1
|
Garioud R, Šimkovic F, Rossi R, Spada G, Schäfer T, Werner F, Ferrero M. Symmetry-Broken Perturbation Theory to Large Orders in Antiferromagnetic Phases. PHYSICAL REVIEW LETTERS 2024; 132:246505. [PMID: 38949372 DOI: 10.1103/physrevlett.132.246505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/12/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024]
Abstract
We introduce a spin-symmetry-broken extension of the connected determinant algorithm [Riccardo Rossi, Determinant diagrammatic Monte Carlo algorithm in the thermodynamic limit, Phys. Rev. Lett. 119, 045701 (2017).PRLTAO0031-900710.1103/PhysRevLett.119.045701]. The resulting systematic perturbative expansions around an antiferromagnetic state allow for numerically exact calculations directly inside a magnetically ordered phase. We show new precise results for the magnetic phase diagram and thermodynamics of the three-dimensional cubic Hubbard model at half-filling. With detailed computations of the order parameter in the low to intermediate-coupling regime, we establish the Néel phase boundary. The critical behavior in its vicinity is shown to be compatible with the O(3) Heisenberg universality class. By determining the evolution of the entropy with decreasing temperature through the phase transition we identify the different physical regimes at U/t=4. We provide quantitative results for several thermodynamic quantities deep inside the antiferromagnetic dome up to large interaction strengths and investigate the crossover between the Slater and Heisenberg regimes.
Collapse
Affiliation(s)
| | | | | | - Gabriele Spada
- Laboratoire Kastler Brossel, École Normale Supérieure - Université PSL, CNRS, Sorbonne Université, Collège de France, 75005 Paris, France
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Universitá di Trento, I-38123, Trento, Italy
| | | | | | | |
Collapse
|
2
|
Yamamoto D, Morita K. Engineering of a Low-Entropy Quantum Simulator for Strongly Correlated Electrons Using Cold Atoms with SU(N)-Symmetric Interactions. PHYSICAL REVIEW LETTERS 2024; 132:213401. [PMID: 38856247 DOI: 10.1103/physrevlett.132.213401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/02/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
An advanced cooling scheme, incorporating entropy engineering, is vital for isolated artificial quantum systems designed to emulate the low-temperature physics of strongly correlated electron systems. This study theoretically demonstrates a cooling method employing multicomponent Fermi gases with SU(N)-symmetric interactions, focusing on the case of ^{173}Yb atoms in a two-dimensional optical lattice. Adiabatically introducing a nonuniform state-selective laser gives rise to two distinct subsystems: a central low-entropy region, exclusively composed of two specific spin components, acts as a quantum simulator for strongly correlated electron systems, while the surrounding N-component mixture retains a significant portion of the entropy of the system. The total particle numbers for each component are good quantum numbers, creating a sharp boundary for the two-component region. The cooling efficiency is assessed through extensive finite-temperature Lanczos calculations. The results lay the foundation for quantum simulations of two-dimensional systems of Hubbard or Heisenberg type, offering crucial insights into intriguing low-temperature phenomena in condensed-matter physics.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui, Setagaya, Tokyo 156-8550, Japan
| | - Katsuhiro Morita
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| |
Collapse
|
3
|
Prichard ML, Spar BM, Morera I, Demler E, Yan ZZ, Bakr WS. Directly imaging spin polarons in a kinetically frustrated Hubbard system. Nature 2024; 629:323-328. [PMID: 38720039 DOI: 10.1038/s41586-024-07356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024]
Abstract
The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions1-8. However, in kinetically frustrated lattices, itinerant spin polarons-bound states of a dopant and a spin flip-have been theoretically predicted even in the absence of superexchange coupling9-14. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect15,16. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems10,11. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials17-20.
