime site of astrobiological interest within the Solar System is the interior ocean of Enceladus. This ocean has already been shown to contain organic molecules, and is thought to have the conditions necessary for more complex organic biomolecules to emerge and potentially even life itself. This sub-surface ocean has been accessed by Cassini, an unmanned spacecraft that interacted with the water plumes ejected naturally from Enceladus. The encounter speed with these plumes and their contents, was 5 km s−1 and above. Encounters at such speeds allow analysis of vapourised material from submicron-sized particles within the plume, but sampling micron-sized particles remains an open question. The latter particles can impact metal targets exposed on the exterior of future spacecraft, producing impact craters lined with impactor residue, which can then be analysed. Although there is considerable literature on how mineral grains behave in such high-speed impacts, and also on the relationship between the crater residue and the original grain composition, far less is known regarding the behaviour of organic particles. Here we consider a deceptively simple yet fundamental scientific question: for impacts at speeds of around 5−6 kms−1 would the impactor residue alone be sufficient to enable us to recognise the signature conferred by organic particles? Furthermore, would it be possible to identify the organic molecules involved, or at least distinguish between aromatic and aliphatic chemical structures? For polystyrene (aromatic-rich) and poly(methyl methacrylate) (solely aliphatic) latex particles impinging at around 5 km s-1 onto metal targets, we find that sufficient residue is retained at the impact site to permit identification of a carbon-rich projectile, but not of the particular molecules involved, nor is it currently possible to discriminate between aromatic-rich and solely aliphatic particles. This suggests that an alternative analytical method to simple impacts on metal targets is required to enable successful collection of organic samples in a fly-by Enceladus mission, or, alternatively, a lower encounter speed is required.
Collapse
|
21
|
Castillo-Rogez JC, Neveu M, Scully JEC, House CH, Quick LC, Bouquet A, Miller K, Bland M, De Sanctis MC, Ermakov A, Hendrix AR, Prettyman TH, Raymond CA, Russell CT, Sherwood BE, Young E. Ceres: Astrobiological Target and Possible Ocean World. ASTROBIOLOGY 2020; 20:269-291. [PMID: 31904989 DOI: 10.1089/ast.2018.1999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ceres, the most water-rich body in the inner solar system after Earth, has recently been recognized to have astrobiological importance. Chemical and physical measurements obtained by the Dawn mission enabled the quantification of key parameters, which helped to constrain the habitability of the inner solar system's only dwarf planet. The surface chemistry and internal structure of Ceres testify to a protracted history of reactions between liquid water, rock, and likely organic compounds. We review the clues on chemical composition, temperature, and prospects for long-term occurrence of liquid and chemical gradients. Comparisons with giant planet satellites indicate similarities both from a chemical evolution standpoint and in the physical mechanisms driving Ceres' internal evolution.
Collapse
Affiliation(s)
| | - Marc Neveu
- Sciences and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, Maryland
- University of Maryland College Park, Greenbelt, Maryland
| | - Jennifer E C Scully
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Christopher H House
- Department of Geosciences,Penn State Astrobiology Research Center, The Pennsylvania State University, University Park, Pennsylvania
| | - Lynnae C Quick
- Sciences and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Alexis Bouquet
- LAM (Laboratoire d'Astrophysique de Marseille), Aix Marseille Université, CNRS, UMR 7326, Marseille, France
| | - Kelly Miller
- Southwest Research Institute, San Antonio, Texas
| | | | | | - Anton Ermakov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - Carol A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Christopher T Russell
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California
| | | | - Edward Young
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California
| |
Collapse
|
22
|
Taubner RS, Olsson-Francis K, Vance SD, Ramkissoon NK, Postberg F, de Vera JP, Antunes A, Camprubi Casas E, Sekine Y, Noack L, Barge L, Goodman J, Jebbar M, Journaux B, Karatekin Ö, Klenner F, Rabbow E, Rettberg P, Rückriemen-Bez T, Saur J, Shibuya T, Soderlund KM. Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans. SPACE SCIENCE REVIEWS 2020; 216:9. [PMID: 32025060 PMCID: PMC6977147 DOI: 10.1007/s11214-020-0635-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/06/2020] [Indexed: 05/05/2023]
Abstract
The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus' plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Archaea Biology and Ecogenomics Division, University of Vienna, Vienna, Austria
| | | | | | | | | | | | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau SAR, China
| | | | | | - Lena Noack
- Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | - Elke Rabbow
