1
|
Brudno JN, Maus MV, Hinrichs CS. CAR T Cells and T-Cell Therapies for Cancer: A Translational Science Review. JAMA 2024:2825799. [PMID: 39495525 DOI: 10.1001/jama.2024.19462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Importance Chimeric antigen receptor (CAR) T cells are T lymphocytes that are genetically engineered to express a synthetic receptor that recognizes a tumor cell surface antigen and causes the T cell to kill the tumor cell. CAR T treatments improve overall survival for patients with large B-cell lymphoma and progression-free survival for patients with multiple myeloma. Observations Six CAR T-cell products are approved by the US Food and Drug Administration (FDA) for 6 hematologic malignancies: B-cell acute lymphoblastic leukemia, large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukemia, and multiple myeloma. Compared with standard chemotherapy followed by stem cell transplant, CAR T cells improved 4-year overall survival in patients with large B-cell lymphoma (54.6% vs 46.0%). Patients with pediatric acute lymphoblastic leukemia achieved durable remission after CAR T-cell therapy. At 3-year follow-up, 48% of patients were alive and relapse free. In people with multiple myeloma treated previously with 1 to 4 types of non-CAR T-cell therapy, CAR T-cell therapy prolonged treatment-free remissions compared with standard treatments (in 1 trial, CAR T-cell therapy was associated with progression-free survival of 13.3 months compared with 4.4 months with standard therapy). CAR T-cell therapy is associated with reversible acute toxicities, such as cytokine release syndrome in approximately 40% to 95% of patients, and neurologic disorders in approximately 15% to 65%. New CAR T-cell therapies in development aim to increase efficacy, decrease adverse effects, and treat other types of cancer. No CAR T-cell therapies are FDA approved for solid tumors, but recently, 2 other T lymphocyte-based treatments gained approvals: 1 for melanoma and 1 for synovial cell sarcoma. Additional cellular therapies have attained responses for certain solid tumors, including pediatric neuroblastoma, synovial cell sarcoma, melanoma, and human papillomavirus-associated cancers. A common adverse effect occurring with these T lymphocyte-based therapies is capillary leak syndrome, which is characterized by fluid retention, pulmonary edema, and kidney dysfunction. Conclusions and Relevance CAR T-cell therapy is an FDA-approved therapy that has improved progression-free survival for multiple myeloma, improved overall survival for large B-cell lymphoma, and attained high rates of cancer remission for other hematologic malignancies such as acute lymphoblastic leukemia, follicular lymphoma, and mantle cell lymphoma. Recently approved T lymphocyte-based therapies demonstrated the potential for improved outcomes in solid tumor malignancies.
Collapse
Affiliation(s)
- Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marcela V Maus
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston
| | - Christian S Hinrichs
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick
| |
Collapse
|
2
|
Foro Ramos EDS, da Silva Couto R, Tozetto-Mendoza TR, Bortoletto P, Barbosa EMG, Ferreira NE, Linhares IM, Spandorfer SD, da Costa AC, Leal E, Mendes-Correa MC, Witkin SS. Characterization of multiple human papillomavirus types in the human vagina following ovarian hormonal stimulation. Virol J 2024; 21:229. [PMID: 39334144 PMCID: PMC11429140 DOI: 10.1186/s12985-024-02507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The objective of study was to characterize HPV in vaginal samples from women being seen at the Center for Reproductive Medicine and Infertility at Weill Cornell Medicine before and following ovarian stimulation. A total of 29 women made samples available for analysis by viral metagenomics. Eighteen women were HPV-positive, six (33.3%) at their initial visit and 15 (83.3%) following hormone stimulation (p = 0.0059). Pairwise comparison of nucleotide sequences and phylogenetic analysis showed the classification sequences into two genera: Alphapapillomavirus and Gammapapillomavirus. Sequences were from 8 HPV types: HPV 51 (n = 2), HPV 68 (n = 1), HPV 83 (n = 9), HPV 84 (n = 2), HPV 121 (n = 6), HPV 175 (n = 1) and HPV 190 (n = 1). Additionally, C16b and C30 likely represent new types. In summary, multiple HPV types are present in the vagina of reproductive age women and are induced by hormone used to stimulate ovulation.
Collapse
Affiliation(s)
| | - Roseane da Silva Couto
- Viral Diversity Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem, Pará, Brazil
| | - Tania Regina Tozetto-Mendoza
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil
| | - Pietro Bortoletto
- Boston IVF, Waltham, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Erick Matheus Garcia Barbosa
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil
| | - Noely Evangelista Ferreira
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil
| | - Iara M Linhares
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Steven D Spandorfer
- Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, USA
| | - Antonio Charlys da Costa
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil.
| | - Elcio Leal
- Viral Diversity Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem, Pará, Brazil.
| | - Maria Cassia Mendes-Correa
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil.
| | - Steven S Witkin
- Medical Research Laboratory in Virology (LIM 52), Faculty of Medicine, University of São Paulo-Institute of Tropical Medicine de São Paulo, São Paulo, Brazil.
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
3
|
Parkhurst M, Goff SL, Lowery FJ, Beyer RK, Halas H, Robbins PF, Prickett TD, Gartner JJ, Sindiri S, Krishna S, Zacharakis N, Ngo L, Ray S, Bera A, Shepherd R, Levin N, Kim SP, Copeland A, Nah S, Levi S, Parikh N, Kwong MLM, Klemen ND, Yang JC, Rosenberg SA. Adoptive transfer of personalized neoantigen-reactive TCR-transduced T cells in metastatic colorectal cancer: phase 2 trial interim results. Nat Med 2024; 30:2586-2595. [PMID: 38992129 DOI: 10.1038/s41591-024-03109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Adoptive cell transfer (ACT) with neoantigen-reactive T lymphocytes can mediate cancer regression. Here we isolated unique, personalized, neoantigen-reactive T cell receptors (TCRs) from tumor-infiltrating lymphocytes of patients with metastatic gastrointestinal cancers and incorporated the TCR α and β chains into gamma retroviral vectors. We transduced autologous peripheral blood lymphocytes and adoptively transferred these cells into patients after lymphodepleting chemotherapy. In a phase 2 single-arm study, we treated seven patients with metastatic, mismatch repair-proficient colorectal cancers who had progressive disease following multiple previous therapies. The primary end point of the study was the objective response rate as measured using RECIST 1.1, and the secondary end points were safety and tolerability. There was no prespecified interim analysis defined in this study. Three patients had objective clinical responses by RECIST criteria including regressions of metastases to the liver, lungs and lymph nodes lasting 4 to 7 months. All patients received T cell populations containing ≥50% TCR-transduced cells, and all T cell populations were polyfunctional in that they secreted IFNγ, GM-CSF, IL-2 and granzyme B specifically in response to mutant peptides compared with wild-type counterparts. TCR-transduced cells were detected in the peripheral blood of five patients, including the three responders, at levels ≥10% of CD3+ cells 1 month post-ACT. In one patient who responded to therapy, ~20% of CD3+ peripheral blood lymphocytes expressed transduced TCRs more than 2 years after treatment. This study provides early results suggesting that ACT with T cells genetically modified to express personalized neoantigen-reactive TCRs can be tolerated and can mediate tumor regression in patients with metastatic colorectal cancers. ClinicalTrials.gov registration: NCT03412877 .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lien Ngo
- Surgery Branch, NCI, NIH, Bethesda, MD, USA
| | | | | | | | - Noam Levin
- Surgery Branch, NCI, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lurain K, Zarif TE, Ramaswami R, Nassar AH, Adib E, Abdel-Wahab N, Chintapally N, Drolen CE, Feldman T, Haykal T, Nebhan CA, Kambhampati S, Li M, Mittra A, Lorentsen M, Kim C, Drakaki A, Morse M, Johnson DB, Mangla A, Dittus C, Ravi P, Baiocchi RA, Chiao EY, Rubinstein PG, Yellapragada SV, LaCasce AS, Sonpavde GP, Naqash AR, Herrera AF. Real-World Multicenter Study of PD-1 Blockade in HIV-Associated Classical Hodgkin Lymphoma Across the United States. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:523-530. [PMID: 38714474 PMCID: PMC11283942 DOI: 10.1016/j.clml.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 05/10/2024]
Abstract
BACKGROUND Despite a higher risk of classical Hodgkin lymphoma (cHL) in people with HIV and the demonstrated safety and efficacy of PD-1 blockade in cHL, there are limited data on the use of these agents in HIV-associated cHL (HIV-cHL). PATIENTS/METHODS We retrospectively identified patients with HIV-cHL from the "Cancer Therapy using Checkpoint inhibitors in People with HIV-International (CATCH-IT)" database who received nivolumab or pembrolizumab, alone or in combination with other agents, and reviewed records for demographics, disease characteristics, immune-mediated adverse events (imAEs), and treatment outcomes. Changes in CD4+ T-cell counts with treatment were measured via Wilcoxon signed-rank tests. Overall response rate (ORR) was defined as the proportion of patients with partial or complete response (PR/CR) per 2014 Lugano classification. RESULTS We identified 23 patients with HIV-cHL who received a median of 6 cycles of PD-1 blockade: 1 as 1st-line, 6 as 2nd-line, and 16 as ≥3rd-line therapy. Seventeen (74%) patients received monotherapy, 5 (22%) received nivolumab plus brentuximab vedotin, and 1 received nivolumab plus ifosfamide, carboplatin, and etoposide. The median baseline CD4+ T-cell count was 155 cells/µL, which increased to 310 cells/µL at end-of-treatment (P = .009). Three patients had grade 3 imAEs; none required treatment discontinuation. The ORR was 83% with median duration of response of 19.7 months. The median progression-free survival was 21.2 months and did not differ between patients with <200 versus ≥200 CD4+ cells/µL (P = .95). CONCLUSION Our findings support the use of PD-1 blockade in HIV-cHL for the same indications as the general population with cHL.
Collapse
Affiliation(s)
- Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | | | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Elio Adib
- Brigham and Women's Hospital, Department of Radiation Oncology, Boston, MA
| | | | | | - Claire E Drolen
- University of California Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | | | - Tarek Haykal
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC; Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | - Mingjia Li
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Arjun Mittra
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Chul Kim
- Medstar Georgetown University Hospital, Washington, DC
| | - Alexandra Drakaki
- University of California Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Michael Morse
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC
| | | | - Ankit Mangla
- University Hospital Seidman Cancer Center, Cleveland, OH
| | | | | | | | | | | | - Sarvari V Yellapragada
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine & Michael E. DeBakey VA Medical Center, Houston, TX
| | | | | | | | | |
Collapse
|
5
|
Hua S, Gu X, Jin H, Zhang X, Liu Q, Yang J. Tumor-infiltrating T lymphocytes: A promising immunotherapeutic target for preventing immune escape in cholangiocarcinoma. Biomed Pharmacother 2024; 177:117080. [PMID: 38972151 DOI: 10.1016/j.biopha.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Cholangiocarcinoma (CCA) is becoming more common and deadly worldwide. Tumor-infiltrating T cell subtypes make distinct contributions to the immune system; collectively, they constitute a significant portion of the tumor microenvironment (TME) in CCA. By secreting cytokines and other chemicals, regulatory T cells (Tregs) decrease activated T cell responses, acting as immunosuppressors. Reduced CD8+ T cell activation results in stimulating programmed death-1 (PD-1), which undermines the immunological homeostasis of T lymphocytes. On the other hand, cancer cells are eliminated by activated cytotoxic T lymphocyte (CTL) through the perforin-granzyme or Fas-FasL pathways. Th1 and CTL immune cell infiltration into the malignant tumor is also facilitated by γδ T cells. A higher prognosis is typically implied by CD8+ T cell infiltration, and survival is inversely associated with Treg cell density. Immune checkpoint inhibitors, either singly or in combination, provide novel therapeutic strategies for CCA immunotherapy. Furthermore, it is anticipated that immunotherapeutic strategies-such as the identification of new immune targets, combination treatments involving several immune checkpoint inhibitors, and chimeric antigen receptor-T therapies (CAR-T)-will optimize the effectiveness of anti-CCA treatments while reducing adverse effects.
Collapse
Affiliation(s)
- Sijia Hua
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China.
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China.
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang 310003, China.
