1
|
Mattoo S, Arora M, Sharma P, Pore SK. Targeting mammalian N-end rule pathway for cancer therapy. Biochem Pharmacol 2025; 231:116684. [PMID: 39613115 DOI: 10.1016/j.bcp.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Regulated protein degradation plays a crucial role in maintaining proteostasis along with protein refolding and compartmentalisation which collectively control biological functions. The N-end rule pathway is a major ubiquitin-dependent protein degradation system. The short-lived protein substrates containing destabilizing amino acid residues (N-degrons) are recognized by E3 ubiquitin ligases containing UBR box domains (N-recognin) for degradation. The dysregulated pathway fails to maintain the metabolic stability of the substrate proteins which leads to diseases. The mammalian substrates of this pathway are involved in many hallmarks of cancer such as resisting cell death, evading growth suppression, chromosomal instability, angiogenesis, and deregulation of cellular metabolism. Besides, mutations in E3 N-recognin have been detected in human cancers. In this review, we discuss the mammalian N-end rule pathway components, functions, and mechanism of degradation of substrates, and their implications in cancer pathogenesis. We also discuss the impact of pharmacological and genetic inhibition of this pathway component on cancer cells and chemoresistance. We further highlight how this pathway can be manipulated for selective protein degradation; for instance, using PROTAC technique. The challenges and future perspectives to utilize this pathway as a drug target for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Muskaan Arora
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Priyanka Sharma
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
2
|
Oldham KEA, Mabbitt PD. Ubiquitin E3 ligases in the plant Arg/N-degron pathway. Biochem J 2024; 481:1949-1965. [PMID: 39670824 DOI: 10.1042/bcj20240132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Regulation of protein longevity via the ubiquitin (Ub) - proteasome pathway is fundamental to eukaryotic biology. Ubiquitin E3 ligases (E3s) interact with substrate proteins and provide specificity to the pathway. A small subset of E3s bind to specific exposed N-termini (N-degrons) and promote the ubiquitination of the bound protein. Collectively these E3s, and other N-degron binding proteins, are known as N-recognins. There is considerable functional divergence between fungi, animal, and plant N-recognins. In plants, at least three proteins (PRT1, PRT6, and BIG) participate in the Arg/N-degron pathway. PRT1 has demonstrated E3 ligase activity, whereas PRT6 and BIG are candidate E3s. The Arg/N-degron pathway plays a central role in plant development, germination, and submersion tolerance. The pathway has been manipulated both to improve crop performance and for conditional protein degradation. A more detailed structural and biochemical understanding of the Arg/N-recognins and their substrates is required to fully realise the biotechnological potential of the pathway. This perspective focuses on the structural and molecular details of substrate recognition and ubiquitination in the plant Arg/N-degron pathway. While PRT1 appears to be plant specific, the PRT6 and BIG proteins are similar to UBR1 and UBR4, respectively. Analysis of the cryo-EM structures of Saccharomyces UBR1 suggests that the mode of ubiquitin conjugating enzyme (E2) and substrate recruitment is conserved in PRT6, but regulation of the two N-recognins may be significantly different. The structurally characterised domains from human UBR4 are also likely to be conserved in BIG, however, there are sizeable gaps in our understanding of both proteins.
Collapse
Affiliation(s)
- Keely E A Oldham
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Peter D Mabbitt
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| |
Collapse
|
3
|
Rodríguez-Gimeno A, Galdeano C. Drug Discovery Approaches to Target E3 Ligases. Chembiochem 2024:e202400656. [PMID: 39686906 DOI: 10.1002/cbic.202400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Targeting E3 ligases is a challenging area in drug discovery. Despite the human genome encoding for more than 600 E3 ubiquitin ligases, only a handful of E3 ligases have been pharmacologically modulated or exploited for targeted protein degradation (TPD) strategies. The main obstacle for hijacking these E3 ligases is the lack of small-molecule ligands. As research into this field advances, the identification of new small molecules capable of binding to E3 ligases has become an essential pursuit. These ligases not only expand the repertoire of druggable targets but also offer the potential for increased specificity and selectivity in protein degradation. The synergy between academia and industry is key, as it combines academic expertise in fundamental research with the industrial capabilities of translating these findings into novel therapeutics. In this review, we provide an overview of the different strategies employed in academia and industry to the discovery of new E3 ligases ligands, showing them with illustrative cases.
Collapse
Affiliation(s)
- Alejandra Rodríguez-Gimeno
- Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Carles Galdeano
- Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| |
Collapse
|
4
|
Bagci H, Winkler M, Grädel B, Uliana F, Boulais J, Mohamed WI, Park SL, Côté JF, Pertz O, Peter M. The hGID GID4 E3 ubiquitin ligase complex targets ARHGAP11A to regulate cell migration. Life Sci Alliance 2024; 7:e202403046. [PMID: 39389782 PMCID: PMC11467045 DOI: 10.26508/lsa.202403046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
The human CTLH/GID (hGID) complex emerged as an important E3 ligase regulating multiple cellular processes, including cell cycle progression and metabolism. However, the range of biological functions controlled by hGID remains unexplored. Here, we used proximity-dependent biotinylation (BioID2) to identify proteins interacting with the hGID complex, among them, substrate candidates that bind GID4 in a pocket-dependent manner. Biochemical and cellular assays revealed that the hGIDGID4 E3 ligase binds and ubiquitinates ARHGAP11A, thereby targeting this RhoGAP for proteasomal degradation. Indeed, GID4 depletion or impeding the GID4 substrate binding pocket with the PFI-7 inhibitor stabilizes ARHGAP11A protein amounts, although it carries no functional N-terminal degron. Interestingly, GID4 inactivation impairs cell motility and directed cell movement by increasing ARHGAP11A levels at the cell periphery, where it inactivates RhoA. Together, we identified a wide range of hGIDGID4 E3 ligase substrates and uncovered a unique function of the hGIDGID4 E3 ligase regulating cell migration by targeting ARHGAP11A.
Collapse
Affiliation(s)
- Halil Bagci
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Martin Winkler
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Benjamin Grädel
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Weaam I Mohamed
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sophia L Park
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, Canada
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Scott DC, Chittori S, Purser N, King MT, Maiwald SA, Churion K, Nourse A, Lee C, Paulo JA, Miller DJ, Elledge SJ, Harper JW, Kleiger G, Schulman BA. Structural basis for C-degron selectivity across KLHDCX family E3 ubiquitin ligases. Nat Commun 2024; 15:9899. [PMID: 39548056 PMCID: PMC11568203 DOI: 10.1038/s41467-024-54126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Specificity of the ubiquitin-proteasome system depends on E3 ligase-substrate interactions. Many such pairings depend on E3 ligases binding to peptide-like sequences - termed N- or C-degrons - at the termini of substrates. However, our knowledge of structural features distinguishing closely related C-degron substrate-E3 pairings is limited. Here, by systematically comparing ubiquitylation activities towards a suite of common model substrates, and defining interactions by biochemistry, crystallography, and cryo-EM, we reveal principles of C-degron recognition across the KLHDCX family of Cullin-RING ligases (CRLs). First, a motif common across these E3 ligases anchors a substrate's C-terminus. However, distinct locations of this C-terminus anchor motif in different blades of the KLHDC2, KLHDC3, and KLHDC10 β-propellers establishes distinct relative positioning and molecular environments for substrate C-termini. Second, our structural data show KLHDC3 has a pre-formed pocket establishing preference for an Arg or Gln preceding a C-terminal Gly, whereas conformational malleability contributes to KLHDC10's recognition of varying features adjacent to substrate C-termini. Finally, additional non-consensus interactions, mediated by C-degron binding grooves and/or by distal propeller surfaces and substrate globular domains, can substantially impact substrate binding and ubiquitylatability. Overall, the data reveal combinatorial mechanisms determining specificity and plasticity of substrate recognition by KLDCX-family C-degron E3 ligases.
Collapse
Affiliation(s)
- Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sagar Chittori
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Moeko T King
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Samuel A Maiwald
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kelly Churion
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chan Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
6
|
Zolg S, Donzelli L, Geiss-Friedlander R. N-terminal processing by dipeptidyl peptidase 9: Cut and Go! Biochimie 2024; 226:180-192. [PMID: 38461970 DOI: 10.1016/j.biochi.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Dipeptidyl peptidase 9 (DPP9) is an intracellular amino-dipeptidase with physiological roles in the immune system, DNA repair and mitochondria homeostasis, while its deregulation is linked to cancer progression and immune-associated defects. Through its rare ability to cleave a peptide bond following the imino-acid proline, DPP9 acts as a molecular switch that regulates key proteins, such as the tumor-suppressor BRCA2. In this review we will discuss key concepts underlying the outcomes of protein processing by DPP9, including substrate turn-over by the N-degron pathway. Additionally, we will review non-enzymatic roles and the regulation of DPP9 by discussing the interactome of this protease, which includes SUMO1, Filamin A, NLRP1 and CARD8.