- German Aerospace Center (DLR), Cologne, Germany
| | | | | | | | - Takazo Shibuya
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | |
Collapse
|
23
|
Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem Rev 2019; 120:4660-4689. [DOI: 10.1021/acs.chemrev.9b00474] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel P. Glavin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Aaron S. Burton
- NASA Johnson Space Center, Houston, Texas 77058, United States
| | - Jamie E. Elsila
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - José C. Aponte
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- Catholic University of America, Washington, D.C. 20064, United States
| | - Jason P. Dworkin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
24
|
Kahana A, Schmitt-Kopplin P, Lancet D. Enceladus: First Observed Primordial Soup Could Arbitrate Origin-of-Life Debate. ASTROBIOLOGY 2019; 19:1263-1278. [PMID: 31328961 PMCID: PMC6785169 DOI: 10.1089/ast.2019.2029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/03/2019] [Indexed: 05/02/2023]
Abstract
A recent breakthrough publication has reported complex organic molecules in the plumes emanating from the subglacial water ocean of Saturn's moon Enceladus (Postberg et al., 2018, Nature 558:564-568). Based on detailed chemical scrutiny, the authors invoke primordial or endogenously synthesized carbon-rich monomers (<200 u) and polymers (up to 8000 u). This appears to represent the first reported extraterrestrial organics-rich water body, a conceivable milieu for early steps in life's origin ("prebiotic soup"). One may ask which origin-of-life scenario appears more consistent with the reported molecular configurations on Enceladus. The observed monomeric organics are carbon-rich unsaturated molecules, vastly different from present-day metabolites, amino acids, and nucleotide bases, but quite chemically akin to simple lipids. The organic polymers are proposed to resemble terrestrial insoluble kerogens and humic substances, as well as refractory organic macromolecules found in carbonaceous chondritic meteorites. The authors posit that such polymers, upon long-term hydrous interactions, might break down to micelle-forming amphiphiles. In support of this, published detailed analyses of the Murchison chondrite are dominated by an immense diversity of likely amphiphilic monomers. Our specific quantitative model for compositionally reproducing lipid micelles is amphiphile-based and benefits from a pronounced organic diversity. It thus contrasts with other origin models, which require the presence of very specific building blocks and are expected to be hindered by excess of irrelevant compounds. Thus, the Enceladus finds support the possibility of a pre-RNA Lipid World scenario for life's origin.
Collapse
Affiliation(s)
- Amit Kahana
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan, Germany
| | - Doron Lancet
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Organic Molecules: Is It Possible to Distinguish Aromatics from Aliphatics Collected by Space Missions in High Speed Impacts? SCI 2019. [DOI: 10.3390/sci1020053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A prime site of astrobiological interest within the Solar System is the interior ocean of Enceladus. This ocean has already been shown to contain organic molecules and is thought to have the conditions necessary for more complex organic biomolecules to emerge and potentially even life itself. This sub-surface ocean has been accessed by Cassini, an unmanned spacecraft that interacted with the water plumes ejected naturally from Enceladus. The encounter speed with these plumes and their contents was 5 km s−1 and above. Encounters at such speeds allow analysis of vaporised material from submicron-sized particles within the plume, but sampling micron-sized particles remains an open question. The latter particles can impact metal targets exposed on the exterior of future spacecraft, producing impact craters lined with impactor residue, which can then be analysed. Although there is considerable literature on how mineral grains behave in such high-speed impacts, and also on the relationship between the crater residue and the original grain composition, far less is known regarding the behaviour of organic particles. Here we consider a deceptively simple yet fundamental scientific question: for impacts at speeds of around 5–6 kms−1 would the impactor residue alone be sufficient to enable us to recognise the signature conferred by organic particles? Furthermore, would it be possible to identify the organic molecules involved, or at least distinguish between aromatic and aliphatic chemical structures? For polystyrene (aromatic-rich) and poly (methyl methacrylate) (solely aliphatic) latex particles impinging at around 5 km s−1 onto metal targets, we found that sufficient residue is retained at the impact site to permit identification of a carbon-rich projectile, but not of the particular molecules involved, nor is it currently possible to discriminate between aromatic-rich and solely aliphatic particles. This suggests that an alternative analytical method to simple impacts on metal targets is required to enable successful collection of organic samples in a fly-by Enceladus mission.