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
6
|
Zhang W, Zeng M, Li Y, Yu L. Leveraging oncovirus-derived antigen against the viral malignancies in adoptive cell therapies. Biomark Res 2024; 12:71. [PMID: 39075601 PMCID: PMC11287861 DOI: 10.1186/s40364-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, No. 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Xiao X, Fu H, Qin H, Xu L, Gu J, Zhang Z, Ya H, Jiang K, Jian Z, Li S. Case report: Complete response after transcatheter arterial chemoembolization combined with donafenib plus tislelizumab therapy for hepatocellular carcinoma with main trunk portal vein tumor thrombus in a patient coinfected with HIV and HBV. Front Immunol 2024; 15:1422801. [PMID: 39076997 PMCID: PMC11284106 DOI: 10.3389/fimmu.2024.1422801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Background Coinfection with the human immunodeficiency virus (HIV) and the hepatitis B virus (HBV) occurs in 5-67% of patients with HIV. HIV weakens the human immune system and leads to various tumors. Patients with unresectable hepatocellular carcinoma (HCC) and HIV experience poor treatment efficacy and have a short survival period. Approximately 70% of cases of HCC are diagnosed at advanced stages due to the subtle onset of the disease. As a result, most cases are not suits for curative therapy. Transcatheter arterial chemoembolization (TACE) is the first-line treatment for intermediate-stage HCC and is commonly used to treat unresectable HCC in China. Recent advancements in systemic treatments have significantly enhanced the effectiveness of unresectable HCC treatment. Several previous study showed that combination treatment combination therapy can enhance the efficacy. Notably, studies proposed that TACE combined targeted drugs with immune checkpoint inhibitors results in a high objective response rate and overall survival. However, the novelty of this study lies in its report of a complete response using a triple combination in patients with HIV and HCC with main trunk portal vein tumor thrombus. Case presentation A 57-year-old woman was diagnosed with HCC with a main trunk portal vein tumor thrombus combined with HIV infection, cirrhosis, and chronic viral hepatitis. She underwent TACE and was administered donafenib and tislelizumab. This triple therapy treatment regimen resulted in a clinical complete response according to the modified Response Evaluation Criteria in Solid Tumors (mRECIST) based on contrast-enhanced computed tomography. Conclusion We first used TACE combined with donafenib and tislelizumab for HCC patients with main trunk portal vein tumor thrombus and HIV-HBV coinfection and achieved complete response.
Collapse
Affiliation(s)
- Xuhua Xiao
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Haixiao Fu
- Department of pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Huixia Qin
- Interventional Center, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Longkuan Xu
- Department of pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jing Gu
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhan Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Houxiang Ya
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Kaiwen Jiang
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhiyuan Jian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shuqun Li
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
8
|
Levin N, Kim SP, Marquardt CA, Vale NR, Yu Z, Sindiri S, Gartner JJ, Parkhurst M, Krishna S, Lowery FJ, Zacharakis N, Levy L, Prickett TD, Benzine T, Ray S, Masi RV, Gasmi B, Li Y, Islam R, Bera A, Goff SL, Robbins PF, Rosenberg SA. Neoantigen-specific stimulation of tumor-infiltrating lymphocytes enables effective TCR isolation and expansion while preserving stem-like memory phenotypes. J Immunother Cancer 2024; 12:e008645. [PMID: 38816232 PMCID: PMC11141192 DOI: 10.1136/jitc-2023-008645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment. METHODS We tested whether TILs could be in vitro stimulated against neoantigens to achieve selective expansion of neoantigen-reactive TILs. Given their prevalence, mutant p53 or RAS were studied as models of human neoantigens. An in vitro stimulation method, termed "NeoExpand", was developed to provide neoantigen-specific stimulation to TILs. 25 consecutive patient TILs from tumors harboring p53 or RAS mutations were subjected to NeoExpand. RESULTS We show that neoantigenic stimulation achieved selective expansion of neoantigen-reactive TILs and broadened the neoantigen-reactive CD4+ and CD8+ TIL clonal repertoire. This allowed the effective isolation of novel neoantigen-reactive TCRs. Out of the 25 consecutive TIL samples, neoantigenic stimulation enabled the identification of 16 unique reactivities and 42 TCRs, while conventional TIL expansion identified 9 reactivities and 14 TCRs. Single-cell transcriptome analysis revealed that neoantigenic stimulation increased neoantigen-reactive TILs with stem-like memory phenotypes expressing IL-7R, CD62L, and KLF2. Furthermore, neoantigenic stimulation improved the in vivo antitumor efficacy of TILs relative to the conventional OKT3-induced rapid TIL expansion in p53-mutated or KRAS-mutated xenograft mouse models. CONCLUSIONS Taken together, neoantigenic stimulation of TILs selectively expands neoantigen-reactive TILs by frequencies and by their clonal repertoire. NeoExpand led to improved phenotypes and functions of neoantigen-reactive TILs. Our data warrant its clinical evaluation. TRIAL REGISTRATION NUMBER NCT00068003, NCT01174121, and NCT03412877.
Collapse
Affiliation(s)
- Noam Levin
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sanghyun P Kim
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Charles A Marquardt
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nolan R Vale
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sivasish Sindiri
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jared J Gartner
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Maria Parkhurst
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sri Krishna
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Frank J Lowery
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nikolaos Zacharakis
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Lior Levy
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Todd D Prickett
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Tiffany Benzine
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Satyajit Ray
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert V Masi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Billel Gasmi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Yong Li
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Rafiqul Islam
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Alakesh Bera
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephanie L Goff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Paul F Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven A Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Wu D, Yin R, Chen G, Ribeiro-Filho HV, Cheung M, Robbins PF, Mariuzza RA, Pierce BG. Structural characterization and AlphaFold modeling of human T cell receptor recognition of NRAS cancer neoantigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595215. [PMID: 38826362 PMCID: PMC11142219 DOI: 10.1101/2024.05.21.595215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
T cell receptors (TCRs) that recognize cancer neoantigens are important for anti-cancer immune responses and immunotherapy. Understanding the structural basis of TCR recognition of neoantigens provides insights into their exquisite specificity and can enable design of optimized TCRs. We determined crystal structures of a human TCR in complex with NRAS Q61K and Q61R neoantigen peptides and HLA-A1 MHC, revealing the molecular underpinnings for dual recognition and specificity versus wild-type NRAS peptide. We then used multiple versions of AlphaFold to model the corresponding complex structures, given the challenge of immune recognition for such methods. Interestingly, one implementation of AlphaFold2 (TCRmodel2) was able to generate accurate models of the complexes, while AlphaFold3 also showed strong performance, although success was lower for other complexes. This study provides insights into TCR recognition of a shared cancer neoantigen, as well as the utility and practical considerations for using AlphaFold to model TCR-peptide-MHC complexes.
Collapse
Affiliation(s)
- Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Helder V. Ribeiro-Filho
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, Brazil
| | - Melyssa Cheung
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Paul F. Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roy A. Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brian G. Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Kannen V, Grant DM, Matthews J. The mast cell-T lymphocyte axis impacts cancer: Friend or foe? Cancer Lett 2024; 588:216805. [PMID: 38462035 DOI: 10.1016/j.canlet.2024.216805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Crosstalk between mast cells (MCs) and T lymphocytes (TLs) releases specific signals that create an environment conducive to tumor development. Conversely, they can protect against cancer by targeting tumor cells for destruction. Although their role in immunity and cancer is complex, their potential in anticancer strategies is often underestimated. When peripheral MCs are activated, they can affect cancer development. Tumor-infiltrating TLs may malfunction and contribute to aggressive cancer and poor prognoses. One promising approach for cancer patients is TL-based immunotherapies. Recent reports suggest that MCs modulate TL activity in solid tumors and may be a potential therapeutic layer in multitargeting anticancer strategies. Pharmacologically modulating MC activity can enhance the anticancer cytotoxic TL response in tumors. By identifying tumor-specific targets, it has been possible to genetically alter patients' cells into fully humanized anticancer cellular therapies for autologous transplantation, including the engineering of TLs and MCs to target and kill cancer cells. Hence, recent scientific evidence provides a broader understanding of MC-TL activity in cancer.
Collapse
Affiliation(s)
- Vinicius Kannen
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Denis M Grant
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Wang ZT, Deng ZM, Dai FF, Yuan MQ, Liu SY, Li BS, Cheng YX. Tumor immunity: A brief overview of tumor‑infiltrating immune cells and research advances into tumor‑infiltrating lymphocytes in gynecological malignancies (Review). Exp Ther Med 2024; 27:166. [PMID: 38476909 PMCID: PMC10928974 DOI: 10.3892/etm.2024.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2024] Open
Abstract
Tumor immunity is a promising topic in the area of cancer therapy. The 'soil' function of the tumor microenvironment (TME) for tumor growth has attracted wide attention from scientists. Tumor-infiltrating immune cells in the TME, especially the tumor-infiltrating lymphocytes (TILs), serve a key role in cancer. Firstly, relevant literature was searched in the PubMed and Web of Science databases with the following key words: 'Tumor microenvironment'; 'TME'; 'tumor-infiltrating immunity cells'; 'gynecologic malignancies'; 'the adoptive cell therapy (ACT) of TILs'; and 'TIL-ACT' (https://pubmed.ncbi.nlm.nih.gov/). According to the title and abstract of the articles, relevant items were screened out in the preliminary screening. The most relevant selected items were of two types: All kinds of tumor-infiltrating immune cells; and advanced research on TILs in gynecological malignancies. The results showed that the subsets of TILs were various and complex, while each subpopulation influenced each other and their effects on tumor prognosis were diverse. Moreover, the related research and clinical trials on TILs were mostly concentrated in melanoma and breast cancer, but relatively few focused on gynecological tumors. In conclusion, the present review summarized the biological classification of TILs and the mechanisms of their involvement in the regulation of the immune microenvironment, and subsequently analyzed the development of tumor immunotherapy for TILs. Collectively, the present review provides ideas for the current treatment dilemma of gynecological tumor immune checkpoints, such as adverse reactions, safety, personal specificity and efficacy.
Collapse
Affiliation(s)
- Zi-Tao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
Imodoye SO, Adedokun KA, Bello IO. From complexity to clarity: unravelling tumor heterogeneity through the lens of tumor microenvironment for innovative cancer therapy. Histochem Cell Biol 2024; 161:299-323. [PMID: 38189822 DOI: 10.1007/s00418-023-02258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Despite the tremendous clinical successes recorded in the landscape of cancer therapy, tumor heterogeneity remains a formidable challenge to successful cancer treatment. In recent years, the emergence of high-throughput technologies has advanced our understanding of the variables influencing tumor heterogeneity beyond intrinsic tumor characteristics. Emerging knowledge shows that drivers of tumor heterogeneity are not only intrinsic to cancer cells but can also emanate from their microenvironment, which significantly favors tumor progression and impairs therapeutic response. Although much has been explored to understand the fundamentals of the influence of innate tumor factors on cancer diversity, the roles of the tumor microenvironment (TME) are often undervalued. It is therefore imperative that a clear understanding of the interactions between the TME and other tumor intrinsic factors underlying the plastic molecular behaviors of cancers be identified to develop patient-specific treatment strategies. This review highlights the roles of the TME as an emerging factor in tumor heterogeneity. More particularly, we discuss the role of the TME in the context of tumor heterogeneity and explore the cutting-edge diagnostic and therapeutic approaches that could be used to resolve this recurring clinical conundrum. We conclude by speculating on exciting research questions that can advance our understanding of tumor heterogeneity with the goal of developing customized therapeutic solutions.
Collapse
Affiliation(s)
- Sikiru O Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Kamoru A Adedokun
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ibrahim O Bello
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
- Department of Pathology, University of Helsinki, Haartmaninkatu 3, 00014, Helsinki, Finland.
| |
Collapse
|
13
|
Kim YS, Lee SH, Park AH, Wu C, Hong BK, Jung H, Lin SH, Yoo SS. BTN1A1 is a novel immune checkpoint mutually exclusive to PD-L1. J Immunother Cancer 2024; 12:e008303. [PMID: 38485289 PMCID: PMC10941171 DOI: 10.1136/jitc-2023-008303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND While Programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) blockade is a potent antitumor treatment strategy, it is effective in only limited subsets of patients with cancer, emphasizing the need for the identification of additional immune checkpoints. Butyrophilin 1A1 (BTN1A1) has been reported to exhibit potential immunoregulatory activity, but its ability to function as an immune checkpoint remains to be systematically assessed, and the mechanisms underlying such activity have yet to be characterized. METHODS BTN1A1 expression was evaluated in primary tumor tissue samples, and its ability to suppress T-cell activation and T cell-dependent tumor clearance was examined. The relationship between BTN1A1 and PD-L1 expression was further characterized, followed by the development of a BTN1A1-specific antibody that was administered to tumor-bearing mice to test the amenability of this target to immune checkpoint inhibition. RESULTS BTN1A1 was confirmed to suppress T-cell activation in vitro and in vivo. Robust BTN1A1 expression was detected in a range of solid tumor tissue samples, and BTN1A1 expression was mutually exclusive with that of PD-L1 as a consequence of its inhibition of Janus-activated kinase/signal transducer and activator of transcription signaling-induced PD-L1 upregulation. Antibody-mediated BTN1A1 blockade suppressed tumor growth and enhanced immune cell infiltration in syngeneic tumor-bearing mice. CONCLUSION Together, these results confirm that the potential of BTN1A1 is a bona fide immune checkpoint and a viable immunotherapeutic target for the treatment of individuals with anti-PD-1/PD-L1 refractory or resistant disease, opening new avenues to improving survival outcomes for patients with a range of cancers.