Collapse
Affiliation(s)
- Max L Prichard
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Benjamin M Spar
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Ivan Morera
- Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- Institut de Ciències del Cosmos, Universitat de Barcelona, ICCUB, Barcelona, Spain
- Institute for Theoretical Physics, ETH Zürich, Zürich, Switzerland
| | - Eugene Demler
- Institute for Theoretical Physics, ETH Zürich, Zürich, Switzerland
| | - Zoe Z Yan
- Department of Physics, Princeton University, Princeton, NJ, USA
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Waseem S Bakr
- Department of Physics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Shen K, Sun K, Gelin MF, Zhao Y. Finite-Temperature Hole-Magnon Dynamics in an Antiferromagnet. J Phys Chem Lett 2024; 15:447-453. [PMID: 38189682 DOI: 10.1021/acs.jpclett.3c03298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Employing the numerically accurate multiple Davydov Ansatz in combination with the thermo-field dynamics approach, we delve into the interplay of the finite-temperature dynamics of holes and magnons in an antiferromagnet, which allows for scrutinizing previous predictions from the self-consistent Born approximation while offering, for the first time, accurate finite-temperature computation of detailed magnon dynamics as a response and a facilitator to the hole motion. The study also uncovers a pronounced temperature dependence of the magnon and hole populations, pointing to the feasibility of potential thermal manipulation and control of hole dynamics. Our methodology can be applied not only to the calculation of steady-state angular-resolved photoemission spectra but also to the simulation of femtosecond terahertz pump-probe and other nonlinear signals for the characterization of antiferromagnetic materials.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
5
|
Abdelshafy M, Rigol M. L-based numerical linked cluster expansion for square lattice models. Phys Rev E 2023; 108:034126. [PMID: 37849211 DOI: 10.1103/physreve.108.034126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
We introduce a numerical linked cluster expansion for square-lattice models whose building block is an L-shape cluster. For the spin-1/2 models studied in this work, we find that this expansion exhibits a similar or better convergence of the bare sums than that of the (larger) square-shaped clusters and can be used with resummation techniques (like the site- and bond-based expansions) to obtain results at even lower temperatures. We compare the performance of weak- and strong-embedding versions of this expansion in various spin-1/2 models and show that the strong-embedding version is preferable because of its convergence properties and lower computational cost. Finally, we show that the expansion based on the L-shape cluster can be naturally used to study properties of lattice models that smoothly connect the square and triangular lattice geometries.
Collapse
Affiliation(s)
- Mahmoud Abdelshafy
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Marcos Rigol
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Blodgett KN, Peana D, Phatak SS, Terry LM, Montes MP, Hood JD. Imaging a ^{6}Li Atom in an Optical Tweezer 2000 Times with Λ-Enhanced Gray Molasses. PHYSICAL REVIEW LETTERS 2023; 131:083001. [PMID: 37683168 DOI: 10.1103/physrevlett.131.083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
We have imaged lithium-6 thousands of times in an optical tweezer using Λ-enhanced gray molasses cooling light. Despite being the lightest alkali metal, with a recoil temperature of 3.5 μK, we achieve an imaging survival of 0.999 50(2), which sets the new benchmark for low-loss imaging of neutral atoms in optical tweezers. Lithium is loaded directly from a magneto-optical trap into a tweezer with an enhanced loading rate of 0.7. We cool the atom to 70 μK and present a new cooling model that accurately predicts steady-state temperature and scattering rate in the tweezer. These results pave the way for ground state preparation of lithium en route to the assembly of the LiCs molecule in its ground state.
Collapse
Affiliation(s)
- Karl N Blodgett
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - David Peana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Saumitra S Phatak
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lane M Terry
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Maria Paula Montes
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jonathan D Hood
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
7
|
Hartke T, Oreg B, Turnbaugh C, Jia N, Zwierlein M. Direct observation of nonlocal fermion pairing in an attractive Fermi-Hubbard gas. Science 2023; 381:82-86. [PMID: 37410819 DOI: 10.1126/science.ade4245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
The Hubbard model of attractively interacting fermions provides a paradigmatic setting for fermion pairing. It features a crossover between Bose-Einstein condensation of tightly bound pairs and Bardeen-Cooper-Schrieffer superfluidity of long-range Cooper pairs, and a "pseudo-gap" region where pairs form above the superfluid critical temperature. We directly observe the nonlocal nature of fermion pairing in a Hubbard lattice gas, using spin- and density-resolved imaging of [Formula: see text]1000 fermionic potassium-40 atoms under a bilayer microscope. Complete fermion pairing is revealed by the vanishing of global spin fluctuations with increasing attraction. In the strongly correlated regime, the fermion pair size is found to be on the order of the average interparticle spacing. Our study informs theories of pseudo-gap behavior in strongly correlated fermion systems.