Collapse
Affiliation(s)
- Samuel Zolg
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Laura Donzelli
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Ruth Geiss-Friedlander
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.
| |
Collapse
|
7
|
Simwela NV, Johnston L, Bitar PP, Jaecklein E, Altier C, Sassetti CM, Russell DG. Genome-wide screen of Mycobacterium tuberculosis-infected macrophages revealed GID/CTLH complex-mediated modulation of bacterial growth. Nat Commun 2024; 15:9322. [PMID: 39472457 PMCID: PMC11522665 DOI: 10.1038/s41467-024-53637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The eukaryotic Glucose Induced Degradation/C-Terminal to LisH (GID/CTLH) complex is a highly conserved E3 ubiquitin ligase involved in a broad range of biological processes. However, a role of this complex in host anti-microbial defenses has not been described. We exploited Mycobacterium tuberculosis (Mtb) induced cytotoxicity in macrophages in a FACS based CRISPR genetic screen to identify host determinants of intracellular Mtb growth restriction. Our screen identified 5 (GID8, YPEL5, WDR26, UBE2H, MAEA) of the 12 predicted members of the GID/CTLH complex as determinants of intracellular growth of both Mtb and Salmonella serovar Typhimurium. We show that the anti-microbial properties of the GID/CTLH complex knockout macrophages are mediated by enhanced GABAergic signaling, activated AMPK, increased autophagic flux and resistance to Mtb induced necrotic cell death. Meanwhile, Mtb isolated from GID/CTLH knockout macrophages are nutritionally starved and oxidatively stressed. Our study identifies the GID/CTLH complex activity as broadly suppressive of host anti-microbial responses against intracellular bacterial infections.
Collapse
Affiliation(s)
- Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Luana Johnston
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Paulina Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Eleni Jaecklein
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Scott DC, Dharuman S, Griffith E, Chai SC, Ronnebaum J, King MT, Tangallapally R, Lee C, Gee CT, Yang L, Li Y, Loudon VC, Lee HW, Ochoada J, Miller DJ, Jayasinghe T, Paulo JA, Elledge SJ, Harper JW, Chen T, Lee RE, Schulman BA. Principles of paralog-specific targeted protein degradation engaging the C-degron E3 KLHDC2. Nat Commun 2024; 15:8829. [PMID: 39396041 PMCID: PMC11470957 DOI: 10.1038/s41467-024-52966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
PROTAC® (proteolysis-targeting chimera) molecules induce proximity between an E3 ligase and protein-of-interest (POI) to target the POI for ubiquitin-mediated degradation. Cooperative E3-PROTAC-POI complexes have potential to achieve neo-substrate selectivity beyond that established by POI binding to the ligand alone. Here, we extend the collection of ubiquitin ligases employable for cooperative ternary complex formation to include the C-degron E3 KLHDC2. Ligands were identified that engage the C-degron binding site in KLHDC2, subjected to structure-based improvement, and linked to JQ1 for BET-family neo-substrate recruitment. Consideration of the exit vector emanating from the ligand engaged in KLHDC2's U-shaped degron-binding pocket enabled generation of SJ46421, which drives formation of a remarkably cooperative, paralog-selective ternary complex with BRD3BD2. Meanwhile, screening pro-drug variants enabled surmounting cell permeability limitations imposed by acidic moieties resembling the KLHDC2-binding C-degron. Selectivity for BRD3 compared to other BET-family members is further manifested in ubiquitylation in vitro, and prodrug version SJ46420-mediated degradation in cells. Selectivity is also achieved for the ubiquitin ligase, overcoming E3 auto-inhibition to engage KLHDC2, but not the related KLHDC1, KLHDC3, or KLHDC10 E3s. In sum, our study establishes neo-substrate-specific targeted protein degradation via KLHDC2, and provides a framework for developing selective PROTAC protein degraders employing C-degron E3 ligases.
Collapse
Affiliation(s)
- Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth Griffith
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jarrid Ronnebaum
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moeko T King
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rajendra Tangallapally
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chan Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Clifford T Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Victoria C Loudon
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason Ochoada
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Thilina Jayasinghe
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
9
|
Yang J, Kim SY, Hwang CS. Delineation of the substrate recognition domain of MARCHF6 E3 ubiquitin ligase in the Ac/N-degron pathway and its regulatory role in ferroptosis. J Biol Chem 2024; 300:107731. [PMID: 39216628 PMCID: PMC11460463 DOI: 10.1016/j.jbc.2024.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Nα-terminal acetylation in eukaryotic proteins creates specific degradation signals (Ac/N-degrons) targeted for ubiquitin-mediated proteolysis via the Ac/N-degron pathway. Despite the identification of key components of the Ac/N-degron pathway over the past 15 years, the precise recognition domain (Ac/N domain) remains unclear. Here, we defined the Ac/N domain of the endoplasmic reticulum MARCHF6 E3 ubiquitin ligase through a systematic analysis of its cytosol-facing regions using alanine-stretch mutagenesis, chemical crosslinking-based co-immunoprecipitation-immunoblotting, and split-ubiquitin assays in human and yeast cells. The Ac/N domain of MARCHF6 exhibits preferential binding specificity to Nα-terminally acetylated proteins and peptides over their unacetylated counterparts, mediating the degradation of Ac/N-degron-bearing proteins, such as the G-protein regulator RGS2 and the lipid droplet protein PLIN2. Furthermore, abolishing the recognition of Ac/N-degrons by MARCHF6 stabilized RGS2 and PLIN2, thereby increasing the resistance to ferroptosis, an iron-dependent lipid peroxidation-mediated cell death. These findings provide mechanistic and functional insights into how MARCHF6 serves as a rheostatic modulator of ferroptosis by recognizing Ac/N-degron substrates via its Ac/N domain and non-Ac/N-degron substrates via distinct recognition sites.
Collapse
Affiliation(s)
- Jihye Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Sang-Yoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
10
|
Varshavsky A. N-degron pathways. Proc Natl Acad Sci U S A 2024; 121:e2408697121. [PMID: 39264755 PMCID: PMC11441550 DOI: 10.1073/pnas.2408697121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
An N-degron is a degradation signal whose main determinant is a "destabilizing" N-terminal residue of a protein. Specific N-degrons, discovered in 1986, were the first identified degradation signals in short-lived intracellular proteins. These N-degrons are recognized by a ubiquitin-dependent proteolytic system called the Arg/N-degron pathway. Although bacteria lack the ubiquitin system, they also have N-degron pathways. Studies after 1986 have shown that all 20 amino acids of the genetic code can act, in specific sequence contexts, as destabilizing N-terminal residues. Eukaryotic proteins are targeted for the conditional or constitutive degradation by at least five N-degron systems that differ both functionally and mechanistically: the Arg/N-degron pathway, the Ac/N-degron pathway, the Pro/N-degron pathway, the fMet/N-degron pathway, and the newly named, in this perspective, GASTC/N-degron pathway (GASTC = Gly, Ala, Ser, Thr, Cys). I discuss these systems and the expanded terminology that now encompasses the entire gamut of known N-degron pathways.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
11
|
Owens DDG, Maitland MER, Khalili Yazdi A, Song X, Reber V, Schwalm MP, Machado RAC, Bauer N, Wang X, Szewczyk MM, Dong C, Dong A, Loppnau P, Calabrese MF, Dowling MS, Lee J, Montgomery JI, O'Connell TN, Subramanyam C, Wang F, Adamson EC, Schapira M, Gstaiger M, Knapp S, Vedadi M, Min J, Lajoie GA, Barsyte-Lovejoy D, Owen DR, Schild-Poulter C, Arrowsmith CH. A chemical probe to modulate human GID4 Pro/N-degron interactions. Nat Chem Biol 2024; 20:1164-1175. [PMID: 38773330 DOI: 10.1038/s41589-024-01618-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.
Collapse
Affiliation(s)
- Dominic D G Owens
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E R Maitland
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Don Rix Protein Identification Facility, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | - Xiaosheng Song
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Viviane Reber
- Institute of Molecular Systems Biology at ETH Zurich, Zurich, Switzerland
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Frankfurt am Main, Germany
| | - Raquel A C Machado
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Nicolas Bauer
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Frankfurt am Main, Germany
| | - Xu Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | - Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Jisun Lee
- Development and Medical, Pfizer Worldwide Research, Groton, CT, USA
| | | | | | | | - Feng Wang
- Development and Medical, Pfizer Worldwide Research, Groton, CT, USA
| | - Ella C Adamson
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology at ETH Zurich, Zurich, Switzerland
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Frankfurt am Main, Germany
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Don Rix Protein Identification Facility, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Dafydd R Owen
- Development and Medical, Pfizer Worldwide Research, Groton, CT, USA
| | - Caroline Schild-Poulter
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Barbulescu P, Chana CK, Wong MK, Ben Makhlouf I, Bruce JP, Feng Y, Keszei AFA, Wong C, Mohamad-Ramshan R, McGary LC, Kashem MA, Ceccarelli DF, Orlicky S, Fang Y, Kuang H, Mazhab-Jafari M, Pezo RC, Bhagwat AS, Pugh TJ, Gingras AC, Sicheri F, Martin A. FAM72A degrades UNG2 through the GID/CTLH complex to promote mutagenic repair during antibody maturation. Nat Commun 2024; 15:7541. [PMID: 39215025 PMCID: PMC11364545 DOI: 10.1038/s41467-024-52009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
A diverse antibody repertoire is essential for humoral immunity. Antibody diversification requires the introduction of deoxyuridine (dU) mutations within immunoglobulin genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR). dUs are normally recognized and excised by the base excision repair (BER) protein uracil-DNA glycosylase 2 (UNG2). However, FAM72A downregulates UNG2 permitting dUs to persist and trigger SHM and CSR. How FAM72A promotes UNG2 degradation is unknown. Here, we show that FAM72A recruits a C-terminal to LisH (CTLH) E3 ligase complex to target UNG2 for proteasomal degradation. Deficiency in CTLH complex components result in elevated UNG2 and reduced SHM and CSR. Cryo-EM structural analysis reveals FAM72A directly binds to MKLN1 within the CTLH complex to recruit and ubiquitinate UNG2. Our study further suggests that FAM72A hijacks the CTLH complex to promote mutagenesis in cancer. These findings show that FAM72A is an E3 ligase substrate adaptor critical for humoral immunity and cancer development.