Collapse
|
26
|
Noun M, Baklouti D, Brunetto R, Borondics F, Calligaro T, Dionnet Z, Le Sergeant d'Hendecourt L, Nsouli B, Ribaud I, Roumie M, Della-Negra S. A Mineralogical Context for the Organic Matter in the Paris Meteorite Determined by A Multi-Technique Analysis. Life (Basel) 2019; 9:E44. [PMID: 31151218 PMCID: PMC6617381 DOI: 10.3390/life9020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 11/25/2022] Open
Abstract
This study is a multi-technique investigation of the Paris carbonaceous chondrite directly applied on two selected 500 × 500 µm² areas of a millimetric fragment, without any chemical extraction. By mapping the partial hydration of the amorphous silicate phase dominating the meteorite sample matrix, infrared spectroscopy gave an interesting glimpse into the way the fluid may have circulated into the sample and partially altered it. The TOF-SIMS in-situ analysis allowed the studying and mapping of the wide diversity of chemical moieties composing the meteorite organic content. The results of the combined techniques show that at the micron scale, the organic matter was always spatially associated with the fine-grained and partially-hydrated amorphous silicates and to the presence of iron in different chemical states. These systematic associations, illustrated in previous studies of other carbonaceous chondrites, were further supported by the identification by TOF-SIMS of cyanide and/or cyanate salts that could be direct remnants of precursor ices that accreted with dust during the parent body formation, and by the detection of different metal-containing large organic ions. Finally, the results obtained emphasized the importance of studying the specific interactions taking place between organic and mineral phases in the chondrite matrix, in order to investigate their role in the evolution story of primitive organic matter in meteorite parent bodies.
Collapse
Affiliation(s)
- Manale Noun
- Institut de Physique Nucléaire d'Orsay, UMR 8608, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France.
- Lebanese Atomic Energy Commission, NCSR, Beirut 11-8281, Lebanon.
| | - Donia Baklouti
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
| | - Rosario Brunetto
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
| | - Ferenc Borondics
- Synchrotron Soleil, L'Orme des Merisiers, BP48, Saint Aubin, 91192 Gif sur Yvette CEDEX, France.
| | - Thomas Calligaro
- Centre de Recherche et de Restauration des musées de France, UMR 171, Palais du Louvre, 75001 Paris, France.
- PSL Research University, Institut de Recherche Chimie Paris, Chimie ParisTech, CNRS UMR 8247, 75005 Paris, France.
| | - Zélia Dionnet
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
- Università degli Studi di Napoli Parthenope, Dip. di Scienze e Tecnologie, CDN IC4, I-80143 Naples, Italy.
| | - Louis Le Sergeant d'Hendecourt
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
- Université Aix-Marseille, Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), UMR CNRS 7345, F-13397 Marseille, France.
| | - Bilal Nsouli
- Lebanese Atomic Energy Commission, NCSR, Beirut 11-8281, Lebanon.
| | - Isabelle Ribaud
- Institut de Physique Nucléaire d'Orsay, UMR 8608, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France.
| | - Mohamad Roumie
- Lebanese Atomic Energy Commission, NCSR, Beirut 11-8281, Lebanon.
| | - Serge Della-Negra
- Institut de Physique Nucléaire d'Orsay, UMR 8608, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France.
| |
Collapse
|
27
|
Kinetics of White Soft Minerals (WSMs) Decomposition under Conditions of Interest for Astrobiology: A Theoretical and Experimental Study. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9020101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, the thermal decomposition kinetics of a class of minerals that we call White Soft Minerals (WSMs) is studied by means of theoretical and experimental methods, in connection to the transport of extraterrestrial organic matter to Earth and the possible use of the decomposition reaction in the characterization of these minerals in space. WSMs include, under a single denomination, carbonates and sulphates of Mg, Fe, and Ca. To improve the present knowledge of the properties of such materials, we use the following techniques: kinetic models for chemical decomposition, atmospheric entry models, spectroscopy, and gravimetric analyses. Model results show that the atmospheric entry of WSM grains is strongly affected by their thermal decomposition. The decomposition reaction, being strongly endothermic, tends to significantly lower the grain temperature during the atmospheric entry, especially at high altitudes and for grazing entries. A previously proposed infrared spectroscopic technique to evaluate the degree of advancement of the reaction is found to be in good agreement with gravimetric measurements for calcium carbonate. The numerical model developed for the atmospheric entry scenarios is used to interpret experimental results. These main findings show that an additional contribution to the reaction enthalpy is needed to reproduce the experimental results, suggesting that the present theoretical model needs improvements such as the account of gas diffusion in the materials.