Collapse
Affiliation(s)
- Thomas Hartke
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Botond Oreg
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Carter Turnbaugh
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Ningyuan Jia
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Martin Zwierlein
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Lira RN, Riseborough PS, Silva-Valencia J, Figueira MS. The cumulant Green's functions method for the Hubbard model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:245601. [PMID: 36944247 DOI: 10.1088/1361-648x/acc628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
We use the cumulant Green's functions method (CGFM) to study the single-band Hubbard model. The starting point of the method is to diagonalize a cluster ('seed') containingNcorrelated sites and employ the cumulants calculated from the cluster solution to obtain the full Green's functions for the lattice. All calculations are done directly; no variational or self-consistent process is needed. We benchmark the one-dimensional results for the gap, the double occupancy, and the ground-state energy as functions of the electronic correlation at half-filling and the occupation numbers as functions of the chemical potential obtained from the CGFM against the corresponding results of the thermodynamic Bethe ansatz and the quantum transfer matrix methods. The particle-hole symmetry of the density of states is fulfilled, and the gap, occupation numbers, and ground-state energy tend systematically to the known results as the cluster size increases. We include a straightforward application of the CGFM to simulate the singles occupation of an optical lattice experiment with lithium-6 atoms in an eight-site Fermi-Hubbard chain near half-filling. The method can be applied to any parameter space for one, two, or three-dimensional Hubbard Hamiltonians and extended to other strongly correlated models, like the Anderson Hamiltonian, thet - J, Kondo, and Coqblin-Schrieffer models.
Collapse
Affiliation(s)
- R N Lira
- Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - P S Riseborough
- Department of Physics, Temple University, Philadelphia, PA, United States of America
| | - J Silva-Valencia
- Departamento de Física, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - M S Figueira
- Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
9
|
Nielsen KK, Pohl T, Bruun GM. Nonequilibrium Hole Dynamics in Antiferromagnets: Damped Strings and Polarons. PHYSICAL REVIEW LETTERS 2022; 129:246601. [PMID: 36563255 DOI: 10.1103/physrevlett.129.246601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/12/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
We develop a nonperturbative theory for hole dynamics in antiferromagnetic spin lattices, as described by the t-J model. This is achieved by generalizing the self-consistent Born approximation to nonequilibrium systems, making it possible to calculate the full time-dependent many-body wave function. Our approach reveals three distinct dynamical regimes, ultimately leading to the formation of magnetic polarons. Following the initial ballistic stage of the hole dynamics, coherent formation of string excitations gives rise to characteristic oscillations in the hole density. Their damping eventually leaves behind magnetic polarons that undergo ballistic motion with a greatly reduced velocity. The developed theory provides a rigorous framework for understanding nonequilibrium physics of defects in quantum magnets and quantitatively explains recent observations from cold-atom quantum simulations in the strong coupling regime.
Collapse
Affiliation(s)
- K Knakkergaard Nielsen
- Max-Planck Institute for Quantum Optics, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
| | - T Pohl
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
| | - G M Bruun
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Yan ZZ, Spar BM, Prichard ML, Chi S, Wei HT, Ibarra-García-Padilla E, Hazzard KRA, Bakr WS. Two-Dimensional Programmable Tweezer Arrays of Fermions. PHYSICAL REVIEW LETTERS 2022; 129:123201. [PMID: 36179199 DOI: 10.1103/physrevlett.129.123201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
We prepare high-filling two-component arrays of tens of fermionic ^{6}Li atoms in optical tweezers, with the atoms in the ground motional state of each tweezer. Using a stroboscopic technique, we configure the arrays in various two-dimensional geometries with negligible Floquet heating. A full spin- and density-resolved readout of individual sites allows us to postselect near-zero entropy initial states for fermionic quantum simulation. We prepare a correlated state in a two-by-two tunnel-coupled Hubbard plaquette, demonstrating all the building blocks for realizing a programmable fermionic quantum simulator.
Collapse
Affiliation(s)
- Zoe Z Yan
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Benjamin M Spar
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Max L Prichard
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Sungjae Chi
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Hao-Tian Wei
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
| | - Eduardo Ibarra-García-Padilla
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
| | - Kaden R A Hazzard
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
| | - Waseem S Bakr
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
11
|
Lenihan C, Kim AJ, Šimkovic F, Kozik E. Evaluating Second-Order Phase Transitions with Diagrammatic Monte Carlo: Néel Transition in the Doped Three-Dimensional Hubbard Model. PHYSICAL REVIEW LETTERS 2022; 129:107202. [PMID: 36112452 DOI: 10.1103/physrevlett.129.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Diagrammatic Monte Carlo-the technique for the numerically exact summation of all Feynman diagrams to high orders-offers a unique unbiased probe of continuous phase transitions. Being formulated directly in the thermodynamic limit, the diagrammatic series is bound to diverge and is not resummable at the transition due to the nonanalyticity of physical observables. This enables the detection of the transition with controlled error bars from an analysis of the series coefficients alone, avoiding the challenge of evaluating physical observables near the transition. We demonstrate this technique by the example of the Néel transition in the 3D Hubbard model. At half filling and higher temperatures, the method matches the accuracy of state-of-the-art finite-size techniques, but surpasses it at low temperatures and allows us to map the phase diagram in the doped regime, where finite-size techniques struggle from the fermion sign problem. At low temperatures and sufficient doping, the transition to an incommensurate spin density wave state is observed.