Collapse
Affiliation(s)
| | - Seung-Hoon Lee
- STCube Pharmaceuticals, Inc, Gaithersburg, Maryland, USA
| | - Andrew H Park
- STCube Pharmaceuticals, Inc, Gaithersburg, Maryland, USA
| | - Chunai Wu
- STCube Pharmaceuticals, Inc, Gaithersburg, Maryland, USA
| | - Bong-Ki Hong
- STCube Pharmaceuticals, Inc, Gaithersburg, Maryland, USA
| | - Hyunjin Jung
- STCube Inc, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Steven H Lin
- Radiation Oncology, University of Texas MD Anderson Cancer Center Division of Radiation Oncology, Houston, Texas, USA
| | - Stephen S Yoo
- STCube Pharmaceuticals, Inc, Gaithersburg, Maryland, USA
- STCube Inc, Gangnam-gu, Seoul, Korea (the Republic of)
| |
Collapse
|
14
|
Klobuch S, Seijkens TTP, Schumacher TN, Haanen JBAG. Tumour-infiltrating lymphocyte therapy for patients with advanced-stage melanoma. Nat Rev Clin Oncol 2024; 21:173-184. [PMID: 38191921 DOI: 10.1038/s41571-023-00848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Immunotherapy with immune-checkpoint inhibitors (ICIs) and targeted therapy with BRAF and MEK inhibitors have revolutionized the treatment of melanoma over the past decade. Despite these breakthroughs, the 5-year survival rate of patients with advanced-stage melanoma is at most 50%, emphasizing the need for additional therapeutic strategies. Adoptive cell therapy with tumour-infiltrating lymphocytes (TILs) is a therapeutic modality that has, in the past few years, demonstrated long-term clinical benefit in phase II/III trials involving patients with advanced-stage melanoma, including those with disease progression on ICIs and/or BRAF/MEK inhibitors. In this Review, we summarize the current status of TIL therapies for patients with advanced-stage melanoma, including potential upcoming marketing authorization, the characteristics of TIL therapy products, as well as future strategies that are expected to increase the efficacy of this promising cellular immunotherapy.
Collapse
Affiliation(s)
- Sebastian Klobuch
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tom T P Seijkens
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - John B A G Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands.
- Melanoma Clinic, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
15
|
Miller AM, Koşaloğlu-Yalçın Z, Westernberg L, Montero L, Bahmanof M, Frentzen A, Lanka M, Logandha Ramamoorthy Premlal A, Seumois G, Greenbaum J, Brightman SE, Soria Zavala K, Thota RR, Naradikian MS, Makani SS, Lippman SM, Sette A, Cohen EEW, Peters B, Schoenberger SP. A functional identification platform reveals frequent, spontaneous neoantigen-specific T cell responses in patients with cancer. Sci Transl Med 2024; 16:eabj9905. [PMID: 38416845 DOI: 10.1126/scitranslmed.abj9905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
The clinical impact of tumor-specific neoantigens as both immunotherapeutic targets and biomarkers has been impeded by the lack of efficient methods for their identification and validation from routine samples. We have developed a platform that combines bioinformatic analysis of tumor exomes and transcriptional data with functional testing of autologous peripheral blood mononuclear cells (PBMCs) to simultaneously identify and validate neoantigens recognized by naturally primed CD4+ and CD8+ T cell responses across a range of tumor types and mutational burdens. The method features a human leukocyte antigen (HLA)-agnostic bioinformatic algorithm that prioritizes mutations recognized by patient PBMCs at a greater than 40% positive predictive value followed by a short-term in vitro functional assay, which allows interrogation of 50 to 75 expressed mutations from a single 50-ml blood sample. Neoantigens validated by this method include both driver and passenger mutations, and this method identified neoantigens that would not have been otherwise detected using an in silico prediction approach. These findings reveal an efficient approach to systematically validate clinically actionable neoantigens and the T cell receptors that recognize them and demonstrate that patients across a variety of human cancers have a diverse repertoire of neoantigen-specific T cells.
Collapse
Affiliation(s)
- Aaron M Miller
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Division of Hematology and Oncology, UCSD Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Zeynep Koşaloğlu-Yalçın
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Luise Westernberg
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Leslie Montero
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Milad Bahmanof
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Angela Frentzen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Manasa Lanka
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | - Gregory Seumois
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Jason Greenbaum
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Spencer E Brightman
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Karla Soria Zavala
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Rukman R Thota
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Martin S Naradikian
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Samir S Makani
- Division of Hematology and Oncology, UCSD Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Scott M Lippman
- Division of Hematology and Oncology, UCSD Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Ezra E W Cohen
- Division of Hematology and Oncology, UCSD Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Stephen P Schoenberger
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Division of Hematology and Oncology, UCSD Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Kala PS, Thapliyal N, Pant B, Sharma N, Pandey HS. Prognostic role of PD-L1 expression in head and neck squamous cell carcinoma: An institutional experience from India. Pathol Res Pract 2024; 254:155133. [PMID: 38306860 DOI: 10.1016/j.prp.2024.155133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Squamous cell carcinoma accounts for > 90% of Head and neck cancers and has a poor 5-year survival rate of only 50%. Immunosuppressive agents like PD-L1 inhibitors have been found to improve survival in many tumour types, including advanced/recurrent head and neck squamous cell carcinoma (HNSCC). The PD-L1 expression in this tumour can also predict clinical outcome. However, this fact still remains to be proven. AIM The aim was to study the expression of PD-L1 in HNSCC, correlate with clinicopathological parameters and outcome. MATERIAL AND METHOD This prospective study was conducted between March 2021 to June 2023 in department of Pathology of a tertiary care centre located in northern India. A total of 65 histologically confirmed cases of HNSCC were included. Expression of PD-L1 was determined by immunohistochemistry. The combined positive (CPS) and tumour proportion (TP) scores were calculated. The results were correlated with clinicopathological parameters and outcome using appropriate statistical tools. RESULTS Considering CPS, 42 (64.6%) cases showed expression of PD-L1. A high score of ≥ 20% was seen in 10 cases (15.4%). PD-L1 expression did not correlate with any of the clinical parameters including age, gender, addiction, site, TNM stage and HPV status. Conventional HNSCC had significantly higher expression of PD-L1. The cases with positive PD-L1 expression had a higher mean survival and a lower mortality, but the difference was not statistically significant. CONCLUSION PD-L1 expression is more likely to be seen in conventional HNSCC histomorphology. PD-L1 expression is a predictor of better prognosis in HNSCC.
Collapse
Affiliation(s)
- Pooja Sharma Kala
- Hemwati Nandan Bahuguna Uttarakhand Medical Education University; Government Doon Medical College, Dehradun, India.
| | | | - Bhawna Pant
- Government Doon Medical College, Dehradun, India
| | - Nitin Sharma
- Government Doon Medical College, Dehradun, India
| | | |
Collapse
|
17
|
Bao P, Gu H, Ye J, He J, Zhong Z, Yu A, Zhang X. Chimeric Exosomes Functionalized with STING Activation for Personalized Glioblastoma Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306336. [PMID: 38072677 PMCID: PMC10853748 DOI: 10.1002/advs.202306336] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Indexed: 02/10/2024]
Abstract
A critical challenge of existing cancer vaccines is to orchestrate the demands of antigen-enriched furnishment and optimal antigen-presentation functionality within antigen-presenting cells (APCs). Here, a complementary immunotherapeutic strategy is developed using dendritic cell (DC)-tumor hybrid cell-derived chimeric exosomes loaded with stimulator of interferon genes (STING) agonists (DT-Exo-STING) for maximized tumor-specific T-cell immunity. These chimeric carriers are furnished with broad-spectrum antigen complexes to elicit a robust T-cell-mediated inflammatory program through direct self-presentation and indirect DC-to-T immunostimulatory pathway. This chimeric exosome-assisted delivery strategy possesses the merits versus off-the-shelf cyclic dinucleotide (CDN) delivery techniques in both the brilliant tissue-homing capacity, even across the intractable blood-brain barrier (BBB), and the desired cytosolic entry for enhanced STING-activating signaling. The improved antigen-presentation performance with this nanovaccine-driven STING activation further enhances tumor-specific T-cell immunoresponse. Thus, DT-Exo-STING reverses immunosuppressive glioblastoma microenvironments to pro-inflammatory, tumoricidal states, leading to an almost obliteration of intracranial primary lesions. Significantly, an upscaling option that harnesses autologous tumor tissues for personalized DT-Exo-STING vaccines increases sensitivity to immune checkpoint blockade (ICB) therapy and exerts systemic immune memory against post-operative glioma recrudesce. These findings represent an emerging method for glioblastoma immunotherapy, warranting further exploratory development in the clinical realm.
Collapse
Affiliation(s)
- Peng Bao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Hui‐Yun Gu
- Department of Orthopedic Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
| | - Jing‐Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Jin‐Lian He
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Zhenlin Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Ai‐Xi Yu
- Department of Orthopedic Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P. R. China
- Department of Orthopedic Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhan430071P. R. China
| |
Collapse
|
18
|
Chuwdhury GS, Guo Y, Chiang CL, Lam KO, Kam NW, Liu Z, Dai W. ImmuneMirror: A machine learning-based integrative pipeline and web server for neoantigen prediction. Brief Bioinform 2024; 25:bbae024. [PMID: 38343325 PMCID: PMC10859690 DOI: 10.1093/bib/bbae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Neoantigens are derived from somatic mutations in the tumors but are absent in normal tissues. Emerging evidence suggests that neoantigens can stimulate tumor-specific T-cell-mediated antitumor immune responses, and therefore are potential immunotherapeutic targets. We developed ImmuneMirror as a stand-alone open-source pipeline and a web server incorporating a balanced random forest model for neoantigen prediction and prioritization. The prediction model was trained and tested using known immunogenic neopeptides collected from 19 published studies. The area under the curve of our trained model was 0.87 based on the testing data. We applied ImmuneMirror to the whole-exome sequencing and RNA sequencing data obtained from gastrointestinal tract cancers including 805 tumors from colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC) and hepatocellular carcinoma patients. We discovered a subgroup of microsatellite instability-high (MSI-H) CRC patients with a low neoantigen load but a high tumor mutation burden (> 10 mutations per Mbp). Although the efficacy of PD-1 blockade has been demonstrated in advanced MSI-H patients, almost half of such patients do not respond well. Our study identified a subset of MSI-H patients who may not benefit from this treatment with lower neoantigen load for major histocompatibility complex I (P < 0.0001) and II (P = 0.0008) molecules, respectively. Additionally, the neopeptide YMCNSSCMGV-TP53G245V, derived from a hotspot mutation restricted by HLA-A02, was identified as a potential actionable target in ESCC. This is so far the largest study to comprehensively evaluate neoantigen prediction models using experimentally validated neopeptides. Our results demonstrate the reliability and effectiveness of ImmuneMirror for neoantigen prediction.
Collapse
Affiliation(s)
- Gulam Sarwar Chuwdhury
- Department of Clinical Oncology, Center of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), P. R. China
| | - Yunshan Guo
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Chi-Leung Chiang
- Department of Clinical Oncology, Center of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), P. R. China
| | - Ka-On Lam
- Department of Clinical Oncology, Center of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), P. R. China
| | - Ngar-Woon Kam
- Department of Clinical Oncology, Center of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Wei Dai
- Department of Clinical Oncology, Center of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), P. R. China
- University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China
| |
Collapse
|
19
|
Lam B, Kung YJ, Lin J, Tseng SH, Tu HF, Huang C, Lee B, Velarde E, Tsai YC, Villasmil R, Park ST, Xing D, Hung CF, Wu TC. In situ vaccination via tissue-targeted cDC1 expansion enhances the immunogenicity of chemoradiation and immunotherapy. J Clin Invest 2024; 134:e171621. [PMID: 37917174 PMCID: PMC10760964 DOI: 10.1172/jci171621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Even with the prolific clinical use of next-generation cancer therapeutics, many tumors remain unresponsive or become refractory to therapy, creating a medical need. In cancer, DCs are indispensable for T cell activation, so there is a restriction on cytotoxic T cell immunity if DCs are not present in sufficient numbers in the tumor and draining lymph nodes to take up and present relevant cancer antigens. To address this bottleneck, we developed a therapeutic based on albumin fused with FMS-related tyrosine kinase 3 ligand (Alb-Flt3L) that demonstrated superior pharmacokinetic properties compared with Flt3L, including significantly longer half-life, accumulation in tumors and lymph nodes, and cross-presenting-DC expansion following a single injection. We demonstrated that Alb-Flt3L, in combination with standard-of-care chemotherapy and radiation therapy, serves as an in situ vaccination strategy capable of engendering polyclonal tumor neoantigen-specific immunity spontaneously. In addition, Alb-Flt3L-mediated tumor control synergized with immune checkpoint blockade delivered as anti-PD-L1. The mechanism of action of Alb-Flt3L treatment revealed a dependency on Batf3, type I IFNs, and plasmacytoid DCs. Finally, the ability of Alb-Flt3L to expand human DCs was explored in humanized mice. We observed significant expansion of human cross-presenting-DC subsets, supporting the notion that Alb-Flt3L could be used clinically to modulate human DC populations in future cancer therapeutic regimens.