Collapse
|
28
|
Arevalo R, Selliez L, Briois C, Carrasco N, Thirkell L, Cherville B, Colin F, Gaubicher B, Farcy B, Li X, Makarov A. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1875-1886. [PMID: 30048021 DOI: 10.1002/rcm.8244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The investigation of cryogenic planetary environments as potential harbors for extant life and/or contemporary sites of organic synthesis represents an emerging focal point in planetary exploration. Next generation instruments need to be capable of unambiguously determining elemental and/or molecular stoichiometry via highly accurate mass measurements and the separation of isobaric interferences. METHODS An Orbitrap™ analyzer adapted for spaceflight (referred to as the CosmOrbitrap), coupled with a commercial pulsed UV laser source (266 nm), was used to successfully characterize a variety of planetary analog samples via ultrahigh resolution laser desorption/ablation mass spectrometry. The materials analyzed in this study include: jarosite (a hydrous sulfate detected on Mars); magnesium sulfate (a potential component of the subsurface ocean on Europa); uracil (a nucleobase of RNA); and a variety of amino acids. RESULTS The instrument configuration tested here enables: measurement of major elements and organic molecules with ultrahigh mass resolution (m/Δm ≥ 120,000, FWHM); quantification of isotopic abundances with <1.0% (2σ) precision; and identification of highly accurate masses within 3.2 ppm of absolute values. The analysis of a residue of a dilute solution of amino acids demonstrates the capacity to detect twelve amino acids in positive ion mode at concentrations as low as ≤1 pmol/mm2 while maintaining mass resolution and accuracy requirements. CONCLUSIONS The CosmOrbitrap mass analyzer is highly sensitive and delivers mass resolution/accuracy unmatched by any instrument sent into orbit or launched into deep space. This prototype instrument, which maps to a spaceflight implementation, represents a mission-enabling technology capable of advancing planetary exploration for decades to come.
Collapse
Affiliation(s)
- Ricardo Arevalo
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Laura Selliez
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), 78280, Guyancourt, France
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Nathalie Carrasco
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), 78280, Guyancourt, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Barnabé Cherville
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Fabrice Colin
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Bertrand Gaubicher
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Benjamin Farcy
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Xiang Li
- Center for Space Science & Technology, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | | |
Collapse
|
29
|
Carrozzo FG, De Sanctis MC, Raponi A, Ammannito E, Castillo-Rogez J, Ehlmann BL, Marchi S, Stein N, Ciarniello M, Tosi F, Capaccioni F, Capria MT, Fonte S, Formisano M, Frigeri A, Giardino M, Longobardo A, Magni G, Palomba E, Zambon F, Raymond CA, Russell CT. Nature, formation, and distribution of carbonates on Ceres. SCIENCE ADVANCES 2018; 4:e1701645. [PMID: 29546235 PMCID: PMC5851657 DOI: 10.1126/sciadv.1701645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Different carbonates have been detected on Ceres, and their abundance and spatial distribution have been mapped using a visible and infrared mapping spectrometer (VIR), the Dawn imaging spectrometer. Carbonates are abundant and ubiquitous across the surface, but variations in the strength and position of infrared spectral absorptions indicate variations in the composition and amount of these minerals. Mg-Ca carbonates are detected all over the surface, but localized areas show Na carbonates, such as natrite (Na2CO3) and hydrated Na carbonates (for example, Na2CO3·H2O). Their geological settings and accessory NH4-bearing phases suggest the upwelling, excavation, and exposure of salts formed from Na-CO3-NH4-Cl brine solutions at multiple locations across the planet. The presence of the hydrated carbonates indicates that their formation/exposure on Ceres' surface is geologically recent and dehydration to the anhydrous form (Na2CO3) is ongoing, implying a still-evolving body.
Collapse
Affiliation(s)
- Filippo Giacomo Carrozzo
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | | | - Andrea Raponi
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | | | - Julie Castillo-Rogez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Bethany L. Ehlmann
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Simone Marchi
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
- Southwest Research Institute, 1050 Walnut Street, Boulder, CO 80302, USA
| | - Nathaniel Stein
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mauro Ciarniello
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Federico Tosi
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Fabrizio Capaccioni
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Maria Teresa Capria
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Sergio Fonte
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Michelangelo Formisano
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Alessandro Frigeri
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Marco Giardino
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Andrea Longobardo
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Gianfranco Magni
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Ernesto Palomba
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Francesca Zambon
- Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Carol A. Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Christopher T. Russell
- Earth Planetary and Space Sciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Abstract
The Dawn spacecraft finds evidence for organic material and water ice on Ceres
Collapse
Affiliation(s)
- Michael Küppers
- European Space Astronomy Center, European Space Agency, Camino bajo del Castillo S/N, Madrid, Spain
| |
Collapse
|
31
|
Ceres has complex chemistry. Nature 2017; 542:395. [DOI: 10.1038/542395a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|