Collapse
Affiliation(s)
- Philip Barbulescu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Chetan K Chana
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Matthew K Wong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ines Ben Makhlouf
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Yuqing Feng
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Cassandra Wong
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Laura C McGary
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Mohammad A Kashem
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Derek F Ceccarelli
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Stephen Orlicky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Yifei Fang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Huihui Kuang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Mohammad Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Frank Sicheri
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Zhang J, Chen X, Chen C, Li F, Song X, Liu C, Liao K, Su MY, Tan CSH, Fang L, Rao H. Distinct Amino Acid-Based PROTACs Target Oncogenic Kinases for Degradation in Non-Small Cell Lung Cancer (NSCLC). J Med Chem 2024; 67:13666-13680. [PMID: 39114932 DOI: 10.1021/acs.jmedchem.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) selectively eliminate detrimental proteins by exploiting the ubiquitin-proteasome system (UPS), representing a promising therapeutic strategy against various diseases. Effective adaptations of degradation signal sequences and E3 ligases for PROTACs remain limited. Here, we employed three amino acids─Gly, Pro, and Lys─as the ligand to recruit the corresponding E3 ligases: CRL2ZYG11B/ZER1, GID4, and UBRs, to degrade EML4-ALK and mutant EGFR, two oncogenic drivers in NSCLC. We found that the extent of EML4-ALK and EGFR reduction can be easily fine-tuned by using different degradation signals. These amino acid-based PROTACs, termed AATacs, hindered proliferation and induced cell cycle arrest and apoptosis of NSCLC cells in vitro. Compared to other PROTACs, AATacs are small, interchangeable but with different degradation efficiency. Our study further expands the repertoire of E3 ligases and their ligands for PROTAC application, improving the versatility and utility of targeted protein degradation for therapeutic purposes.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Congli Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fengming Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoxiao Song
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaowei Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kefan Liao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming-Yuan Su
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chris Soon Heng Tan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Yang YM, Karbstein K. The ubiquitin-proteasome system regulates the formation of specialized ribosomes during high salt stress in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608112. [PMID: 39185221 PMCID: PMC11343215 DOI: 10.1101/2024.08.15.608112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Rps26-deficient ribosomes are a physiologically relevant ribosome population which arises during osmotic stress to support the translation of mRNAs involved in the response to high salt in yeast. They are formed by binding of the chaperone Tsr2 to fully assembled ribosomes to release Rps26 when intracellular Na+ concentrations rise. Tsr2-mediated Rps26 release is reversible, enabling a rapid response that conserves ribosomes. However, because the concentration of Tsr2 relative to ribosomes is low, how the released Rps26•Tsr2 complex is managed to allow for accumulation of Rps26-deficient ribosomes to nearly 50% of all ribosomes remains unclear. Here we show that released Rps26 is degraded via the Pro/N-degron pathway, enabling the accumulation of Rps26-deficient ribosomes. Substitution of the N-terminal proline of Rps26 to serine increases the stability of free Rps26, limits the accumulation of Rps26-deficient ribosomes and renders yeast sensitive to high salt. The GID-complex, an E3 ubiquitin ligase, and its adaptor Gid4, mediate polyubiquitination of Rps26 at Lys66 and Lys70. Moreover, this ubiquitination event is required for Rps26 degradation, the accumulation of Rps26-deficient ribosomes and the high salt stress resistance. Together, the data show that targeted degradation of released Rps26 from the Rps26•Tsr2 complex allows Tsr2 to be recycled, thus facilitating multiple rounds of Rps26 release.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Research Innovation and Technology, Jupiter, FL, 33458, USA
- present address: Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Katrin Karbstein
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Research Innovation and Technology, Jupiter, FL, 33458, USA
- present address: Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| |
Collapse
|
15
|
Shimshon A, Dahan K, Israel-Gueta M, Olmayev-Yaakobov D, Timms RT, Bekturova A, Makaros Y, Elledge SJ, Koren I. Dipeptidyl peptidases and E3 ligases of N-degron pathways cooperate to regulate protein stability. J Cell Biol 2024; 223:e202311035. [PMID: 38874443 PMCID: PMC11178506 DOI: 10.1083/jcb.202311035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
N-degrons are short sequences located at protein N-terminus that mediate the interaction of E3 ligases (E3s) with substrates to promote their proteolysis. It is well established that N-degrons can be exposed following protease cleavage to allow recognition by E3s. However, our knowledge regarding how proteases and E3s cooperate in protein quality control mechanisms remains minimal. Using a systematic approach to monitor the protein stability of an N-terminome library, we found that proline residue at the third N-terminal position (hereafter "P+3") promotes instability. Genetic perturbations identified the dipeptidyl peptidases DPP8 and DPP9 and the primary E3s of N-degron pathways, UBR proteins, as regulators of P+3 bearing substrate turnover. Interestingly, P+3 UBR substrates are significantly enriched for secretory proteins. We found that secretory proteins relying on a signal peptide (SP) for their targeting contain a "built-in" N-degron within their SP. This degron becomes exposed by DPP8/9 upon translocation failure to the designated compartments, thus enabling clearance of mislocalized proteins by UBRs to maintain proteostasis.
Collapse
Affiliation(s)
- Adi Shimshon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Karin Dahan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mor Israel-Gueta
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Diana Olmayev-Yaakobov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Richard T. Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Aizat Bekturova
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yaara Makaros
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
16
|
Szulc NA, Stefaniak F, Piechota M, Soszyńska A, Piórkowska G, Cappannini A, Bujnicki J, Maniaci C, Pokrzywa W. DEGRONOPEDIA: a web server for proteome-wide inspection of degrons. Nucleic Acids Res 2024; 52:W221-W232. [PMID: 38567734 PMCID: PMC11223883 DOI: 10.1093/nar/gkae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 07/06/2024] Open
Abstract
E3 ubiquitin ligases recognize substrates through their short linear motifs termed degrons. While degron-signaling has been a subject of extensive study, resources for its systematic screening are limited. To bridge this gap, we developed DEGRONOPEDIA, a web server that searches for degrons and maps them to nearby residues that can undergo ubiquitination and disordered regions, which may act as protein unfolding seeds. Along with an evolutionary assessment of degron conservation, the server also reports on post-translational modifications and mutations that may modulate degron availability. Acknowledging the prevalence of degrons at protein termini, DEGRONOPEDIA incorporates machine learning to assess N-/C-terminal stability, supplemented by simulations of proteolysis to identify degrons in newly formed termini. An experimental validation of a predicted C-terminal destabilizing motif, coupled with the confirmation of a post-proteolytic degron in another case, exemplifies its practical application. DEGRONOPEDIA can be freely accessed at degronopedia.com.
Collapse
Affiliation(s)
- Natalia A Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Filip Stefaniak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Małgorzata Piechota
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Anna Soszyńska
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Gabriela Piórkowska
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Andrea Cappannini
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Chiara Maniaci
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| |
Collapse
|
17
|
Chun Y, Fruman DA, Lee G. The picky mTORC1 in metabolic enzyme degradation. Mol Cell 2024; 84:2011-2013. [PMID: 38848689 DOI: 10.1016/j.molcel.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
In this issue of Molecular Cell, Yi et al.1 demonstrate that reduced mTORC1 activity induces the CTLH E3 ligase-dependent degradation of HMGCS1, an enzyme in the mevalonate pathway, thus revealing a unique connection between mTORC1 signaling and the degradation of a specific metabolic enzyme via the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yujin Chun
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
18
|
Yi SA, Sepic S, Schulman BA, Ordureau A, An H. mTORC1-CTLH E3 ligase regulates the degradation of HMG-CoA synthase 1 through the Pro/N-degron pathway. Mol Cell 2024; 84:2166-2184.e9. [PMID: 38788716 PMCID: PMC11186538 DOI: 10.1016/j.molcel.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.
Collapse
Affiliation(s)
- Sang Ah Yi
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sara Sepic
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany; Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany; Technical University of Munich, School of Natural Sciences, Munich, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heeseon An
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
19
|
Gottemukkala KV, Chrustowicz J, Sherpa D, Sepic S, Vu DT, Karayel Ö, Papadopoulou EC, Gross A, Schorpp K, von Gronau S, Hadian K, Murray PJ, Mann M, Schulman BA, Alpi AF. Non-canonical substrate recognition by the human WDR26-CTLH E3 ligase regulates prodrug metabolism. Mol Cell 2024; 84:1948-1963.e11. [PMID: 38759627 PMCID: PMC7616709 DOI: 10.1016/j.molcel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
The yeast glucose-induced degradation-deficient (GID) E3 ubiquitin ligase forms a suite of complexes with interchangeable receptors that selectively recruit N-terminal degron motifs of metabolic enzyme substrates. The orthologous higher eukaryotic C-terminal to LisH (CTLH) E3 complex has been proposed to also recognize substrates through an alternative subunit, WDR26, which promotes the formation of supramolecular CTLH E3 assemblies. Here, we discover that human WDR26 binds the metabolic enzyme nicotinamide/nicotinic-acid-mononucleotide-adenylyltransferase 1 (NMNAT1) and mediates its CTLH E3-dependent ubiquitylation independently of canonical GID/CTLH E3-family substrate receptors. The CTLH subunit YPEL5 inhibits NMNAT1 ubiquitylation and cellular turnover by WDR26-CTLH E3, thereby affecting NMNAT1-mediated metabolic activation and cytotoxicity of the prodrug tiazofurin. Cryoelectron microscopy (cryo-EM) structures of NMNAT1- and YPEL5-bound WDR26-CTLH E3 complexes reveal an internal basic degron motif of NMNAT1 essential for targeting by WDR26-CTLH E3 and degron mimicry by YPEL5's N terminus antagonizing substrate binding. Thus, our data provide a mechanistic understanding of how YPEL5-WDR26-CTLH E3 acts as a modulator of NMNAT1-dependent metabolism.