Collapse
Affiliation(s)
- Brandon Lam
- Department of Pathology and
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Stanford Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | - Esteban Velarde
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Rafael Villasmil
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Sung Taek Park
- Department of Pathology and
- Department of Obstetrics and Gynecology, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | | | | | - T.-C. Wu
- Department of Pathology and
- Department of Oncology
- Department of Obstetrics and Gynecology
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Faghfuri E. Recent advances in personalized cancer immunotherapy with immune checkpoint inhibitors, T cells and vaccines. Per Med 2024; 21:45-57. [PMID: 38088165 DOI: 10.2217/pme-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The results of genomic and molecular profiling of cancer patients can be effectively applied to immunotherapy agents, including immune checkpoint inhibitors, to select the most appropriate treatment. In addition, accurate prediction of neoantigens facilitates the development of individualized cancer vaccines and T-cell therapy. This review summarizes the biomarker(s) predicting responses to immune checkpoint inhibitors and focuses on current strategies to identify and isolate neoantigen-reactive T cells as well as the clinical development of neoantigen-based therapeutics. The results suggest that maximal T-cell stimulation and expansion can be achieved with combination therapies that enhance antigen-presenting cells' function and optimal T-cell priming in lymph nodes.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, 5613658115, Iran
| |
Collapse
|
21
|
Dobhal S, Chauhan K, Kumar S, Shikha S, Jogi MK, Kumar D, Kumar A, Jaiswal VK, Kumar P. In silico Identification of MHC Displayed Tumor Associated Peptides in Ovarian Cancer for Multi-Epitope Vaccine Construct. Endocr Metab Immune Disord Drug Targets 2024; 24:1401-1413. [PMID: 38275062 DOI: 10.2174/0118715303169428231205173914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Recognizing the potential of the immune system, immunotherapies have brought about a revolution in the treatment of cancer. Low tumour mutational burden and strong immunosuppression in the peritoneal tumor microenvironment (TME) lead to poor outcomes of immune checkpoint inhibition (ICI) and CART cell therapy in ovarian cancer. Alternative immunotherapeutic strategies are of utmost importance to achieve sound clinical success. INTRODUCTION The development of peptide vaccines based on tumor-associated antigens (TAAs) for ovarian cancer cells can be a potential target to provoke an anti-tumor immune response and subsequent clearance of tumour cells. The purpose of this in silico study was to find potential epitopes for a multi-epitope vaccine construct using the immunopeptidomics landscape of ovarian carcinoma. METHODS The four TAAs (MUC16, IDO1, FOLR1, and DDX5) were selected for potential epitopes prediction. The epitopes for B-cells, helper T-lymphocytes (HTL), and Cytotoxic Tlymphocytes (CTL) were predicted on the basis of antigenic, allergenic, and toxic properties. These epitopes were combined with suitable linkers and an adjuvant to form a multi-epitope construct. RESULTS Four HTLs, 13 CTLs, and 6 potential B-cell epitopes were selected from the predicted epitope. The designed multi-epitope construct was potentially immunogenic, non-toxic, and non-allergenic. Physicochemical properties and higher-order structural analyses of the final construct revealed a potential vaccine candidate. CONCLUSION The designed vaccine construct has the potential to trigger both humoral and cellular immune responses and may be employed as a therapeutic immunization candidate for ovarian malignancies. However, further in vitro and animal experimentation is required to establish the efficacy of the vaccine candidate.
Collapse
Affiliation(s)
| | - Kanchan Chauhan
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Sachin Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Sristy Shikha
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, India
| | - Mukesh K Jogi
- Amity Institute of Biotechnology, Amity University, Noida, India
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, India
| | - Dinesh Kumar
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, India
| | - Anuj Kumar
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, India
| | - Varun K Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, Korea
| | - Pramod Kumar
- Division of Molecular Biology, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, India
| |
Collapse
|
22
|
Daradoumis J, Müller MD, Neckermann P, Asbach B, Schrödel S, Thirion C, Wagner R, thor Straten P, Holst PJ, Boilesen D. Preferential Expansion of HPV16 E1-Specific T Cells from Healthy Donors' PBMCs after Ex Vivo Immunization with an E1E2E6E7 Fusion Antigen. Cancers (Basel) 2023; 15:5863. [PMID: 38136407 PMCID: PMC10741473 DOI: 10.3390/cancers15245863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Persistent human papillomavirus (HPV) infection is responsible for practically all cervical and a high proportion of anogenital and oropharyngeal cancers. Therapeutic HPV vaccines in clinical development show great promise in improving outcomes for patients who mount an anti-HPV T-cell response; however, far from all patients elicit a sufficient immunological response. This demonstrates a translational gap between animal models and human patients. Here, we investigated the potential of a new assay consisting of co-culturing vaccine-transduced dendritic cells (DCs) with syngeneic, healthy, human peripheral blood mononuclear cells (PBMCs) to mimic a human in vivo immunization. This new promising human ex vivo PBMC assay was evaluated using an innovative therapeutic adenovirus (Adv)-based HPV vaccine encoding the E1, E2, E6, and E7 HPV16 genes. This new method allowed us to show that vaccine-transduced DCs yielded functional effector T cells and unveiled information on immunohierarchy, showing E1-specific T-cell immunodominance over time. We suggest that this assay can be a valuable translational tool to complement the known animal models, not only for HPV therapeutic vaccines, and supports the use of E1 as an immunotherapeutic target. Nevertheless, the findings reported here need to be validated in a larger number of donors and preferably in patient samples.
Collapse
Affiliation(s)
- Joana Daradoumis
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mikkel Dons Müller
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | | | | | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Per thor Straten
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, 2730 Copenhagen, Denmark
| | - Peter Johannes Holst
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
| | - Ditte Boilesen
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Loma Therapeutics ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
23
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
24
|
Zhang Q, Zhang J, Liu Z, Wang J, Wang F, Wang T, Shi F, Su J, Zhao Y. Recombinant Human Adenovirus Type 5 (H101) Intra-Tumor Therapy in Patients with Persistent, Recurrent, or Metastatic Cervical Cancer: Genomic Profiling Relating to Clinical Efficacy. Drug Des Devel Ther 2023; 17:3507-3522. [PMID: 38046281 PMCID: PMC10691960 DOI: 10.2147/dddt.s429180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Objective Genomic profiles relating to H101 treatment-induced alterations are yet to be achieved. Here, we evaluated the impact of H101 via exome-sequencing approaches aiming to probe for potential biomarkers that are actionable in the treatment of persistent/recurrent/metastatic (P/R/M) cervical cancer. Methods Whole exome sequencing (WES) was performd on paired pre- and post-H101 samples from 17 P/R/M cervical cancer patients who received serial intra-tumor injections of H101. Somatic mutations, including high-frequency mutations, microsatellite instability (MSI) status, tumor mutation burden (TMB), clonal evolution, and mutational signature were analyzed. Results The median follow-up time after the H101 treatment was 14 months. Complete response was achieved in 9 patients, 3 patients achieved partial response, and 2 patients had stable disease, resulting in an objective response rate (ORR) of 70.6% (95% CI: 46.4%-96.7%). WES analysis showed no difference in treatment-related mutation characteristics, including non-synonymous-SNVs and TMB status. Patients with lower TMB were correlated with improved H101 response rates (P=0.044), whereas the same was not evident in high MSI (MSI-H) versus non-MSI-H patients (P=0.528). We observed a few high-frequency mutation genes (TTN, KMT2D, ALDOA, DNAH7, ADAP1, PTPN23, and THEMIS2) that probably carry functional importance in response to H101 treatment, among which KMT2D and ADAP1 mutations were associated with inferior progression-free survival (PFS) and/or overall survival (OS) (P<0.05). Notably, H101 treatment-induced accumulating subclones or clusters in primary tumors and some (Signature 2) were associated with shorter PFS. Conclusion We conducted an unprecedented work via a WES-based approach and provided preliminary insights into H101 treatment-induced genetic aberrations in which some genes (TTN, KMT2D, ALDOA, DNAH7, ADAP1, PTPN23, and THEMIS2) could be considered potential therapeutic targets of H101-containing treatment in cervical carcinoma. Moreover, the therapy-associated characteristics such as clonal evolution and a mutational signature may warrant further evaluation of H101 in clinical settings for treating cervical carcinoma.
Collapse
Affiliation(s)
- Qiying Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Jing Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Zi Liu
- Department of Radiation Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
- Biobank, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Juan Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Fei Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Tao Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Fan Shi
- Department of Radiation Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Jin Su
- Department of Radiation Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Yalong Zhao
- Department of Medical Affairs, Guangdong Techpool Bio-Pharma Co, Ltd, Guangzhou, 510000, People’s Republic of China
| |
Collapse
|
25
|
Mariuzza RA, Wu D, Pierce BG. Structural basis for T cell recognition of cancer neoantigens and implications for predicting neoepitope immunogenicity. Front Immunol 2023; 14:1303304. [PMID: 38045695 PMCID: PMC10693334 DOI: 10.3389/fimmu.2023.1303304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Adoptive cell therapy (ACT) with tumor-specific T cells has been shown to mediate durable cancer regression. Tumor-specific T cells are also the basis of other therapies, notably cancer vaccines. The main target of tumor-specific T cells are neoantigens resulting from mutations in self-antigens over the course of malignant transformation. The detection of neoantigens presents a major challenge to T cells because of their high structural similarity to self-antigens, and the need to avoid autoimmunity. How different a neoantigen must be from its wild-type parent for it to induce a T cell response is poorly understood. Here we review recent structural and biophysical studies of T cell receptor (TCR) recognition of shared cancer neoantigens derived from oncogenes, including p53R175H, KRASG12D, KRASG12V, HHATp8F, and PIK3CAH1047L. These studies have revealed that, in some cases, the oncogenic mutation improves antigen presentation by strengthening peptide-MHC binding. In other cases, the mutation is detected by direct interactions with TCR, or by energetically driven or other indirect strategies not requiring direct TCR contacts with the mutation. We also review antibodies designed to recognize peptide-MHC on cell surfaces (TCR-mimic antibodies) as an alternative to TCRs for targeting cancer neoantigens. Finally, we review recent computational advances in this area, including efforts to predict neoepitope immunogenicity and how these efforts may be advanced by structural information on peptide-MHC binding and peptide-MHC recognition by TCRs.