Collapse
Affiliation(s)
- Connor Lenihan
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Aaram J Kim
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | - Fedor Šimkovic
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
- CPHT, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Evgeny Kozik
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
12
|
Spar BM, Guardado-Sanchez E, Chi S, Yan ZZ, Bakr WS. Realization of a Fermi-Hubbard Optical Tweezer Array. PHYSICAL REVIEW LETTERS 2022; 128:223202. [PMID: 35714242 DOI: 10.1103/physrevlett.128.223202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
We use lithium-6 atoms in an optical tweezer array to realize an eight-site Fermi-Hubbard chain near half filling. We achieve single site detection by combining the tweezer array with a quantum gas microscope. By reducing disorder in the energy offsets to less than the tunneling energy, we observe Mott insulators with strong antiferromagnetic correlations. The measured spin correlations allow us to put an upper bound on the entropy of 0.26(4)k_{B} per atom, comparable to the lowest entropies achieved with optical lattices. Additionally, we establish the flexibility of the tweezer platform by initializing atoms on one tweezer and observing tunneling dynamics across the array for uniform and staggered 1D geometries.
Collapse
Affiliation(s)
- Benjamin M Spar
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Sungjae Chi
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Zoe Z Yan
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Waseem S Bakr
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
13
|
Ghosh KJB, Kais S, Herschbach DR. Geometrical picture of the electron-electron correlation at the large- D limit. Phys Chem Chem Phys 2022; 24:9298-9307. [PMID: 35383350 DOI: 10.1039/d2cp00438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In electronic structure calculations, the correlation energy is defined as the difference between the mean field and the exact solution of the non relativistic Schrödinger equation. Such an error in the different calculations is not directly observable as there is no simple quantum mechanical operator, apart from correlation functions, that correspond to such quantity. Here, we use the dimensional scaling approach, in which the electrons are localized at the large-dimensional scaled space, to describe a geometric picture of the electronic correlation. Both, the mean field, and the exact solutions at the large-D limit have distinct geometries. Thus, the difference might be used to describe the correlation effect. Moreover, correlations can be also described and quantified by the entanglement between the electrons, which is a strong correlation without a classical analog. Entanglement is directly observable and it is one of the most striking properties of quantum mechanics and bounded by the area law for local gapped Hamiltonians of interacting many-body systems. This study opens up the possibility of presenting a geometrical picture of the electron-electron correlations and might give a bound on the correlation energy. The results at the large-D limit and at D = 3 indicate the feasibility of using the geometrical picture to get a bound on the electron-electron correlations.
Collapse
Affiliation(s)
- Kumar J B Ghosh
- E.ON Digital Technology GmbH, 45131, Essen, Germany. .,Department of Chemistry and Physics, Purdue University, West Lafayette, IN, 47906, USA.
| | - Sabre Kais
- Department of Chemistry and Physics, Purdue University, West Lafayette, IN, 47906, USA.
| | - Dudley R Herschbach
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Lozano-Méndez K, Cásares AH, Caballero-Benítez SF. Spin Entanglement and Magnetic Competition via Long-Range Interactions in Spinor Quantum Optical Lattices. PHYSICAL REVIEW LETTERS 2022; 128:080601. [PMID: 35275654 DOI: 10.1103/physrevlett.128.080601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Quantum matter at ultralow temperatures offers a test bed for analyzing and controlling desired properties in strongly correlated systems. Under typical conditions the nature of the atoms fixes the magnetic character of the system. Beyond classical light potentials leading to optical lattices and short-range interactions, high-Q cavities introduce novel dynamics into the system via the quantumness of light. Here we propose a theoretical model and we analyze it using exact diagonalization and density matrix renormalization group simulations. We explore the effects of cavity mediated long-range magnetic interactions and optical lattices in ultracold matter. We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios. Antiferromagnetic correlated bosonic matter emerges in conditions beyond what nature typically provides. These allow new alternatives toward the design of robust mechanisms for quantum information purposes, exploiting the properties of magnetic phases of strongly correlated quantum matter.