Collapse
Affiliation(s)
- Karthik V Gottemukkala
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; TUM School of Natural Sciences, Technical University, Munich 85748, Germany
| | - Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Sara Sepic
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; TUM School of Natural Sciences, Technical University, Munich 85748, Germany
| | - Duc Tung Vu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry,Martinsried 82152, Germany
| | - Özge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry,Martinsried 82152, Germany
| | - Eleftheria C Papadopoulou
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; TUM School of Natural Sciences, Technical University, Munich 85748, Germany
| | - Annette Gross
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Immunoregulation, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Kenji Schorpp
- Research Unit-Signaling and Translation, Cell Signaling and Chemical Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Kamyar Hadian
- Research Unit-Signaling and Translation, Cell Signaling and Chemical Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Peter J Murray
- Immunoregulation, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry,Martinsried 82152, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; TUM School of Natural Sciences, Technical University, Munich 85748, Germany
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
20
|
Simwela NV, Johnston L, Pavinski Bitar P, Jaecklein E, Altier C, Sassetti CM, Russell DG. Genome-wide screen of Mycobacterium tuberculosis- infected macrophages identified the GID/CTLH complex as a determinant of intracellular bacterial growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592714. [PMID: 38766174 PMCID: PMC11100626 DOI: 10.1101/2024.05.06.592714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The eukaryotic GID/CTLH complex is a highly conserved E3 ubiquitin ligase involved in a broad range of biological processes. However, a role of this complex in host antimicrobial defenses has not been described. We exploited Mycobacterium tuberculosis ( Mtb ) induced cytotoxicity in macrophages in a FACS based CRISPR genetic screen to identify host determinants of intracellular Mtb growth restriction. Our screen identified 5 ( GID8 , YPEL5 , WDR26 , UBE2H , MAEA ) of the 10 predicted members of the GID/CTLH complex as determinants of intracellular growth of both Mtb and Salmonella serovar Typhimurium. We show that the antimicrobial properties of the GID/CTLH complex knockdown macrophages are mediated by enhanced GABAergic signaling, activated AMPK, increased autophagic flux and resistance to cell death. Meanwhile, Mtb isolated from GID/CTLH knockdown macrophages are nutritionally starved and oxidatively stressed. Our study identifies the GID/CTLH complex activity as broadly suppressive of host antimicrobial responses against intracellular bacterial infections. Graphical abstract
Collapse
|
21
|
Gross A, Müller J, Chrustowicz J, Strasser A, Gottemukkala KV, Sherpa D, Schulman BA, Murray PJ, Alpi AF. Skraban-Deardorff intellectual disability syndrome-associated mutations in WDR26 impair CTLH E3 complex assembly. FEBS Lett 2024; 598:978-994. [PMID: 38575527 PMCID: PMC7616460 DOI: 10.1002/1873-3468.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Patients with Skraban-Deardorff syndrome (SKDEAS), a neurodevelopmental syndrome associated with a spectrum of developmental and intellectual delays and disabilities, harbor diverse mutations in WDR26, encoding a subunit of the multiprotein CTLH E3 ubiquitin ligase complex. Structural studies revealed that homodimers of WDR26 bridge two core-CTLH E3 complexes to generate giant, hollow oval-shaped supramolecular CTLH E3 assemblies. Additionally, WDR26 mediates CTLH E3 complex binding to subunit YPEL5 and functions as substrate receptor for the transcriptional repressor HBP1. Here, we mapped SKDEAS-associated mutations on a WDR26 structural model and tested their functionality in complementation studies using genetically engineered human cells lacking CTLH E3 supramolecular assemblies. Despite the diversity of mutations, 15 of 16 tested mutants impaired at least one CTLH E3 complex function contributing to complex assembly and interactions, thus providing first mechanistic insights into SKDEAS pathology.
Collapse
Affiliation(s)
- Annette Gross
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Judith Müller
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexander Strasser
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karthik V. Gottemukkala
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Peter J. Murray
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Arno F. Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
22
|
Wang Y, Guo R, Piedras BI, Tang HY, Asara JM, Tempera I, Lieberman PM, Gewurz BE. The CTLH Ubiquitin Ligase Substrates ZMYND19 and MKLN1 Negatively Regulate mTORC1 at the Lysosomal Membrane. RESEARCH SQUARE 2024:rs.3.rs-4259395. [PMID: 38746323 PMCID: PMC11092817 DOI: 10.21203/rs.3.rs-4259395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Most Epstein-Barr virus-associated gastric carcinoma (EBVaGC) harbor non-silent mutations that activate phosphoinositide 3 kinase (PI3K) to drive downstream metabolic signaling. To gain insights into PI3K/mTOR pathway dysregulation in this context, we performed a human genome-wide CRISPR/Cas9 screen for hits that synergistically blocked EBVaGC proliferation together with the PI3K antagonist alpelisib. Multiple subunits of carboxy terminal to LisH (CTLH) E3 ligase, including the catalytic MAEA subunit, were among top screen hits. CTLH negatively regulates gluconeogenesis in yeast, but not in higher organisms. Instead, we identified that the CTLH substrates MKLN1 and ZMYND19, which highly accumulated upon MAEA knockout, associated with one another and with lysosomes to inhibit mTORC1. ZMYND19/MKLN1 bound Raptor and RagA/C, but rather than perturbing mTORC1 lysosomal recruitment, instead blocked a late stage of its activation, independently of the tuberous sclerosis complex. Thus, CTLH enables cells to rapidly tune mTORC1 activity at the lysosomal membrane via the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Yin Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brenda Iturbide Piedras
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Virology, Harvard Medical School
| |
Collapse
|
23
|
Yazdi AK, Perveen S, Dong C, Song X, Dong A, Szewczyk MM, Calabrese MF, Casimiro-Garcia A, Chakrapani S, Dowling MS, Ficici E, Lee J, Montgomery JI, O'Connell TN, Skrzypek GJ, Tran TP, Troutman MD, Wang F, Young JA, Min J, Barsyte-Lovejoy D, Brown PJ, Santhakumar V, Arrowsmith CH, Vedadi M, Owen DR. Chemical tools for the Gid4 subunit of the human E3 ligase C-terminal to LisH (CTLH) degradation complex. RSC Med Chem 2024; 15:1066-1071. [PMID: 38516600 PMCID: PMC10953471 DOI: 10.1039/d3md00633f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/14/2024] [Indexed: 03/23/2024] Open
Abstract
We have developed a novel chemical handle (PFI-E3H1) and a chemical probe (PFI-7) as ligands for the Gid4 subunit of the human E3 ligase CTLH degradation complex. Through an efficient initial hit-ID campaign, structure-based drug design (SBDD) and leveraging the sizeable Pfizer compound library, we identified a 500 nM ligand for this E3 ligase through file screening alone. Further exploration identified a vector that is tolerant to addition of a linker for future chimeric molecule design. The chemotype was subsequently optimized to sub-100 nM Gid4 binding affinity for a chemical probe. These novel tools, alongside the suitable negative control also identified, should enable the interrogation of this complex human E3 ligase macromolecular assembly.
Collapse
Affiliation(s)
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto Toronto ON Canada
| | - Cheng Dong
- Structural Genomics Consortium, University of Toronto Toronto ON Canada
| | - Xiaosheng Song
- Structural Genomics Consortium, University of Toronto Toronto ON Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto Toronto ON Canada
| | | | | | | | | | | | | | - Jisun Lee
- Pfizer Research & Development Groton CT USA
| | | | | | | | | | | | - Feng Wang
- Pfizer Research & Development Groton CT USA
| | | | - Jinrong Min
- Structural Genomics Consortium, University of Toronto Toronto ON Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto Toronto ON Canada
- Department of Pharmacology and Toxicology, University of Toronto Toronto ON Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto Toronto ON Canada
| | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto Toronto ON Canada
- Department of Pharmacology and Toxicology, University of Toronto Toronto ON Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto Toronto ON Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto Toronto ON Canada
- Department of Pharmacology and Toxicology, University of Toronto Toronto ON Canada
| | | |
Collapse
|
24
|
Wu Z, Huang Y, Liu K, Min J. N/C-degron pathways and inhibitor development for PROTAC applications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194952. [PMID: 37263341 DOI: 10.1016/j.bbagrm.2023.194952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Ubiquitination is a fascinating post-translational modification that has received continuous attention since its discovery. In this review, we first provide a concise overview of the E3 ubiquitin ligases, delving into classification, characteristics and mechanisms of ubiquitination. We then specifically examine the ubiquitination pathways mediated by the N/C-degrons, discussing their unique features and substrate recognition mechanisms. Finally, we offer insights into the current state of development pertaining to inhibitors that target the N/C-degron pathways, as well as the promising advances in the field of PROTAC (PROteolysis TArgeting Chimeras). Overall, this review offers a comprehensive understanding of the rapidly-evolving field of ubiquitin biology.