Collapse
Affiliation(s)
- Roy A. Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Brian G. Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
26
|
Wu M, Zhou S. Harnessing tumor immunogenomics: Tumor neoantigens in ovarian cancer and beyond. Biochim Biophys Acta Rev Cancer 2023; 1878:189017. [PMID: 37935309 DOI: 10.1016/j.bbcan.2023.189017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Ovarian cancer is a major cause of death among gynecological cancers due to its highly aggressive nature. Immunotherapy has emerged as a promising avenue for ovarian cancer treatment, offering targeted approaches with reduced off-target effects. With the advent of next-generation sequencing, it has become possible to identify genomic alterations that can serve as potential targets for immunotherapy. Furthermore, immunogenomics research has revealed the importance of genetic alterations in shaping the cancer immune responses. However, the heterogeneity of immunogenicity and the low tumor mutation burden pose challenges for neoantigen-based immunotherapies. Further research is needed to identify neoantigen-specific tumor-infiltrating lymphocytes (TIL) and establish guidelines for patient inclusion criteria in TIL-based therapy. The study of neoantigens and their implications in ovarian cancer immunotherapy holds great promise, and efforts focused on personalized treatment strategies, refined neoantigen selection, and optimized therapeutic combinations will contribute to improving patient outcomes in the future.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
27
|
Liu L, Li Y, Song Y, Sun Z, Li W, Li B, Wang Y, Wang H, Wang B. One-step shotgun approach for antigenic specific pMHCs capture stimulated CD8 + T cell activation and proliferation. Cell Immunol 2023; 393-394:104784. [PMID: 37984278 DOI: 10.1016/j.cellimm.2023.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Antigenic peptides play a central role in immune surveillance in cancer, infectious disease, autoimmunity, and allergy. The identification and isolation of antigenic peptides for T cell immune response are crucial for successful personalized adoptive immune cell therapy. The mainly methods includes gene sequencing and bioinformatic analysis. The antigenic peptides which identified by analysis and artificially synthesized still need antigen presenting cell (APC) to deliver to T cells. However, high costs and lengthy process times have limited its application in clinical practice. In order to overcome it, this study attempted to directly capture antigenic peptide-major histocompatibility complex (MHC) class I (pMHCs) from cell lysates using streptavidin Dynabeads and biotin-labeled antibodies, then the pMHCs was co-cultured with tumor infiltrating lymphocytes (TILs) of the same tissue origin. The results indicated that the captured pMHCs were able to enrich the tumor antigen-specific CD8+ T cells, and also effectively induce proliferation and cytotoxic responses of CD8+ T cells. This study provided a novel approach for obtaining tumor antigenic pMHCs, which could enrich antigen-specific CD8+ T cells, and could also function as artificial APCs (aAPCs) to stimulate proliferation and activation of T cells. Notably, these pMHCs can stimulate the proliferation of stem-like memory T cells. In conclusion, this study describes a time-saving and low-cost method to isolate tumour antigen peptide MHC complexs, helping tumor antigen-specific T cell enrichment, activation, and proliferation.
Collapse
Affiliation(s)
- Lili Liu
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Yateng Li
- Qingdao Sino-Cell Biomedicine Co., Ltd., Qingdao, Shandong 266200, China
| | - Yu Song
- Qingdao Sino-Cell Biomedicine Co., Ltd., Qingdao, Shandong 266200, China
| | - Zhen Sun
- Qingdao Sino-Cell Biomedicine Co., Ltd., Qingdao, Shandong 266200, China
| | - Wenjing Li
- Qingdao Sino-Cell Biomedicine Co., Ltd., Qingdao, Shandong 266200, China
| | - Bin Li
- Qingdao Sino-Cell Biomedicine Co., Ltd., Qingdao, Shandong 266200, China
| | - Yongjie Wang
- Institute of Translational Research for Solid Tumor, Qingdao University, Qingdao, Shandong 266000, China; Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266200, China.
| | - Haibo Wang
- Institute of Translational Research for Solid Tumor, Qingdao University, Qingdao, Shandong 266000, China; Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266200, China.
| | - Bin Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
28
|
Guan D, Liu X, Shi Q, He B, Zheng C, Meng X. Breast cancer organoids and their applications for precision cancer immunotherapy. World J Surg Oncol 2023; 21:343. [PMID: 37884976 PMCID: PMC10601270 DOI: 10.1186/s12957-023-03231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Immunotherapy is garnering increasing attention as a therapeutic strategy for breast cancer (BC); however, the application of precise immunotherapy in BC has not been fully studied. Further studies on BC immunotherapy have a growing demand for preclinical models that reliably recapitulate the composition and function of the tumor microenvironment (TME) of BC. However, the classic two-dimensional in vitro and animal in vivo models inadequately recapitulate the intricate TME of the original tumor. Organoid models which allow the regular culture of primitive human tumor tissue are increasingly reported that they can incorporate immune components. Therefore, organoid platforms can be used to replicate the BC-TME to achieve the immunotherapeutic reaction modeling and facilitate relevant preclinical trial. In this study, we have investigated different organoid culture methods for BC-TME modeling and their applications for precision immunotherapy in BC.
Collapse
Affiliation(s)
- Dandan Guan
- College of Medicine, Soochow University, Soochow, China
- General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema of Breast Cancer, Hangzhou, Zhejiang, China
| | - Xiaozhen Liu
- General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema of Breast Cancer, Hangzhou, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qingyang Shi
- Department of Urology, Haining Central Hospital, Haining Branch of Zhejiang Provincial People's Hospital, Jiaxing, Zhejiang, China
| | - Bangjie He
- Department of General Surgery, Traditional Chinese Medicine Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Chaopeng Zheng
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuli Meng
- General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema of Breast Cancer, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Cohn DE, Forder A, Marshall EA, Vucic EA, Stewart GL, Noureddine K, Lockwood WW, MacAulay CE, Guillaud M, Lam WL. Delineating spatial cell-cell interactions in the solid tumour microenvironment through the lens of highly multiplexed imaging. Front Immunol 2023; 14:1275890. [PMID: 37936700 PMCID: PMC10627006 DOI: 10.3389/fimmu.2023.1275890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
The growth and metastasis of solid tumours is known to be facilitated by the tumour microenvironment (TME), which is composed of a highly diverse collection of cell types that interact and communicate with one another extensively. Many of these interactions involve the immune cell population within the TME, referred to as the tumour immune microenvironment (TIME). These non-cell autonomous interactions exert substantial influence over cell behaviour and contribute to the reprogramming of immune and stromal cells into numerous pro-tumourigenic phenotypes. The study of some of these interactions, such as the PD-1/PD-L1 axis that induces CD8+ T cell exhaustion, has led to the development of breakthrough therapeutic advances. Yet many common analyses of the TME either do not retain the spatial data necessary to assess cell-cell interactions, or interrogate few (<10) markers, limiting the capacity for cell phenotyping. Recently developed digital pathology technologies, together with sophisticated bioimage analysis programs, now enable the high-resolution, highly-multiplexed analysis of diverse immune and stromal cell markers within the TME of clinical specimens. In this article, we review the tumour-promoting non-cell autonomous interactions in the TME and their impact on tumour behaviour. We additionally survey commonly used image analysis programs and highly-multiplexed spatial imaging technologies, and we discuss their relative advantages and limitations. The spatial organization of the TME varies enormously between patients, and so leveraging these technologies in future studies to further characterize how non-cell autonomous interactions impact tumour behaviour may inform the personalization of cancer treatment..
Collapse
Affiliation(s)
- David E. Cohn
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Aisling Forder
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Erin A. Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Emily A. Vucic
- Department of Biochemistry and Molecular Pharmacology, New York University (NYU) Langone Medical Center, New York, NY, United States
| | - Greg L. Stewart
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kouther Noureddine
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - William W. Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Calum E. MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Martial Guillaud
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
30
|
Parikh AY, Masi R, Gasmi B, Hanada KI, Parkhurst M, Gartner J, Sindiri S, Prickett T, Robbins P, Zacharakis N, Beshiri M, Kelly K, Rosenberg SA, Yang JC. Using patient-derived tumor organoids from common epithelial cancers to analyze personalized T-cell responses to neoantigens. Cancer Immunol Immunother 2023; 72:3149-3162. [PMID: 37368077 PMCID: PMC10491521 DOI: 10.1007/s00262-023-03476-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Adoptive cell transfer of tumor-infiltrating lymphocytes (TIL) can mediate durable complete responses in some patients with common epithelial cancers but does so infrequently. A better understanding of T-cell responses to neoantigens and tumor-related immune evasion mechanisms requires having the autologous tumor as a reagent. We investigated the ability of patient-derived tumor organoids (PDTO) to fulfill this need and evaluated their utility as a tool for selecting T-cells for adoptive cell therapy. PDTO established from metastases from patients with colorectal, breast, pancreatic, bile duct, esophageal, lung, and kidney cancers underwent whole exomic sequencing (WES), to define mutations. Organoids were then evaluated for recognition by autologous TIL or T-cells transduced with cloned T-cell receptors recognizing defined neoantigens. PDTO were also used to identify and clone TCRs from TIL targeting private neoantigens and define those tumor-specific targets. PDTO were successfully established in 38/47 attempts. 75% were available within 2 months, a timeframe compatible with screening TIL for clinical administration. These lines exhibited good genetic fidelity with their parental tumors, especially for mutations with higher clonality. Immunologic recognition assays demonstrated instances of HLA allelic loss not found by pan-HLA immunohistochemistry and in some cases WES of fresh tumor. PDTO could also be used to show differences between TCRs recognizing the same antigen and to find and clone TCRs recognizing private neoantigens. PDTO can detect tumor-specific defects blocking T-cell recognition and may have a role as a selection tool for TCRs and TIL used in adoptive cell therapy.
Collapse
Affiliation(s)
- Anup Y Parikh
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
- Department of Surgery, Morristown Medical Center, Morristown, NJ, USA
| | - Robert Masi
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
| | - Billel Gasmi
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
| | - Ken-Ichi Hanada
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
| | - Maria Parkhurst
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
| | - Jared Gartner
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
| | - Sivasish Sindiri
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
| | - Todd Prickett
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
| | - Paul Robbins
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
| | - Nikolaos Zacharakis
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
| | - Mike Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA
| | - James C Yang
- Surgery Branch, National Cancer Institute, 10 Center Drive, Bldg 10 CRC 3W-5952, Bethesda, MD, 20814, USA.
| |
Collapse
|
31
|
Lei H, Pei Z, Jiang C, Cheng L. Recent progress of metal-based nanomaterials with anti-tumor biological effects for enhanced cancer therapy. EXPLORATION (BEIJING, CHINA) 2023; 3:20220001. [PMID: 37933288 PMCID: PMC10582613 DOI: 10.1002/exp.20220001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/06/2022] [Indexed: 11/08/2023]
Abstract
Metal-based nanomaterials have attracted broad attention recently due to their unique biological physical and chemical properties after entering tumor cells, namely biological effects. In particular, the abilities of Ca2+ to modulate T cell receptors activation, K+ to regulate stem cell differentiation, Mn2+ to activate the STING pathway, and Fe2+/3+ to induce tumor ferroptosis and enhance catalytic therapy, make the metal ions and metal-based nanomaterials play crucial roles in the cancer treatments. Therefore, due to the superior advantages of metal-based nanomaterials and the characteristics of the tumor microenvironment, we will summarize the recent progress of the anti-tumor biological effects of metal-based nanomaterials. Based on the different effects of metal-based nanomaterials on tumor cells, this review mainly focuses on the following five aspects: (1) metal-enhanced radiotherapy sensitization, (2) metal-enhanced catalytic therapy, (3) metal-enhanced ferroptosis, (4) metal-enhanced pyroptosis, and (5) metal-enhanced immunotherapy. At the same time, the shortcomings of the biological effects of metal-based nanomaterials on tumor therapy are also discussed, and the future research directions have been prospected. The highlights of promising biosafety, potent efficacy on biological effects for tumor therapy, and the in-depth various biological effects mechanism studies of metal-based nanomaterials provide novel ideas for the future biological application of the nanomaterials.
Collapse
Affiliation(s)
- Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouChina
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouChina
| | - Chenyu Jiang
- School of Optical and Electronic InformationSuzhou City UniversitySuzhouChina
- Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouChina
| |
Collapse
|
32
|
Cao G, Yue J, Ruan Y, Han Y, Zhi Y, Lu J, Liu M, Xu X, Wang J, Gu Q, Wen X, Gao J, Zhang Q, Kang J, Wang C, Li F. Single-cell dissection of cervical cancer reveals key subsets of the tumor immune microenvironment. EMBO J 2023; 42:e110757. [PMID: 37427448 PMCID: PMC10425846 DOI: 10.15252/embj.2022110757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
The tumor microenvironment (TME) directly determines patients' outcomes and therapeutic efficiencies. An in-depth understanding of the TME is required to improve the prognosis of patients with cervical cancer (CC). This study conducted single-cell RNA and TCR sequencing of six-paired tumors and adjacent normal tissues to map the CC immune landscape. T and NK cells were highly enriched in the tumor area and transitioned from cytotoxic to exhaustion phenotypes. Our analyses suggest that cytotoxic large-clone T cells are critical effectors in the antitumor response. This study also revealed tumor-specific germinal center B cells associated with tertiary lymphoid structures. A high-germinal center B cell proportion in patients with CC is predictive of improved clinical outcomes and is associated with elevated hormonal immune responses. We depicted an immune-excluded stromal landscape and established a joint model of tumor and stromal cells to predict CC patients' prognosis. The study revealed tumor ecosystem subsets linked to antitumor response or prognosis in the TME and provides information for future combinational immunotherapy.