Collapse
Affiliation(s)
- Karen Lozano-Méndez
- Instituto de Física, LSCSC-LANMAC, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro H Cásares
- Instituto de Física, LSCSC-LANMAC, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | |
Collapse
|
15
|
Generalized Gibbs Phase Rule and Multicriticality Applied to Magnetic Systems. ENTROPY 2021; 24:e24010063. [PMID: 35052088 PMCID: PMC8775071 DOI: 10.3390/e24010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
A generalization of the original Gibbs phase rule is proposed in order to study the presence of single phases, multiphase coexistence, and multicritical phenomena in lattice spin magnetic models. The rule is based on counting the thermodynamic number of degrees of freedom, which strongly depends on the external fields needed to break the ground state degeneracy of the model. The phase diagrams of some spin Hamiltonians are analyzed according to this general phase rule, including general spin Ising and Blume–Capel models, as well as q-state Potts models. It is shown that by properly taking into account the intensive fields of the model in study, the generalized Gibbs phase rule furnishes a good description of the possible topology of the corresponding phase diagram. Although this scheme is unfortunately not able to locate the phase boundaries, it is quite useful to at least provide a good description regarding the possible presence of critical and multicritical surfaces, as well as isolated multicritical points.
Collapse
|
16
|
Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, Hemmerich A. Quantum Degenerate Fermi Gas in an Orbital Optical Lattice. PHYSICAL REVIEW LETTERS 2021; 127:033201. [PMID: 34328765 DOI: 10.1103/physrevlett.127.033201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Spin-polarized samples and spin mixtures of quantum degenerate fermionic atoms are prepared in selected excited Bloch bands of an optical checkerboard square lattice. For the spin-polarized case, extreme band lifetimes above 10 s are observed, reflecting the suppression of collisions by Pauli's exclusion principle. For spin mixtures, lifetimes are reduced by an order of magnitude by two-body collisions between different spin components, but still remarkably large values of about 1 s are found. By analyzing momentum spectra, we can directly observe the orbital character of the optical lattice. The observations demonstrated here form the basis for exploring the physics of Fermi gases with two paired spin components in orbital optical lattices, including the regime of unitarity.
Collapse
Affiliation(s)
- M Hachmann
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - Y Kiefer
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - J Riebesehl
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
| | - R Eichberger
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - A Hemmerich
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
17
|
Guardado-Sanchez E, Spar BM, Schauss P, Belyansky R, Young JT, Bienias P, Gorshkov AV, Iadecola T, Bakr WS. Quench Dynamics of a Fermi Gas with Strong Nonlocal Interactions. PHYSICAL REVIEW. X 2021; 11:10.1103/physrevx.11.021036. [PMID: 36451802 PMCID: PMC9706409 DOI: 10.1103/physrevx.11.021036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We induce strong nonlocal interactions in a 2D Fermi gas in an optical lattice using Rydberg dressing. The system is approximately described by a t - V model on a square lattice where the fermions experience isotropic nearest-neighbor interactions and are free to hop only along one direction. We measure the interactions using many-body Ramsey interferometry and study the lifetime of the gas in the presence of tunneling, finding that tunneling does not reduce the lifetime. To probe the interplay of nonlocal interactions with tunneling, we investigate the short-time-relaxation dynamics of charge-density waves in the gas. We find that strong nearest-neighbor interactions slow down the relaxation. Our work opens the door for quantum simulations of systems with strong nonlocal interactions such as extended Fermi-Hubbard models.