Collapse
Affiliation(s)
- Zhibin Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
25
|
Chrustowicz J, Sherpa D, Li J, Langlois CR, Papadopoulou EC, Vu DT, Hehl LA, Karayel Ö, Beier V, von Gronau S, Müller J, Prabu JR, Mann M, Kleiger G, Alpi AF, Schulman BA. Multisite phosphorylation dictates selective E2-E3 pairing as revealed by Ubc8/UBE2H-GID/CTLH assemblies. Mol Cell 2024; 84:293-308.e14. [PMID: 38113892 PMCID: PMC10843684 DOI: 10.1016/j.molcel.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/29/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Ubiquitylation is catalyzed by coordinated actions of E3 and E2 enzymes. Molecular principles governing many important E3-E2 partnerships remain unknown, including those for RING-family GID/CTLH E3 ubiquitin ligases and their dedicated E2, Ubc8/UBE2H (yeast/human nomenclature). GID/CTLH-Ubc8/UBE2H-mediated ubiquitylation regulates biological processes ranging from yeast metabolic signaling to human development. Here, cryoelectron microscopy (cryo-EM), biochemistry, and cell biology reveal this exquisitely specific E3-E2 pairing through an unconventional catalytic assembly and auxiliary interactions 70-100 Å away, mediated by E2 multisite phosphorylation. Rather than dynamic polyelectrostatic interactions reported for other ubiquitylation complexes, multiple Ubc8/UBE2H phosphorylation sites within acidic CK2-targeted sequences specifically anchor the E2 C termini to E3 basic patches. Positions of phospho-dependent interactions relative to the catalytic domains correlate across evolution. Overall, our data show that phosphorylation-dependent multivalency establishes a specific E3-E2 partnership, is antagonistic with dephosphorylation, rigidifies the catalytic centers within a flexing GID E3-substrate assembly, and facilitates substrate collision with ubiquitylation active sites.
Collapse
Affiliation(s)
- Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA
| | - Christine R Langlois
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Eleftheria C Papadopoulou
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Technical University of Munich, School of Natural Sciences, Munich 85748, Germany
| | - D Tung Vu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Laura A Hehl
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Technical University of Munich, School of Natural Sciences, Munich 85748, Germany
| | - Özge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Viola Beier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Judith Müller
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Technical University of Munich, School of Natural Sciences, Munich 85748, Germany.
| |
Collapse
|
26
|
Kong KYE, Shankar S, Rühle F, Khmelinskii A. Orphan quality control by an SCF ubiquitin ligase directed to pervasive C-degrons. Nat Commun 2023; 14:8363. [PMID: 38102142 PMCID: PMC10724198 DOI: 10.1038/s41467-023-44096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Selective protein degradation typically involves substrate recognition via short linear motifs known as degrons. Various degrons can be found at protein termini from bacteria to mammals. While N-degrons have been extensively studied, our understanding of C-degrons is still limited. Towards a comprehensive understanding of eukaryotic C-degron pathways, here we perform an unbiased survey of C-degrons in budding yeast. We identify over 5000 potential C-degrons by stability profiling of random peptide libraries and of the yeast C‑terminome. Combining machine learning, high-throughput mutagenesis and genetic screens reveals that the SCF ubiquitin ligase targets ~40% of degrons using a single F-box substrate receptor Das1. Although sequence-specific, Das1 is highly promiscuous, recognizing a variety of C-degron motifs. By screening for full-length substrates, we implicate SCFDas1 in degradation of orphan protein complex subunits. Altogether, this work highlights the variety of C-degron pathways in eukaryotes and uncovers how an SCF/C-degron pathway of broad specificity contributes to proteostasis.
Collapse
Affiliation(s)
| | | | - Frank Rühle
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | |
Collapse
|
27
|
Xia M, Yan R, Wang W, Zhang M, Miao Z, Wan B, Xu X. GID complex regulates the differentiation of neural stem cells by destabilizing TET2. Front Med 2023; 17:1204-1218. [PMID: 37707676 DOI: 10.1007/s11684-023-1007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/27/2023] [Indexed: 09/15/2023]
Abstract
Brain development requires a delicate balance between self-renewal and differentiation in neural stem cells (NSC), which rely on the precise regulation of gene expression. Ten-eleven translocation 2 (TET2) modulates gene expression by the hydroxymethylation of 5-methylcytosine in DNA as an important epigenetic factor and participates in the neuronal differentiation. Yet, the regulation of TET2 in the process of neuronal differentiation remains unknown. Here, the protein level of TET2 was reduced by the ubiquitin-proteasome pathway during NSC differentiation, in contrast to mRNA level. We identified that TET2 physically interacts with the core subunits of the glucose-induced degradation-deficient (GID) ubiquitin ligase complex, an evolutionarily conserved ubiquitin ligase complex and is ubiquitinated by itself. The protein levels of GID complex subunits increased reciprocally with TET2 level upon NSC differentiation. The silencing of the core subunits of the GID complex, including WDR26 and ARMC8, attenuated the ubiquitination and degradation of TET2, increased the global 5-hydroxymethylcytosine levels, and promoted the differentiation of the NSC. TET2 level increased in the brain of the Wdr26+/- mice. Our results illustrated that the GID complex negatively regulates TET2 protein stability, further modulates NSC differentiation, and represents a novel regulatory mechanism involved in brain development.
Collapse
Affiliation(s)
- Meiling Xia
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Neuroscience, Soochow University, Suzhou, 215006, China
| | - Rui Yan
- Institute of Neuroscience, Soochow University, Suzhou, 215006, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, 215006, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou, 215006, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, 215006, China
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou, 215006, China.
| | - Xingshun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
28
|
Varland S, Silva RD, Kjosås I, Faustino A, Bogaert A, Billmann M, Boukhatmi H, Kellen B, Costanzo M, Drazic A, Osberg C, Chan K, Zhang X, Tong AHY, Andreazza S, Lee JJ, Nedyalkova L, Ušaj M, Whitworth AJ, Andrews BJ, Moffat J, Myers CL, Gevaert K, Boone C, Martinho RG, Arnesen T. N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity. Nat Commun 2023; 14:6774. [PMID: 37891180 PMCID: PMC10611716 DOI: 10.1038/s41467-023-42342-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Rui Duarte Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Alexandra Faustino
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Annelies Bogaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, D-53127, Bonn, Germany
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1, CNRS, UMR6290, 35065, Rennes, France
| | - Barbara Kellen
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Michael Costanzo
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Camilla Osberg
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Katherine Chan
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Xiang Zhang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Amy Hin Yan Tong
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Simonetta Andreazza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Juliette J Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lyudmila Nedyalkova
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Matej Ušaj
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Jason Moffat
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Charles Boone
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- RIKEN Centre for Sustainable Resource Science, Wako, Saitama, 351-0106, Japan
| | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Departmento de Ciências Médicas, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
- iBiMED - Institute of Biomedicine, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
29
|
Timms RT, Mena EL, Leng Y, Li MZ, Tchasovnikarova IA, Koren I, Elledge SJ. Defining E3 ligase-substrate relationships through multiplex CRISPR screening. Nat Cell Biol 2023; 25:1535-1545. [PMID: 37735597 PMCID: PMC10567573 DOI: 10.1038/s41556-023-01229-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/11/2023] [Indexed: 09/23/2023]
Abstract
Specificity within the ubiquitin-proteasome system is primarily achieved through E3 ubiquitin ligases, but for many E3s their substrates-and in particular the molecular features (degrons) that they recognize-remain largely unknown. Current approaches for assigning E3s to their cognate substrates are tedious and low throughput. Here we developed a multiplex CRISPR screening platform to assign E3 ligases to their cognate substrates at scale. A proof-of-principle multiplex screen successfully performed ~100 CRISPR screens in a single experiment, refining known C-degron pathways and identifying an additional pathway through which Cul2FEM1B targets C-terminal proline. Further, by identifying substrates for Cul1FBXO38, Cul2APPBP2, Cul3GAN, Cul3KLHL8, Cul3KLHL9/13 and Cul3KLHL15, we demonstrate that the approach is compatible with pools of full-length protein substrates of varying stabilities and, when combined with site-saturation mutagenesis, can assign E3 ligases to their cognate degron motifs. Thus, multiplex CRISPR screening will accelerate our understanding of how specificity is achieved within the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Richard T Timms
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elijah L Mena
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Mamie Z Li
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Iva A Tchasovnikarova
- Wellcome/CRUK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
30
|
Rödl S, Herrmann JM. The role of the proteasome in mitochondrial protein quality control. IUBMB Life 2023; 75:868-879. [PMID: 37178401 DOI: 10.1002/iub.2734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The abundance of each cellular protein is dynamically adjusted to the prevailing metabolic and stress conditions by modulation of their synthesis and degradation rates. The proteasome represents the major machinery for the degradation of proteins in eukaryotic cells. How the ubiquitin-proteasome system (UPS) controls protein levels and removes superfluous and damaged proteins from the cytosol and the nucleus is well characterized. However, recent studies showed that the proteasome also plays a crucial role in mitochondrial protein quality control. This mitochondria-associated degradation (MAD) thereby acts on two layers: first, the proteasome removes mature, functionally compromised or mis-localized proteins from the mitochondrial surface; and second, the proteasome cleanses the mitochondrial import pore of import intermediates of nascent proteins that are stalled during translocation. In this review, we provide an overview about the components and their specific functions that facilitate proteasomal degradation of mitochondrial proteins in the yeast Saccharomyces cerevisiae. Thereby we explain how the proteasome, in conjunction with a set of intramitochondrial proteases, maintains mitochondrial protein homeostasis and dynamically adapts the levels of mitochondrial proteins to specific conditions.