Collapse
Affiliation(s)
- Guangxu Cao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jiali Yue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Yetian Ruan
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ya Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Yong Zhi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jianqiao Lu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Min Liu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinxin Xu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jin Wang
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Quan Gu
- CVR BioinformaticsUniversity of Glasgow Centre for Virus ResearchGlasgowUK
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jinli Gao
- Department of Pathology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qingfeng Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Fang Li
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
33
|
Ling K, Dou Y, Yang N, Deng L, Wang Y, Li Y, Yang L, Chen C, Jiang L, Deng Q, Li C, Liang Z, Zhang J. Genome editing mRNA nanotherapies inhibit cervical cancer progression and regulate the immunosuppressive microenvironment for adoptive T-cell therapy. J Control Release 2023; 360:496-513. [PMID: 37423524 DOI: 10.1016/j.jconrel.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
CRISPR/Cas9-based genome editing is promising for therapy of cervical cancer by precisely targeting human papillomavirus (HPV). To develop CRISPR/Cas9-based genome editing nanotherapies, a pH-responsive hybrid nonviral nanovector was constructed for co-delivering Cas9 mRNA and guide RNAs (gRNAs) targeting E6 or E7 oncogenes. The pH-responsive nanovector was fabricated using an acetalated cyclic oligosaccharide (ACD), in combination with low molecular weight polyethyleneimine. Thus obtained hybrid ACD nanoparticles (defined as ACD NP) showed efficient loading for both Cas9 mRNA and E6 or E7 gRNA, giving rise to two pH-responsive genome editing nanotherapies E6/ACD NP and E7/ACD NP, respectively. Cellularly, ACD NP exhibited high transfection but low cytotoxicity in HeLa cervical carcinoma cells. Also, efficient genome editing of target genes was achieved in HeLa cells, with minimal off-target effects. In mice bearing HeLa xenografts, treatment with E6/ACD NP or E7/ACD NP afforded effective editing of target oncogenes and considerable antitumor activities. More importantly, treatment with E6/ACD NP or E7/ACD NP notably promoted CD8+ T cell survival by reversing the immunosuppressive microenvironment, thereby leading to synergistic antitumor effects by combination therapy using the gene editing nanotherapies and adoptive T-cell transfer. Consequently, our pH-responsive genome editing nanotherapies deserve further development for the treatment of HPV-associated cervical cancer, and they can also serve as promising nanotherapies to improve efficacies of other immune therapies against different advanced cancers by regulating the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Kaijian Ling
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Neng Yang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Li Deng
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yanzhou Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yudi Li
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Leiyan Yang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Cheng Chen
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lupin Jiang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qingchun Deng
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
34
|
Komuro H, Shinohara S, Fukushima Y, Demachi-Okamura A, Muraoka D, Masago K, Matsui T, Sugita Y, Takahashi Y, Nishida R, Takashima C, Ohki T, Shigematsu Y, Watanabe F, Adachi K, Fukuyama T, Hamana H, Kishi H, Miura D, Tanaka Y, Onoue K, Onoguchi K, Yamashita Y, Stratford R, Clancy T, Yamaguchi R, Kuroda H, Doi K, Iwata H, Matsushita H. Single-cell sequencing on CD8 + TILs revealed the nature of exhausted T cells recognizing neoantigen and cancer/testis antigen in non-small cell lung cancer. J Immunother Cancer 2023; 11:e007180. [PMID: 37544663 PMCID: PMC10407349 DOI: 10.1136/jitc-2023-007180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND CD8+tumor infiltrating lymphocytes (TILs) are often observed in non-small cell lung cancers (NSCLC). However, the characteristics of CD8+ TILs, especially T-cell populations specific for tumor antigens, remain poorly understood. METHODS High throughput single-cell RNA sequencing and single-cell T-cell receptor (TCR) sequencing were performed on CD8+ TILs from three surgically-resected lung cancer specimens. Dimensional reduction for clustering was performed using Uniform Manifold Approximation and Projection. CD8+ TIL TCR specific for the cancer/testis antigen KK-LC-1 and for predicted neoantigens were investigated. Differentially-expressed gene analysis, Gene Set Enrichment Analysis (GSEA) and single sample GSEA was performed to characterize antigen-specific T cells. RESULTS A total of 6998 CD8+ T cells was analyzed, divided into 10 clusters according to their gene expression profile. An exhausted T-cell (exhausted T (Tex)) cluster characterized by the expression of ENTPD1 (CD39), TOX, PDCD1 (PD1), HAVCR2 (TIM3) and other genes, and by T-cell oligoclonality, was identified. The Tex TCR repertoire (Tex-TCRs) contained nine different TCR clonotypes recognizing five tumor antigens including a KK-LC-1 antigen and four neoantigens. By re-clustering the tumor antigen-specific T cells (n=140), it could be seen that the individual T-cell clonotypes were present on cells at different stages of differentiation and functional states even within the same Tex cluster. Stimulating these T cells with predicted cognate peptide indicated that TCR signal strength and subsequent T-cell proliferation and cytokine production was variable but always higher for neoantigens than KK-LC-1. CONCLUSIONS Our approach focusing on T cells with an exhausted phenotype among CD8+ TILs may facilitate the identification of tumor antigens and clarify the nature of the antigen-specific T cells to specify the promising immunotherapeutic targets in patients with NSCLC.
Collapse
Affiliation(s)
- Hiroyasu Komuro
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of General Thoracic Surgery, Gifu University School of Medicine Graduate School of Medicine, Gifu, Japan
| | - Shuichi Shinohara
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasunori Fukushima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of General Thoracic Surgery, Gifu University School of Medicine Graduate School of Medicine, Gifu, Japan
| | - Ayako Demachi-Okamura
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Daisuke Muraoka
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Katsuhiro Masago
- Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Takuya Matsui
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yusuke Sugita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yusuke Takahashi
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Reina Nishida
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Chieko Takashima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takashi Ohki
- Department of Respiratory Surgery, Ichinomiya Nishi Hospital, Ichinomiya, Japan
| | - Yoshiki Shigematsu
- Department of Respiratory Surgery, Ichinomiya Nishi Hospital, Ichinomiya, Japan
| | - Fumiaki Watanabe
- Department of Thoracic Surgery, Mie Chuo Medical Center, Tsu, Japan
| | | | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Hiroshi Hamana
- Department of Immunology, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, University of Toyama, Toyama, Japan
| | - Daiki Miura
- Drug Development Division, NEC Corporation, Minato-ku, Japan
| | - Yuki Tanaka
- Drug Development Division, NEC Corporation, Minato-ku, Japan
| | - Kousuke Onoue
- Drug Development Division, NEC Corporation, Minato-ku, Japan
| | | | | | | | - Trevor Clancy
- NEC OncoImmunity AS, Oslo Cancer Cluster, Oslo, Norway
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kiyoshi Doi
- Department of General Thoracic Surgery, Gifu University School of Medicine Graduate School of Medicine, Gifu, Japan
| | - Hisashi Iwata
- Department of General Thoracic Surgery, Gifu University School of Medicine Graduate School of Medicine, Gifu, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Immunogenomics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Ishii K, Davies JS, Sinkoe AL, Nguyen KA, Norberg SM, McIntosh CP, Kadakia T, Serna C, Rae Z, Kelly MC, Hinrichs CS. Multi-tiered approach to detect autoimmune cross-reactivity of therapeutic T cell receptors. SCIENCE ADVANCES 2023; 9:eadg9845. [PMID: 37494434 PMCID: PMC10371023 DOI: 10.1126/sciadv.adg9845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
T cell receptor (TCR)-engineered T cell therapy using high-affinity TCRs is a promising treatment modality for cancer. Discovery of high-affinity TCRs especially against self-antigens can require approaches that circumvent central tolerance, which may increase the risk of cross-reactivity. Despite the potential for toxicity, no standardized approach to screen cross-reactivity has been established in the context of preclinical safety evaluation. Here, we describe a practical framework to prospectively detect clinically prohibitive cross-reactivity of therapeutic TCR candidates. Cross-reactivity screening consisted of multifaceted series of assays including assessment of p-MHC tetramer binding, cell line recognition, and reactivity against candidate peptide libraries. Peptide libraries were generated using conventional contact residue motif-guided search, amino acid substitution matrix-based search unguided by motif information, and combinatorial peptide library scan-guided search. We demonstrate the additive nature of a layered approach, which efficiently identifies unsafe cross-reactivity including one undetected by conventional motif-guided search. These findings have important implications for the safe development of TCR-based therapies.
Collapse
Affiliation(s)
- Kazusa Ishii
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John S. Davies
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Andrew L. Sinkoe
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kilyna A. Nguyen
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Scott M. Norberg
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Crystal P. McIntosh
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tejas Kadakia
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Precigen, Germantown, MD, USA
| | - Carylinda Serna
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Oncology Department, Cell Therapy Unit, AstraZeneca, Gaithersburg, MD, USA
| | - Zachary Rae
- Single Cell Analysis Facility, CCR, NCI, NIH, Bethesda, MD, USA
- 10x Genomics, Pleasanton, CA, USA
| | | | - Christian S. Hinrichs
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Duncan and Nancy MacMillan Center of Excellence in Cancer Immunotherapy and Metabolism, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
36
|
Peri A, Salomon N, Wolf Y, Kreiter S, Diken M, Samuels Y. The landscape of T cell antigens for cancer immunotherapy. NATURE CANCER 2023:10.1038/s43018-023-00588-x. [PMID: 37415076 DOI: 10.1038/s43018-023-00588-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
The remarkable capacity of immunotherapies to induce durable regression in some patients with metastatic cancer relies heavily on T cell recognition of tumor-presented antigens. As checkpoint-blockade therapy has limited efficacy, tumor antigens have the potential to be exploited for complementary treatments, many of which are already in clinical trials. The surge of interest in this topic has led to the expansion of the tumor antigen landscape with the emergence of new antigen categories. Nonetheless, how different antigens compare in their ability to elicit efficient and safe clinical responses remains largely unknown. Here, we review known cancer peptide antigens, their attributes and the relevant clinical data and discuss future directions.
Collapse
Affiliation(s)
- Aviyah Peri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadja Salomon
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Sebastian Kreiter
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Lozano-Rabella M, Garcia-Garijo A, Palomero J, Yuste-Estevanez A, Erhard F, Farriol-Duran R, Martín-Liberal J, Ochoa-de-Olza M, Matos I, Gartner JJ, Ghosh M, Canals F, Vidal A, Piulats JM, Matías-Guiu X, Brana I, Muñoz-Couselo E, Garralda E, Schlosser A, Gros A. Exploring the Immunogenicity of Noncanonical HLA-I Tumor Ligands Identified through Proteogenomics. Clin Cancer Res 2023; 29:2250-2265. [PMID: 36749875 PMCID: PMC10261919 DOI: 10.1158/1078-0432.ccr-22-3298] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE Tumor antigens are central to antitumor immunity. Recent evidence suggests that peptides from noncanonical (nonC) aberrantly translated proteins can be presented on HLA-I by tumor cells. Here, we investigated the immunogenicity of nonC tumor HLA-I ligands (nonC-TL) to better understand their contribution to cancer immunosurveillance and their therapeutic applicability. EXPERIMENTAL DESIGN Peptides presented on HLA-I were identified in 9 patient-derived tumor cell lines from melanoma, gynecologic, and head and neck cancer through proteogenomics. A total of 507 candidate tumor antigens, including nonC-TL, neoantigens, cancer-germline, or melanocyte differentiation antigens, were tested for T-cell recognition of preexisting responses in patients with cancer. Donor peripheral blood lymphocytes (PBL) were in vitro sensitized against 170 selected nonC-TL to isolate antigen-specific T-cell receptors (TCR) and evaluate their therapeutic potential. RESULTS We found no recognition of the 507 nonC-TL tested by autologous ex vivo expanded tumor-reactive T-cell cultures while the same cultures demonstrated reactivity to mutated, cancer-germline, or melanocyte differentiation antigens. However, in vitro sensitization of donor PBL against 170 selected nonC-TL, led to the identification of TCRs specific to three nonC-TL, two of which mapped to the 5' UTR regions of HOXC13 and ZKSCAN1, and one mapping to a noncoding spliced variant of C5orf22C. T cells targeting these nonC-TL recognized cancer cell lines naturally presenting their corresponding antigens. Expression of the three immunogenic nonC-TL was shared across tumor types and barely or not detected in normal cells. CONCLUSIONS Our findings predict a limited contribution of nonC-TL to cancer immunosurveillance but demonstrate they may be attractive novel targets for widely applicable immunotherapies. See related commentary by Fox et al., p. 2173.
Collapse
Affiliation(s)
- Maria Lozano-Rabella
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Andrea Garcia-Garijo
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jara Palomero
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Anna Yuste-Estevanez
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Roc Farriol-Duran
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan Martín-Liberal
- Early Drug Development Unit (UITM) Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Maria Ochoa-de-Olza
- Early Drug Development Unit (UITM) Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Ignacio Matos
- Early Drug Development Unit (UITM) Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Jared J. Gartner
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland
| | - Michael Ghosh
- Institute for Cell Biology Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Francesc Canals
- Proteomics, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - August Vidal
- Department of Pathology. Hospital Universitari de Bellvitge-IDIBELL, CIBERONC, Barcelona, Spain
| | - Josep Maria Piulats
- Medical Oncology, Catalan Institute of Cancer (ICO), IDIBELL-Oncobell, Hospitalet de Llobregat, Spain
| | - Xavier Matías-Guiu
- Department of Pathology. Hospital Universitari de Bellvitge-IDIBELL, CIBERONC, Barcelona, Spain
| | - Irene Brana
- Early Drug Development Unit (UITM) Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Eva Muñoz-Couselo
- Melanoma and other skin tumors unit, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Elena Garralda
- Early Drug Development Unit (UITM) Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Alena Gros
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
38
|
Hecht JR, Mitchell J, Morelli MP, Anandappa G, Yang JC. Next-Generation Approaches to Immuno-Oncology in GI Cancers. Am Soc Clin Oncol Educ Book 2023; 43:e389072. [PMID: 37290032 DOI: 10.1200/edbk_389072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunotherapy has only had a modest impact on the treatment of advanced GI malignancies. Microsatellite-stable colorectal cancer and pancreatic adenocarcinoma, the most common GI tumors, have not benefited from treatment with standard immune checkpoint inhibitors. With this huge unmet need, multiple approaches are being tried to overcome barriers to better anticancer outcomes. This article reviews a number of novel approaches to immunotherapy for these tumors. These include the use of novel checkpoint inhibitors such as a modified anti-cytotoxic T lymphocyte-associated antigen-4 antibody and antibodies to lymphocyte-activation gene 3, T cell immunoreceptor with immunoglobulin and ITIM domains, T-cell immunoglobulin-3, CD47, and combinations with signal transduction inhibitors. We will discuss other trials that aim to elicit an antitumor T-cell response using cancer vaccines and oncolytic viruses. Finally, we review attempts to replicate in GI cancers the frequent and durable responses seen in hematologic malignancies with immune cell therapies.
Collapse
|
39
|
Conarty JP, Wieland A. The Tumor-Specific Immune Landscape in HPV+ Head and Neck Cancer. Viruses 2023; 15:1296. [PMID: 37376596 DOI: 10.3390/v15061296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Human papillomaviruses (HPVs) are the causative agent of several anogenital cancers as well as head and neck cancers, with HPV+ head and neck squamous cell carcinoma (HNSCC) becoming a rapidly growing public health issue in the Western world. Due its viral etiology and potentially its subanatomical location, HPV+ HNSCC exhibits an immune microenvironment which is more inflamed and thus distinct from HPV-negative HNSCC. Notably, the antigenic landscape in most HPV+ HNSCC tumors extends beyond the classical HPV oncoproteins E6/7 and is extensively targeted by both the humoral and cellular arms of the adaptive immune system. Here, we provide a comprehensive overview of HPV-specific immune responses in patients with HPV+ HNSCC. We highlight the localization, antigen specificity, and differentiation states of humoral and cellular immune responses, and discuss their similarities and differences. Finally, we review currently pursued immunotherapeutic treatment modalities that attempt to harness HPV-specific immune responses for improving clinical outcomes in patients with HPV+ HNSCC.
Collapse
Affiliation(s)
- Jacob P Conarty
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Abstract
Recent advances in cancer immunotherapy - ranging from immune-checkpoint blockade therapy to adoptive cellular therapy and vaccines - have revolutionized cancer treatment paradigms, yet the variability in clinical responses to these agents has motivated intense interest in understanding how the T cell landscape evolves with respect to response to immune intervention. Over the past decade, the advent of multidimensional single-cell technologies has provided the unprecedented ability to dissect the constellation of cell states of lymphocytes within a tumour microenvironment. In particular, the rapidly expanding capacity to definitively link intratumoural phenotypes with the antigen specificity of T cells provided by T cell receptors (TCRs) has now made it possible to focus on investigating the properties of T cells with tumour-specific reactivity. Moreover, the assessment of TCR clonality has enabled a molecular approach to track the trajectories, clonal dynamics and phenotypic changes of antitumour T cells over the course of immunotherapeutic intervention. Here, we review the current knowledge on the cellular states and antigen specificities of antitumour T cells and examine how fine characterization of T cell dynamics in patients has provided meaningful insights into the mechanisms underlying effective cancer immunotherapy. We highlight those T cell subsets associated with productive T cell responses and discuss how diverse immunotherapies might leverage the pre-existing tumour-reactive T cell pool or instruct de novo generation of antitumour specificities. Future studies aimed at elucidating the factors associated with the elicitation of productive antitumour T cell immunity are anticipated to instruct the design of more efficacious treatment strategies.
Collapse
Affiliation(s)
- Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
41
|
Yu L, Lanqing G, Huang Z, Xin X, Minglin L, Fa-hui L, Zou H, Min J. T cell immunotherapy for cervical cancer: challenges and opportunities. Front Immunol 2023; 14:1105265. [PMID: 37180106 PMCID: PMC10169584 DOI: 10.3389/fimmu.2023.1105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer cellular immunotherapy has made inspiring therapeutic effects in clinical practices, which brings new hope for the cure of cervical cancer. CD8+T cells are the effective cytotoxic effector cells against cancer in antitumor immunity, and T cells-based immunotherapy plays a crucial role in cellular immunotherapy. Tumor infiltrated Lymphocytes (TIL), the natural T cells, is approved for cervical cancer immunotherapy, and Engineered T cells therapy also has impressive progress. T cells with natural or engineered tumor antigen binding sites (CAR-T, TCR-T) are expanded in vitro, and re-infused back into the patients to eradicate tumor cells. This review summarizes the preclinical research and clinical applications of T cell-based immunotherapy for cervical cancer, and the challenges for cervical cancer immunotherapy.
Collapse
Affiliation(s)
- Lingfeng Yu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gong Lanqing
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyu Huang
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Xiaoyan Xin
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Liang Minglin
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Lv Fa-hui
- Department of Obstetrics and Gynecology, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Hongmei Zou
- Department of Obstetrics, Qianjiang Central Hospital, Qianjiang, Hubei, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Sun C, Nagaoka K, Kobayashi Y, Maejima K, Nakagawa H, Nakajima J, Kakimi K. Immunotherapies targeting neoantigens are effective in PD-1 blockade-resistant tumors. Int J Cancer 2023; 152:1463-1475. [PMID: 36451303 DOI: 10.1002/ijc.34382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022]
Abstract
Only a small fraction of tumor-infiltrating lymphocytes can specifically recognize and attack cancer cells in PD-1/PD-L1 blockade therapy. Here, we investigate approaches to expand the neoantigen-specific CD8+ T cells to overcome the difficulties in treating PD-1/PD-L1 blockade-resistant tumors. Mutation-associated neoepitopes of murine nonsmall cell lung cancer ASB-XIV were estimated by whole-exome and RNA sequencing and predicted by MHC-I binding affinity (FPKM >1) in silico. Using ASB-XIV-specific CD8+ T cells, we screened a panel of 257 neoepitope peptides derived from ASB-XIV missense and indel mutations. Mutated Phf3 peptide (mPhf3) was successfully identified as an immunogenic neoepitope. Prophylactic mPhf3-DC vaccination inhibited ASB-XIV tumor growth through CD8+ T cell-mediated antitumor immunity. Combining the mPhf3-DC vaccine and anti-PD-1 treatment elicited robust antitumor activity through the induction of mPhf3-specific CD8+ T cells in the tumor microenvironment. Furthermore, the adoptive transfer of mPhf3-specific CD8+ T cells eradicated ASB-XIV tumors. Likewise, the combination of mutated Cdt1 peptide (mCdt1)-DC vaccine and anti-PD-1 treatment or adoptive transfer of mCdt1-specific CD8+ T cells also led to significant regression of PD-1 blockade-resistant murine gastric YTN16 tumors. In conclusion, a novel immunogenic neoepitope of ASB-XIV was identified for immunotherapy targeting neoantigens. Identification of immunogenic neoantigens can extend the therapeutic strategies by increasing the frequency of neoantigen-specific T cells, even for PD-1/PD-L1 blockade-resistant tumors.
Collapse
Affiliation(s)
- Changbo Sun
- Department of Immunotherapeutics, University of Tokyo Hospital, Tokyo, Japan.,Department of Thoracic Surgery, University of Tokyo Hospital, Tokyo, Japan.,Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Koji Nagaoka
- Department of Immunotherapeutics, University of Tokyo Hospital, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
43
|
Pifferi C, Aguinagalde L, Ruiz-de-Angulo A, Sacristán N, Baschirotto PT, Poveda A, Jiménez-Barbero J, Anguita J, Fernández-Tejada A. Development of synthetic, self-adjuvanting, and self-assembling anticancer vaccines based on a minimal saponin adjuvant and the tumor-associated MUC1 antigen. Chem Sci 2023; 14:3501-3513. [PMID: 37006677 PMCID: PMC10055764 DOI: 10.1039/d2sc05639a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
The overexpression of aberrantly glycosylated tumor-associated mucin-1 (TA-MUC1) in human cancers makes it a major target for the development of anticancer vaccines derived from synthetic MUC1-(glyco)peptide antigens. However, glycopeptide-based subunit vaccines are weakly immunogenic, requiring adjuvants and/or additional immunopotentiating approaches to generate optimal immune responses. Among these strategies, unimolecular self-adjuvanting vaccine constructs that do not need coadministration of adjuvants or conjugation to carrier proteins emerge as a promising but still underexploited approach. Herein, we report the design, synthesis, immune-evaluation in mice, and NMR studies of new, self-adjuvanting and self-assembling vaccines based on our QS-21-derived minimal adjuvant platform covalently linked to TA-MUC1-(glyco)peptide antigens and a peptide helper T-cell epitope. We have developed a modular, chemoselective strategy that harnesses two distal attachment points on the saponin adjuvant to conjugate the respective components in unprotected form and high yields via orthogonal ligations. In mice, only tri-component candidates but not unconjugated or di-component combinations induced significant TA-MUC1-specific IgG antibodies able to recognize the TA-MUC1 on cancer cells. NMR studies revealed the formation of self-assembled aggregates, in which the more hydrophilic TA-MUC1 moiety gets exposed to the solvent, favoring B-cell recognition. While dilution of the di-component saponin-(Tn)MUC1 constructs resulted in partial aggregate disruption, this was not observed for the more stably-organized tri-component candidates. This higher structural stability in solution correlates with their increased immunogenicity and suggests a longer half-life of the construct in physiological media, which together with the enhanced antigen multivalent presentation enabled by the particulate self-assembly, points to this self-adjuvanting tri-component vaccine as a promising synthetic candidate for further development.
Collapse
Affiliation(s)
- Carlo Pifferi
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Leire Aguinagalde
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Ane Ruiz-de-Angulo
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Nagore Sacristán
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Priscila Tonon Baschirotto
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Ana Poveda
- Chemical Glycobiology Laboratory, CIC BioGUNE, BRTA Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Laboratory, CIC BioGUNE, BRTA Spain
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country 48940 Leioa Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias Av. Monforte de Lemos, 3-5 28029 Madrid Spain
| | - Juan Anguita
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
- Inflammation and Macrophage Plasticity Laboratory, CIC BioGUNE, BRTA Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
| |
Collapse
|
44
|
Current Trends in Neoantigen-Based Cancer Vaccines. Pharmaceuticals (Basel) 2023; 16:ph16030392. [PMID: 36986491 PMCID: PMC10056833 DOI: 10.3390/ph16030392] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer immunotherapies are treatments that use drugs or cells to activate patients’ own immune systems against cancer cells. Among them, cancer vaccines have recently been rapidly developed. Based on tumor-specific antigens referred to as neoantigens, these vaccines can be in various forms such as messenger (m)RNA and synthetic peptides to activate cytotoxic T cells and act with or without dendritic cells. Growing evidence suggests that neoantigen-based cancer vaccines possess a very promising future, yet the processes of immune recognition and activation to relay identification of a neoantigen through the histocompatibility complex (MHC) and T-cell receptor (TCR) remain unclear. Here, we describe features of neoantigens and the biological process of validating neoantigens, along with a discussion of recent progress in the scientific development and clinical applications of neoantigen-based cancer vaccines.