Collapse
Affiliation(s)
- Saskia Rödl
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
31
|
Kwon SC, Lee J, Kwon YT, Heo AJ. Monitoring the interactions between N-degrons and N-recognins of the Arg/N-degron pathway. Methods Enzymol 2023; 686:165-203. [PMID: 37532399 DOI: 10.1016/bs.mie.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
As defined by the N-degron pathway, single N-terminal (Nt) amino acids can function as N-degrons that induce the degradation of proteins and other biological materials. Central to this pathway is the selective recognition of N-degrons by cognate N-recognins that direct the substrates to either the ubiquitin (Ub)-proteasome system (UPS) or autophagy-lysosome pathway (ALP). Eukaryotic cells have developed diverse pathways to utilize all 20 amino acids in the genetic code as pro-N-degrons or N-degrons which can be generated through endoproteolytic cleavage or post-translational modifications. Amongst these, the arginine (Arg) N-degron plays a key role in both cis- and trans-degradation of a large spectrum of cellular materials by the proteasome or lysosome. In mammals, Arg/N-degrons can be generated through endoproteolytic cleavage or post-translational conjugation of the amino acid L-Arg by ATE1-encoded R-transferases (EC 2.3.2.8), which requires Arg-tRNAArg as a cofactor. Arg/N-degrons of short-lived substrates are recognized by a family of N-recognins characterized by the UBR box for polyubiquitination and proteasomal degradation. Under stresses, however, the same degrons can be recognized for autophagic degradation by the ZZ domain of the N-recognin p62/SQSTSM-1/Sequestosome-1 or KCMF1. Biochemical tools were developed to monitor the interaction of Arg/N-degrons with its cognate N-recognins. These assays were employed to identify new N-recognins and to characterize their biochemical properties and physiological functions. The principles of these assays may be applied for other types of N-degron pathways. Below, we describe the methods that analyze the interaction of Arg/N-degrons and their chemical mimics to N-recognins.
Collapse
Affiliation(s)
- Soon Chul Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jihoon Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea; AUTOTAC Bio Inc., Seoul, South Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea; AUTOTAC Bio Inc., Seoul, South Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, South Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| | - Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
32
|
Heo AJ, Kim SB, Kwon YT, Ji CH. The N-degron pathway: From basic science to therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194934. [PMID: 36990317 DOI: 10.1016/j.bbagrm.2023.194934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
The N-degron pathway is a degradative system in which single N-terminal (Nt) amino acids regulate the half-lives of proteins and other biological materials. These determinants, called N-degrons, are recognized by N-recognins that link them to the ubiquitin (Ub)-proteasome system (UPS) or autophagy-lysosome system (ALS). In the UPS, the Arg/N-degron pathway targets the Nt-arginine (Nt-Arg) and other N-degrons to assemble Lys48 (K48)-linked Ub chains by UBR box N-recognins for proteasomal proteolysis. In the ALS, Arg/N-degrons are recognized by the N-recognin p62/SQSTSM-1/Sequestosome-1 to induce cis-degradation of substrates and trans-degradation of various cargoes such as protein aggregates and subcellular organelles. This crosstalk between the UPS and ALP involves reprogramming of the Ub code. Eukaryotic cells developed diverse ways to target all 20 principal amino acids for degradation. Here we discuss the components, regulation, and functions of the N-degron pathways, with an emphasis on the basic mechanisms and therapeutic applications of Arg/N-degrons and N-recognins.
Collapse
Affiliation(s)
- Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Su Bin Kim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea.
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Republic of Korea.
| |
Collapse
|
33
|
Chen P, Huang R, Hazbun TR. Unlocking the Mysteries of Alpha-N-Terminal Methylation and its Diverse Regulatory Functions. J Biol Chem 2023:104843. [PMID: 37209820 PMCID: PMC10293735 DOI: 10.1016/j.jbc.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Protein post-translation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
34
|
Reinbold C, Kong KYE, Kats I, Khmelinskii A, Knop M. Multiplexed protein stability (MPS) profiling of terminal degrons using fluorescent timer libraries in Saccharomyces cerevisiae. Methods Enzymol 2023; 686:321-344. [PMID: 37532406 DOI: 10.1016/bs.mie.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
N-terminal protein sequences and their proteolytic processing and modifications influence the stability and turnover of proteins by creating potential degrons for cellular proteolytic pathways. Understanding the impact of genetic perturbations of components affecting the processing of protein N-termini and thereby their stability, requires methods compatible with proteome-wide studies of many N-termini simultaneously. Tandem fluorescent timers (tFT) allow the in vivo measurement of protein turnover completely independent of protein abundance and can be deployed for proteome-wide studies. Here we present a protocol for Multiplexed Protein Stability (MPS) profiling of tFT-libraries encoding large numbers of different protein N-termini fused to tFT in the yeast Saccharomyces cerevisiae. This protocol includes fluorescence cell sorting based profiling of these libraries using a pooling approach. Analysis of the sorted pools is done by using multiplexed deep sequencing, in order to generate a stability index for each N-terminally peptide fused to the tFT reporter, and to evaluate half-life changes across all species represented in the library.
Collapse
Affiliation(s)
- Christian Reinbold
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Ilia Kats
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
35
|
Müller F, Bange T. Identification of N-degrons and N-recognins using peptide pull-downs combined with quantitative mass spectrometry. Methods Enzymol 2023; 686:67-97. [PMID: 37532409 DOI: 10.1016/bs.mie.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Regulated protein degradation controls protein levels of all short-lived proteins to ensure cellular homeostasis and also protects cells from misfolded or other abnormal proteins. The most important players in the degradation system are E3 ubiquitin ligases which recognize exposed sequence motifs, so-called degrons, of target proteins and mark them through the attachment of ubiquitin for degradation. N-terminal (Nt) sequences are extensively used as degrons (N-degrons) and all 20 amino acids are able to feed proteins in 1 of the 5 known N-degron pathways. Studies have mainly focused on characterizing systematically the role of the starting amino acid on protein stability and less on the identification of the E3 ligases involved. Recent data from our lab and literature suggest that there is an extensive interplay of N-recognins and Nt-modifying enzymes like Nt-acetyltransferases (NATs) or N-myristoyltransferases which only starts to be elucidated. It suggests that improperly modified or unexpectedly unmodified proteins become rapidly removed after synthesis ensuring protein maturation and quality control of specific subsets of proteins. Here, we describe a peptide pull-down and down-stream bioinformatics workflow conducted in the MaxQuant and Perseus computational environment to identify N-recognin candidates in an unbiased way using quantitative mass spectrometry (MS)-based proteomics. Our workflow allows the identification of N-recognin candidates for specific N-degrons, to determine their sequence specificity and it can be applied as well more general to identify binding partners of N-terminal modifications. This method paves the way to identify pathways involved in protein quality control and stability acting at the N-terminus.
Collapse
Affiliation(s)
- Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Tanja Bange
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
36
|
Scott DC, King MT, Baek K, Gee CT, Kalathur R, Li J, Purser N, Nourse A, Chai SC, Vaithiyalingam S, Chen T, Lee RE, Elledge SJ, Kleiger G, Schulman BA. E3 ligase autoinhibition by C-degron mimicry maintains C-degron substrate fidelity. Mol Cell 2023; 83:770-786.e9. [PMID: 36805027 PMCID: PMC10080726 DOI: 10.1016/j.molcel.2023.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023]
Abstract
E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.
Collapse
Affiliation(s)
- Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Moeko T King
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Clifford T Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ravi Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Protein Technologies Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Protein Technologies Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraja Vaithiyalingam
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Protein Technologies Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
37
|
Rong Y, Jensen SI, Lindorff-Larsen K, Nielsen AT. Folding of heterologous proteins in bacterial cell factories: Cellular mechanisms and engineering strategies. Biotechnol Adv 2023; 63:108079. [PMID: 36528238 DOI: 10.1016/j.biotechadv.2022.108079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The expression of correctly folded and functional heterologous proteins is important in many biotechnological production processes, whether it is enzymes, biopharmaceuticals or biosynthetic pathways for production of sustainable chemicals. For industrial applications, bacterial platform organisms, such as E. coli, are still broadly used due to the availability of tools and proven suitability at industrial scale. However, expression of heterologous proteins in these organisms can result in protein aggregation and low amounts of functional protein. This review provides an overview of the cellular mechanisms that can influence protein folding and expression, such as co-translational folding and assembly, chaperone binding, as well as protein quality control, across different model organisms. The knowledge of these mechanisms is then linked to different experimental methods that have been applied in order to improve functional heterologous protein folding, such as codon optimization, fusion tagging, chaperone co-production, as well as strain and protein engineering strategies.
Collapse
Affiliation(s)
- Yixin Rong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Sheila Ingemann Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
38
|
Heo AJ, Ji CH, Kwon YT. The Cys/N-degron pathway in the ubiquitin-proteasome system and autophagy. Trends Cell Biol 2023; 33:247-259. [PMID: 35945077 DOI: 10.1016/j.tcb.2022.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
The N-degron pathway is a degradative system in which the N-terminal residues of proteins modulate the half-lives of proteins and other cellular materials. The majority of amino acids in the genetic code have the potential to induce cis or trans degradation in diverse processes, which requires selective recognition between N-degrons and cognate N-recognins. Of particular interest is the Cys/N-degron branch, in which the N-terminal cysteine (Nt-Cys) induces proteolysis via either the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome pathway (ALP), depending on physiological conditions. Recent studies provided new insights into the central role of Nt-Cys in sensing the fluctuating levels of oxygen and reactive oxygen species (ROS). Here, we discuss the components, regulations, and functions of the Cys/N-degron pathway.
Collapse
Affiliation(s)
- Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Korea.
| |
Collapse
|
39
|
Seo DY, Kim D, Nguyen KT, Oh J, Lee JS, Hwang CS. N-Terminally arginylated ubiquitin is attached to histone H2A by RING1B E3 ligase in human cells. Biochem Biophys Res Commun 2023; 666:186-194. [PMID: 36932026 DOI: 10.1016/j.bbrc.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Ubiquitin (Ub) is highly conserved in all eukaryotic organisms and begins at the N-terminus with Met and Gln. Our recent research demonstrates that N-terminally (Nt-) arginylated Ub can be produced in the yeast Saccharomyces cerevisiae. However, the existence of Nt-arginylated Ub in multicellular organisms remains unknown. Here we explore the mechanism for creating Nt-arginylated Ub using human embryonic kidney HEK293 cells that express various Nt-modified Ubs. We found that Gln-starting Q-Ub was converted into Glu-starting E-Ub by NTAQ1 Nt-deamidase and subsequently Nt-arginylated by ATE1 arginyltransferase in HEK293 cells. We also found that the resulting Arg-Glu-starting RE-Ub was mainly deposited on the Lys119 residue of histone H2A. Furthermore, RING1B E3 Ub ligase mediated the attachment of RE-Ub to H2A. These findings reveal a previously unknown type of histone ubiquitylation which greatly increases the combinatorial complexity of histone and ubiquitin codes.
Collapse
Affiliation(s)
- Dong-Young Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dasom Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Kha The Nguyen
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
40
|
Wang R, Wang Z, Lu H. Separation methods for system-wide profiling of protein terminome. Proteomics 2023; 23:e2100374. [PMID: 35997653 DOI: 10.1002/pmic.202100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Protein N- and C-termini have specific biochemical properties and functions. They play vital roles in various biological processes, such as protein stability and localization. In addition, post-translational modifications and proteolytic processing generate different proteoforms at protein termini. In recent years, terminomics has attracted significant attention, and numerous strategies have been developed to achieve high-throughput and global terminomics analysis. This review summarizes the recent protein N-termini and C-termini enrichment methods and their application in different samples. We also look ahead further application of terminomics in profiling protease substrates and discovery of disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rui Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhongjie Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,Department of Chemistry and Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
41
|
van Gen Hassend PM, Pottikkadavath A, Delto C, Kuhn M, Endres M, Schönemann L, Schindelin H. RanBP9 controls the oligomeric state of CTLH complex assemblies. J Biol Chem 2023; 299:102869. [PMID: 36621627 PMCID: PMC9932110 DOI: 10.1016/j.jbc.2023.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
The CTLH (C-terminal to lissencephaly-1 homology motif) complex is a multisubunit RING E3 ligase with poorly defined substrate specificity and flexible subunit composition. Two key subunits, muskelin and Wdr26, specify two alternative CTLH complexes that differ in quaternary structure, thereby allowing the E3 ligase to presumably target different substrates. With the aid of different biophysical and biochemical techniques, we characterized CTLH complex assembly pathways, focusing not only on Wdr26 and muskelin but also on RanBP9, Twa1, and Armc8β subunits, which are critical to establish the scaffold of this E3 ligase. We demonstrate that the ability of muskelin to tetramerize and the assembly of Wdr26 into dimers define mutually exclusive oligomerization modules that compete with nanomolar affinity for RanBP9 binding. The remaining scaffolding subunits, Armc8β and Twa1, strongly interact with each other and with RanBP9, again with nanomolar affinity. Our data demonstrate that RanBP9 organizes subunit assembly and prevents higher order oligomerization of dimeric Wdr26 and the Armc8β-Twa1 heterodimer through its tight binding. Combined, our studies define alternative assembly pathways of the CTLH complex and elucidate the role of RanBP9 in governing differential oligomeric assemblies, thereby advancing our mechanistic understanding of CTLH complex architectures.
Collapse
Affiliation(s)
- Pia Maria van Gen Hassend
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Aparna Pottikkadavath
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Carolyn Delto
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Monika Kuhn
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Michelle Endres
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Lars Schönemann
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Hermann Schindelin
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany.
| |
Collapse
|
42
|
In vitro production of N-degron fused proteins and its application. Methods Enzymol 2023. [PMID: 37532410 DOI: 10.1016/bs.mie.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The N-degron pathway, first discovered several decades ago by Varshavsky's laboratory, controls the half-life of target proteins depending on their N-terminal residues. In vivo cell biology studies have established the physiological role of the N-degron pathway. However, in vitro studies such as biochemical assays and structural biology studies are relatively limited. The N-degron substrates cannot be obtained via simple protein expression. The N-degron residues are exposed via the proteolytic process from the translated nascent polypeptide chains. Thus, methods for the fusion expression with several cleavable tags and subsequent treatment with specific proteases to design the exposed N-degron signals have been introduced. Recently, we developed a unique fusion technique using microtubule-associated protein 1A/1B light chain 3B (LC3B), a key marker protein of autophagy, to obtain a high yield of the purified target proteins with variable N-terminal residues for various biochemical studies including enzymatic and binding assays, and crystallization of N-degron complex. This chapter describes the protocols that include the vector map designed for producing LC3B fused target proteins, methods for expression and purification of an example protein, p62/SQSMT1, using different N-terminal residues, and methods to obtain the purified ATG4B protease, which is used for processing LC3B tag and exposing the required N-terminal residues of the target protein.
Collapse
|
43
|
Dougan DA, Truscott KN. Affinity isolation and biochemical characterization of N-degron ligands using the N-recognin, ClpS. Methods Enzymol 2023. [PMID: 37532398 DOI: 10.1016/bs.mie.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The N-degron pathways are a set of proteolytic systems that relate the half-life of a protein to its N-terminal (Nt) residue. In Escherichia coli the principal N-degron pathway is known as the Leu/N-degron pathway. Proteins degraded by this pathway contain an Nt degradation signal (N-degron) composed of an Nt primary destabilizing (Nd1) residue (Leu, Phe, Trp or Tyr). All Leu/N-degron substrates are recognized by the adaptor protein, ClpS and delivered to the ClpAP protease for degradation. Although many components of the pathway are well defined, the physiological role of this pathway remains poorly understood. To address this gap in knowledge we developed a biospecific affinity chromatography technique to isolate physiological substrates of the Leu/N-degron pathway. In this chapter we describe the use of peptide arrays to determine the binding specificity of ClpS. We demonstrate how the information obtained from the peptide array, when coupled with ClpS affinity chromatography, can be used to specifically elute physiological Leu/N-degron ligands from a bacterial lysate. These techniques are illustrated using E. coli ClpS (EcClpS), but both are broadly suitable for application to related N-recognins and systems, not only for the determination of N-recognin specificity, but also for the identification of natural Leu/N-degron ligands from various bacterial and plant species that contain ClpS homologs.
Collapse
|
44
|
Kelvin D, Suess B. Tapping the potential of synthetic riboswitches: reviewing the versatility of the tetracycline aptamer. RNA Biol 2023; 20:457-468. [PMID: 37459466 DOI: 10.1080/15476286.2023.2234732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
Synthetic riboswitches are a versatile class of regulatory elements that are becoming increasingly established in synthetic biology applications. They are characterized by their compact size and independence from auxiliary protein factors. While naturally occurring riboswitches were mostly discovered in bacteria, synthetic riboswitches have been designed for all domains of life. Published design strategies far exceed the number of riboswitches found in nature. A core element of any riboswitch is a binding domain, called an aptamer, which is characterized by high specificity and affinity for its ligand. Aptamers can be selected de novo, allowing the design of synthetic riboswitches against a broad spectrum of targets. The tetracycline aptamer has proven to be well suited for riboswitch engineering. Since its selection, it has been used in a variety of applications and is considered to be well established and characterized. Using the tetracycline aptamer as an example, we aim to discuss a large variety of design approaches for synthetic riboswitch engineering and their application. We aim to demonstrate the versatility of riboswitches in general and the high potential of synthetic RNA devices for creating new solutions in both the scientific and medical fields.
Collapse
Affiliation(s)
- Daniel Kelvin
- Fachbereich Biologie, TU Darmstadt, Darmstadt, Germany
| | - Beatrix Suess
- Fachbereich Biologie, TU Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
45
|
A decoupled Virotrap approach to study the interactomes of N-terminal proteoforms. Methods Enzymol 2023; 684:253-287. [DOI: 10.1016/bs.mie.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
46
|
Kong KYE, Reinbold C, Knop M, Khmelinskii A. Building yeast libraries to dissect terminal degrons with fluorescent timers. Methods Enzymol 2023. [PMID: 37532405 DOI: 10.1016/bs.mie.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Selective degradation of unnecessary or abnormal proteins by the ubiquitin-proteasome system is an essential part of proteostasis. Ubiquitin ligases recognize substrates of selective protein degradation and modify them with polyubiquitin chains, which mark them for proteasomal degradation. Substrate recognition by ubiquitin ligases often involves degradation signals or degrons, which are typically short linear motifs found in intrinsically disordered regions, e.g., at protein termini. However, specificity in selective protein degradation is generally not well understood, as for most ubiquitin ligases no degrons have been identified thus far. To address this limitation, high-throughput mutagenesis approaches, such as multiplexed protein stability (MPS) profiling, have been developed, enabling systematic surveys of degrons in vivo or allowing to define degron motifs recognized by different ubiquitin ligases. In MPS profiling, thousands of short peptides can be assessed in parallel for their ability to trigger degradation of a fluorescent timer reporter. Here, we describe common types of libraries used to identify and dissect degrons located at protein termini using MPS profiling in budding yeast, and provide protocols for their construction.