Collapse
|
45
|
McInnis C, Bhatia S, Vijaykumar B, Tian Q, Sun Y, Leistritz-Edwards D, Quinn CT, Uppaluri R, Egloff AM, Srinivasan L, Pregibon DC, Coyle AJ, Hanna GJ. Identification of HPV16 E1 and E2-specific T cells in the oropharyngeal cancer tumor microenvironment. J Immunother Cancer 2023; 11:jitc-2023-006721. [PMID: 36990508 PMCID: PMC10069587 DOI: 10.1136/jitc-2023-006721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND High-risk human papillomavirus (HPV) is a primary cause of an increasing number of oropharyngeal squamous cell carcinomas (OPSCCs). The viral etiology of these cancers provides the opportunity for antigen-directed therapies that are restricted in scope compared with cancers without viral components. However, specific virally-encoded epitopes and their corresponding immune responses are not fully defined. METHODS To understand the OPSCC immune landscape, we conducted a comprehensive single-cell analysis of HPV16+ and HPV33+ primary tumors and metastatic lymph nodes. We used single-cell analysis with encoded peptide-human leukocyte antigen (HLA) tetramers to analyze HPV16+ and HPV33+ OPSCC tumors, characterizing the ex vivo cellular responses to HPV-derived antigens presented in major Class I and Class II HLA alleles. RESULTS We identified robust cytotoxic T-cell responses to HPV16 proteins E1 and E2 that were shared across multiple patients, particularly in HLA-A*01:01 and HLA-B*08:01. Responses to E2 were associated with loss of E2 expression in at least one tumor, indicating the functional capacity of these E2-recognizing T cells and many of these interactions validated in a functional assay. Conversely, cellular responses to E6 and E7 were limited in quantity and cytotoxic capacity, and tumor E6 and E7 expression persisted. CONCLUSIONS These data highlight antigenicity beyond HPV16 E6 and E7 and nominate candidates for antigen-directed therapies.
Collapse
Affiliation(s)
| | - Shilpa Bhatia
- Repertoire Immune Medicines, Cambridge, Massachusetts, USA
| | | | - Qiaomu Tian
- Repertoire Immune Medicines, Cambridge, Massachusetts, USA
| | - Yanbo Sun
- Repertoire Immune Medicines, Cambridge, Massachusetts, USA
| | | | - Charles T Quinn
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ravi Uppaluri
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ann Marie Egloff
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | - Glenn J Hanna
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Canella A, Rajappa P. Therapeutic utility of engineered myeloid cells in the tumor microenvironment. Cancer Gene Ther 2023:10.1038/s41417-023-00600-7. [PMID: 36854896 DOI: 10.1038/s41417-023-00600-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Despite promising results shown in hematologic tumors, immunotherapies for the treatment of solid tumors have mostly failed so far. The immunosuppressive tumor microenvironment and phenotype of tumor infiltrating macrophages are among the more prevalent reasons for this failure. Tumor associated macrophages (TAMs, M2-macrophages) are circulating myeloid cells recruited to the local tumor microenvironment, and together with regulatory T cells (T-regs), are reprogrammed to become immune suppressive. This results in the inactivation or hampered recruitment of cytotoxic CD8 + T and Natural Killer (NK) cells. Recently, attempts have been made to try to leverage specific myeloid functions and properties, including their ability to reach the TME and to mediate the phagocytosis of cancer cells. Additionally, myeloid cells have been used for drug delivery and reprogramming the tumor microenvironment in cancer patients. This approach, together with the advancements in genome editing, paved the way for the development of novel cell-mediated immunotherapies. This article focuses on the latest studies that detail the therapeutic properties of genetically engineered or pharmacologically modulated myeloid cells in cancer preclinical models, limitations, pitfalls, and evaluations of these approaches in patients with cancer.
Collapse
Affiliation(s)
- Alessandro Canella
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA. .,Department of Pediatrics and Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
47
|
Mühlenbruch L, Abou-Kors T, Dubbelaar ML, Bichmann L, Kohlbacher O, Bens M, Thomas J, Ezić J, Kraus JM, Kestler HA, von Witzleben A, Mytilineos J, Fürst D, Engelhardt D, Doescher J, Greve J, Schuler PJ, Theodoraki MN, Brunner C, Hoffmann TK, Rammensee HG, Walz JS, Laban S. The HLA ligandome of oropharyngeal squamous cell carcinomas reveals shared tumour-exclusive peptides for semi-personalised vaccination. Br J Cancer 2023; 128:1777-1787. [PMID: 36823366 PMCID: PMC9949688 DOI: 10.1038/s41416-023-02197-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The immune peptidome of OPSCC has not previously been studied. Cancer-antigen specific vaccination may improve clinical outcome and efficacy of immune checkpoint inhibitors such as PD1/PD-L1 antibodies. METHODS Mapping of the OPSCC HLA ligandome was performed by mass spectrometry (MS) based analysis of naturally presented HLA ligands isolated from tumour tissue samples (n = 40) using immunoaffinity purification. The cohort included 22 HPV-positive (primarily HPV-16) and 18 HPV-negative samples. A benign reference dataset comprised of the HLA ligandomes of benign haematological and tissue datasets was used to identify tumour-associated antigens. RESULTS MS analysis led to the identification of naturally HLA-presented peptides in OPSCC tumour tissue. In total, 22,769 peptides from 9485 source proteins were detected on HLA class I. For HLA class II, 15,203 peptides from 4634 source proteins were discovered. By comparative profiling against the benign HLA ligandomic datasets, 29 OPSCC-associated HLA class I ligands covering 11 different HLA allotypes and nine HLA class II ligands were selected to create a peptide warehouse. CONCLUSION Tumour-associated peptides are HLA-presented on the cell surfaces of OPSCCs. The established warehouse of OPSCC-associated peptides can be used for downstream immunogenicity testing and peptide-based immunotherapy in (semi)personalised strategies.
Collapse
Affiliation(s)
- Lena Mühlenbruch
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,German Cancer Consortium (DKTK), Partner Site Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Tsima Abou-Kors
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Marissa L. Dubbelaar
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Quantitative Biology Center (QBiC), Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Leon Bichmann
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Oliver Kohlbacher
- grid.10392.390000 0001 2190 1447Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence Machine Learning in the Sciences (EXC2064), Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.411544.10000 0001 0196 8249Institute for Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Institute for Bioinformatics and Medical Informatics, Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Martin Bens
- grid.418245.e0000 0000 9999 5706Leibniz-Institute on Aging, Fritz-Lipmann-Institute, 07745 Jena, Thüringen Germany
| | - Jaya Thomas
- grid.5491.90000 0004 1936 9297CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ UK
| | - Jasmin Ezić
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Johann M. Kraus
- grid.6582.90000 0004 1936 9748Ulm University, Institute of Medical Systems Biology, Ulm, Germany
| | - Hans A. Kestler
- grid.6582.90000 0004 1936 9748Ulm University, Institute of Medical Systems Biology, Ulm, Germany
| | - Adrian von Witzleben
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Joannis Mytilineos
- grid.410712.10000 0004 0473 882XInstitute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden–Württemberg–Hessen, and University Hospital Ulm, Ulm, Germany ,grid.6582.90000 0004 1936 9748Institute of Transfusion Medicine, Ulm University, Ulm, Germany ,German Stem Cell Donor Registry, German Red Cross Blood Transfusion Service, Ulm, Germany
| | - Daniel Fürst
- grid.410712.10000 0004 0473 882XInstitute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden–Württemberg–Hessen, and University Hospital Ulm, Ulm, Germany ,grid.6582.90000 0004 1936 9748Institute of Transfusion Medicine, Ulm University, Ulm, Germany
| | - Daphne Engelhardt
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Johannes Doescher
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Jens Greve
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Patrick J. Schuler
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Marie-Nicole Theodoraki
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Cornelia Brunner
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Thomas K. Hoffmann
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Hans-Georg Rammensee
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,German Cancer Consortium (DKTK), Partner Site Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Juliane S. Walz
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.411544.10000 0001 0196 8249Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Baden-Württemberg 72076 Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany.
| |
Collapse
|
48
|
Alsadat Mahmoudian R, Amirhosein M, Mahmoudian P, Fardi Golyan F, Mokhlessi L, Maftooh M, Khazaei M, Nassiri M, Mahdi Hassanian S, Ghayour-Mobarhan M, Ferns GA, Shahidsales S, Avan A. The therapeutic potential value of Cancer-testis antigens in immunotherapy of gastric cancer. Gene 2023; 853:147082. [PMID: 36464170 DOI: 10.1016/j.gene.2022.147082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Gastric cancer (GC) is the fourth most common cause of mortality and the fifth for incidence, globally. Diagnosis, early prognosis, and therapy remains challenging for this condition, and new tumor-associated antigens are required for its detection and immunotherapy. Cancer-testis antigens (CTAs) are a subfamily of tumor-associated antigens (TAAs) that have been identified as potential biomarkers and targets for cancer immunotherapy. The CTAs-restricted expression pattern in tumor cells and their potential immunogenicity identify them as attractive target candidates in CTA-based diagnosis or prognosis or immunotherapy. To date, numerous studies have reported the dysregulation of CTAs in GC. Several clinical trials have been done to assess CTA-based immunotherapeutic potential in the treatment of GC patients. NY-ESO-1, MAGE, and KK-LC-1 have been used in GC clinical trials. We review recent studies that have investigated the potential of the CTAs in GC regarding the expression, function, aggressive phenotype, prognosis, and immunological responses as well as their possible clinical significance as immunotherapeutic targets with a focus on challenges and future interventions.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maharati Amirhosein
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leila Mokhlessi
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, Witten, Germany.
| | - Mina Maftooh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK.
| | | | - Amir Avan
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Martinov T, Greenberg PD. Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor-Based Cellular Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:331-351. [PMID: 37655310 PMCID: PMC10470615 DOI: 10.1146/annurev-cancerbio-061521-082114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
T cell reactivity to tumor-specific neoantigens can drive endogenous and therapeutically induced antitumor immunity. However, most tumor-specific neoantigens are unique to each patient (private) and targeting them requires personalized therapy. A smaller subset of neoantigens includes epitopes that span recurrent mutation hotspots, translocations, or gene fusions in oncogenic drivers and tumor suppressors, as well as epitopes that arise from viral oncogenic proteins. Such antigens are likely to be shared across patients (public), uniformly expressed within a tumor, and required for cancer cell survival and fitness. Although a limited number of these public neoantigens are naturally immunogenic, recent studies affirm their clinical utility. In this review, we highlight efforts to target mutant KRAS, mutant p53, and epitopes derived from oncogenic viruses using T cells engineered with off-the-shelf T cell receptors. We also discuss the challenges and strategies to achieving more effective T cell therapies, particularly in the context of solid tumors.
Collapse
Affiliation(s)
- Tijana Martinov
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Philip D Greenberg
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Immunology Department, University of Washington, Seattle, Washington, USA
| |
Collapse
|
50
|
Brightman SE, Naradikian MS, Thota RR, Becker A, Montero L, Bahmanof M, Premlal ALR, Greenbaum JA, Peters B, Cohen EE, Miller AM, Schoenberger SP. Tumor cells fail to present MHC-II-restricted epitopes derived from oncogenes to CD4+ T cells. JCI Insight 2023; 8:165570. [PMID: 36512410 PMCID: PMC9977289 DOI: 10.1172/jci.insight.165570] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
CD4+ T cells play a critical role in antitumor immunity via recognition of peptide antigens presented on MHC class II (MHC-II). Although some solid cancers can be induced to express MHC-II, the extent to which this enables direct recognition by tumor-specific CD4+ T cells is unclear. We isolated and characterized T cell antigen receptors (TCRs) from naturally primed CD4+ T cells specific for 2 oncoproteins, HPV-16 E6 and the activating KRASG12V mutation, from patients with head and neck squamous cell carcinoma and pancreatic ductal adenocarcinoma, respectively, and determined their ability to recognize autologous or human leukocyte antigen-matched antigen-expressing tumor cells. We found in both cases that the TCRs were capable of recognizing peptide-loaded target cells expressing the relevant MHC-II or B cell antigen-presenting cells (APCs) when the antigens were endogenously expressed and directed to the endosomal pathway but failed to recognize tumor cells expressing the source protein even after induction of surface MHC-II expression by IFN-γ or transduction with CIITA. These results suggest that priming and functional recognition of both a nuclear (E6) and a membrane-associated (KRAS) oncoprotein are predominantly confined to crosspresenting APCs rather than via direct recognition of tumor cells induced to express MHC-II.
Collapse
Affiliation(s)
- Spencer E. Brightman
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA.,Biomedical Sciences Program, School of Medicine, UCSD, La Jolla, California, USA
| | - Martin S. Naradikian
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA.,Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California, USA.,Novartis, San Diego, California, USA
| | - Rukman R. Thota
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Angelica Becker
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA.,IconOVir Bio, San Diego, California, USA
| | - Leslie Montero
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Milad Bahmanof
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | | | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, UCSD, La Jolla, California, USA
| | - Ezra E.W. Cohen
- Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California, USA
| | - Aaron M. Miller
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA.,Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California, USA
| | - Stephen P. Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|