Collapse
|
47
|
Smith E, Keeley TP. Monitoring ADO dependent proteolysis in cells using fluorescent reporter proteins. Methods Enzymol 2023. [PMID: 37532403 DOI: 10.1016/bs.mie.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
2-Aminoethanethiol dioxygenase (ADO) is the mammalian orthologue of the plant cysteine oxidases and together these enzymes are responsible for catalysing dioxygenation of N-terminal cysteine residues of certain proteins. This modification creates an N-degron motif that permits arginylation and subsequent proteasomal degradation of such proteins via the Arg-branch of the N-degron pathway. In humans 4 proteins have been identified as substrates of ADO; regulators of G-protein signalling (RGS) 4, 5 and 16, and interleukin-32 (IL-32). Nt-cysteine dioxygenation of these proteins occurs rapidly under normoxic conditions, but ADO activity is very sensitive to O2 availability and as such the stability of substrate proteins is inversely proportional to cellular O2 levels. Much is still to understand about the biochemistry and physiology of this pathway in vitro and in vivo, and Cys N-degron targeted fluorescent proteins can provide a simple and effective tool to study this at both subcellular and high-throughput scales. This chapter describes the design, production and implementation of a fluorescent fusion protein proteolytically regulated by ADO and the N-degron pathway.
Collapse
|
48
|
He D, Xin T, Pang B, Sun J, Liu ZH, Qin Z, Ji XS, Yang F, Wei YB, Wang ZX, Gao JJ, Pang Q, Liu Q. A novel lncRNA MDHDH suppresses glioblastoma multiforme by acting as a scaffold for MDH2 and PSMA1 to regulate NAD+ metabolism and autophagy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:349. [PMID: 36527092 PMCID: PMC9758949 DOI: 10.1186/s13046-022-02543-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND To identify potential targets related to nicotinamide adenine dinucleotide (NAD+) metabolism in gliomas, we used RNA immunoprecipitation to identify a novel long noncoding RNA renamed malate dehydrogenase degradation helper (MDHDH) (NONCODE annotation ID: NONHSAT138800.2, NCBI Reference Sequence: NR_028345), which bound to MDH2 (malate dehydrogenase 2), that is downregulated in glioblastoma multiforme (GBM) and associated with metabolic regulation. However, its underlying mechanisms in the progression of GBM have not been well studied. METHODS To investigate the clinical significance of MDHDH, we analyzed its expression levels in publicly available datasets and collected clinical samples from Shandong Provincial Hospital, affiliated with Shandong University. Functional assays, including FISH/CISH, CCK8, EdU, wound healing, and transwell assays, were used to determine the cellular/subcellular localization, tissue expression profile and anti-oncogenic role of MDHDH. Furthermore, RNA pulldown, mass spectrometry RNA immunoprecipitation, coimmunoprecipitation, JC-1 probe, and cell energy-production assays were used to determine the mechanisms of MDHDH in the development of GBM. Animal experiments were conducted to determine the antitumorigenic role of MDHDH in GBM in vivo. RESULTS In public datasets, MDHDH expression was significantly downregulated in GBM and LGG compared with GTEx normal brain tissues. The results of the tissue microarray showed that the MDHDH expression level negatively correlated with the tumor grade. Altered MDHDH expression led to significant changes in the proliferation, migration and invasion of GBM cells both in vitro and in vivo. Mechanistically, we found that MDHDH directly bound to MDH2 and PSMA1 (20S proteasomal core subunit alpha-type 1) as a molecular scaffold and accelerated the degradation of MDH2 by promoting the binding of ubiquitinated MDH2 to the proteasome. The degradation of MDH2 subsequently led to changes in the mitochondrial membrane potential and NAD+/NADH ratio, which impeded glycolysis in glioma cells. CONCLUSIONS In conclusion, this study broadened our understanding of the functions of lncRNAs in GBM. We demonstrated that the tumor suppressor MDHDH might act as a clinical biomarker and that the overexpression of MDHDH might be a novel synergistic strategy for enhancing metabolism-based, epigenetic-based, and autophagy regulation-based therapies with clinical benefits for glioblastoma multiforme patients.
Collapse
Affiliation(s)
- Dong He
- grid.460018.b0000 0004 1769 9639Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250012 Shandong P.R. China ,grid.410638.80000 0000 8910 6733Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012 Shandong P.R. China ,grid.27255.370000 0004 1761 1174Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, 250012 Shandong P.R. China
| | - Tao Xin
- grid.452422.70000 0004 0604 7301Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014 P.R. China ,grid.452422.70000 0004 0604 7301Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014 P.R. China
| | - Bo Pang
- grid.460018.b0000 0004 1769 9639Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250012 Shandong P.R. China
| | - Jun Sun
- grid.460018.b0000 0004 1769 9639Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250012 Shandong P.R. China ,grid.410638.80000 0000 8910 6733Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012 Shandong P.R. China ,grid.27255.370000 0004 1761 1174Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, 250012 Shandong P.R. China
| | - Zi Hao Liu
- grid.460018.b0000 0004 1769 9639Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250012 Shandong P.R. China ,grid.410638.80000 0000 8910 6733Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012 Shandong P.R. China ,grid.27255.370000 0004 1761 1174Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, 250012 Shandong P.R. China
| | - Zhen Qin
- grid.479672.9Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250012 Shandong P.R. China
| | - Xiao Shuai Ji
- grid.452422.70000 0004 0604 7301Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014 P.R. China
| | - Fan Yang
- grid.460018.b0000 0004 1769 9639Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250012 Shandong P.R. China ,grid.410638.80000 0000 8910 6733Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012 Shandong P.R. China
| | - Yan Bang Wei
- grid.27255.370000 0004 1761 1174Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, 250012 Shandong P.R. China
| | - Zi Xiao Wang
- grid.27255.370000 0004 1761 1174Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, 250012 Shandong P.R. China
| | - Jia Jia Gao
- grid.452422.70000 0004 0604 7301Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014 P.R. China
| | - Qi Pang
- grid.460018.b0000 0004 1769 9639Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250012 Shandong P.R. China
| | - Qian Liu
- grid.27255.370000 0004 1761 1174Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, 250012 Shandong P.R. China
| |
Collapse
|
49
|
Li Y, Zhao Y, Yan X, Ye C, Weirich S, Zhang B, Wang X, Song L, Jiang C, Jeltsch A, Dong C, Mi W. CRL2 ZER1/ZYG11B recognizes small N-terminal residues for degradation. Nat Commun 2022; 13:7636. [PMID: 36496439 PMCID: PMC9741652 DOI: 10.1038/s41467-022-35169-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
N-degron pathway plays an important role in the protein quality control and maintenance of cellular protein homeostasis. ZER1 and ZYG11B, the substrate receptors of the Cullin 2-RING E3 ubiquitin ligase (CRL2), recognize N-terminal (Nt) glycine degrons and participate in the Nt-myristoylation quality control through the Gly/N-degron pathway. Here we show that ZER1 and ZYG11B can also recognize small Nt-residues other than glycine. Specifically, ZER1 binds better to Nt-Ser, -Ala, -Thr and -Cys than to -Gly, while ZYG11B prefers Nt-Gly but also has the capacity to recognize Nt-Ser, -Ala and -Cys in vitro. We found that Nt-Ser, -Ala and -Cys undergo Nt-acetylation catalyzed by Nt-acetyltransferase (NAT), thereby shielding them from recognition by ZER1/ZYG11B in cells. Instead, ZER1/ZYG11B readily targets a selection of small Nt-residues lacking Nt-acetylation for degradation in NAT-deficient cells, implicating its role in the Nt-acetylation quality control. Furthermore, we present the crystal structures of ZER1 and ZYG11B bound to various small Nt-residues and uncover the molecular mechanism of non-acetylated substrate recognition by ZER1 and ZYG11B.
Collapse
Affiliation(s)
- Yao Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yueling Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaojie Yan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Chen Ye
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bing Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaolu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lili Song
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Chenhao Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Cheng Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China.
| | - Wenyi Mi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
50
|
Sherpa D, Mueller J, Karayel Ö, Xu P, Yao Y, Chrustowicz J, Gottemukkala KV, Baumann C, Gross A, Czarnecki O, Zhang W, Gu J, Nilvebrant J, Sidhu SS, Murray PJ, Mann M, Weiss MJ, Schulman BA, Alpi AF. Modular UBE2H-CTLH E2-E3 complexes regulate erythroid maturation. eLife 2022; 11:e77937. [PMID: 36459484 PMCID: PMC9718529 DOI: 10.7554/elife.77937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The development of haematopoietic stem cells into mature erythrocytes - erythropoiesis - is a controlled process characterized by cellular reorganization and drastic reshaping of the proteome landscape. Failure of ordered erythropoiesis is associated with anaemias and haematological malignancies. Although the ubiquitin system is a known crucial post-translational regulator in erythropoiesis, how the erythrocyte is reshaped by the ubiquitin system is poorly understood. By measuring the proteomic landscape of in vitro human erythropoiesis models, we found dynamic differential expression of subunits of the CTLH E3 ubiquitin ligase complex that formed maturation stage-dependent assemblies of topologically homologous RANBP9- and RANBP10-CTLH complexes. Moreover, protein abundance of CTLH's cognate E2 ubiquitin conjugating enzyme UBE2H increased during terminal differentiation, and UBE2H expression depended on catalytically active CTLH E3 complexes. CRISPR-Cas9-mediated inactivation of CTLH E3 assemblies or UBE2H in erythroid progenitors revealed defects, including spontaneous and accelerated erythroid maturation as well as inefficient enucleation. Thus, we propose that dynamic maturation stage-specific changes of UBE2H-CTLH E2-E3 modules control the orderly progression of human erythropoiesis.
Collapse
Affiliation(s)
- Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Judith Mueller
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Özge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Centre for Hematologic Diseases, Collaborative Innovation Centre of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhouChina
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Yu Yao
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Karthik V Gottemukkala
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Christine Baumann
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Annette Gross
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
- Department of Immunoregulation, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Oliver Czarnecki
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Jun Gu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Johan Nilvebrant
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Peter J Murray
- Department of Immunoregulation, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|