Collapse
Affiliation(s)
| | - Benjamin M. Spar
- Department of Physics, Princeton University, Princeton, New Jersey 08544 USA
| | - Peter Schauss
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904 USA
| | - Ron Belyansky
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742 USA
| | - Jeremy T. Young
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- JILA, NIST, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Przemyslaw Bienias
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742 USA
| | - Alexey V. Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742 USA
| | - Thomas Iadecola
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Waseem S. Bakr
- Department of Physics, Princeton University, Princeton, New Jersey 08544 USA
| |
Collapse
|
18
|
Lenihan C, Kim AJ, Šimkovic Iv F, Kozik E. Entropy in the Non-Fermi-Liquid Regime of the Doped 2D Hubbard Model. PHYSICAL REVIEW LETTERS 2021; 126:105701. [PMID: 33784123 DOI: 10.1103/physrevlett.126.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
We study thermodynamic properties of the doped Hubbard model on the square lattice in the regime of strong charge and spin fluctuations at low temperatures near the metal-to-insulator crossover and obtain results with controlled accuracy using the diagrammatic Monte Carlo method directly in the thermodynamic limit. The behavior of the entropy reveals a non-Fermi-liquid state at sufficiently high interactions near half filling: A maximum in the entropy at nonzero doping develops as the coupling strength is increased, along with an inflection point, evidencing a metal to non-Fermi-liquid crossover. The specific heat exhibits additional distinctive features of a non-Fermi-liquid state. Measurements of the entropy can, therefore, be used as a probe of the state of the system in quantum simulation experiments with ultracold atoms in optical lattices.
Collapse
Affiliation(s)
- Connor Lenihan
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Aaram J Kim
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Fedor Šimkovic Iv
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
- Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Evgeny Kozik
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
19
|
Bohrdt A, Wang Y, Koepsell J, Kánasz-Nagy M, Demler E, Grusdt F. Dominant Fifth-Order Correlations in Doped Quantum Antiferromagnets. PHYSICAL REVIEW LETTERS 2021; 126:026401. [PMID: 33512175 DOI: 10.1103/physrevlett.126.026401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Traditionally, one- and two-point correlation functions are used to characterize many-body systems. In strongly correlated quantum materials, such as the doped 2D Fermi-Hubbard system, these may no longer be sufficient, because higher-order correlations are crucial to understanding the character of the many-body system and can be numerically dominant. Experimentally, such higher-order correlations have recently become accessible in ultracold atom systems. Here, we reveal strong non-Gaussian correlations in doped quantum antiferromagnets and show that higher-order correlations dominate over lower-order terms. We study a single mobile hole in the t-J model using the density matrix renormalization group and reveal genuine fifth-order correlations which are directly related to the mobility of the dopant. We contrast our results to predictions using models based on doped quantum spin liquids which feature significantly reduced higher-order correlations. Our predictions can be tested at the lowest currently accessible temperatures in quantum simulators of the 2D Fermi-Hubbard model. Finally, we propose to experimentally study the same fifth-order spin-charge correlations as a function of doping. This will help to reveal the microscopic nature of charge carriers in the most debated regime of the Hubbard model, relevant for understanding high-T_{c} superconductivity.
Collapse
Affiliation(s)
- A Bohrdt
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
| | - Y Wang
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
| | - J Koepsell
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| | - M Kánasz-Nagy
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| | - E Demler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - F Grusdt
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstrasse 37, München D-80333, Germany
| |
Collapse
|
20
|
Grusdt F, Pollet L. Z_{2} Parton Phases in the Mixed-Dimensional t-J_{z} Model. PHYSICAL REVIEW LETTERS 2020; 125:256401. [PMID: 33416402 DOI: 10.1103/physrevlett.125.256401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
We study the interplay of spin and charge degrees of freedom in a doped Ising antiferromagnet, where the motion of charges is restricted to one dimension. The phase diagram of this mixed-dimensional t-J_{z} model can be understood in terms of spinless chargons coupled to a Z_{2} lattice gauge field. The antiferromagnetic couplings give rise to interactions between Z_{2} electric field lines which, in turn, lead to a robust stripe phase at low temperatures. At higher temperatures, a confined meson-gas phase is found for low doping whereas at higher doping values, a robust deconfined chargon-gas phase is seen, which features hidden antiferromagnetic order. We confirm these phases in quantum Monte Carlo simulations. Our model can be implemented and its phases detected with existing technology in ultracold atom experiments. The critical temperature for stripe formation with a sufficiently high hole concentration is around the spin-exchange energy J_{z}, i.e., well within reach of current experiments.
Collapse
Affiliation(s)
- Fabian Grusdt
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, München D-80333, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Lode Pollet
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, München D-80333, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
- Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Lin Z, Liu C, Chen Y. Novel Quantum Phases of Two-Component Bosons with Pair Hopping in Synthetic Dimension. PHYSICAL REVIEW LETTERS 2020; 125:245301. [PMID: 33412032 DOI: 10.1103/physrevlett.125.245301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
We study two-component (or pseudospin-1/2) bosons with pair hopping interactions in synthetic dimension, for which a feasible experimental scheme on a square optical lattice is also presented. Previous studies have shown that two-component bosons with on-site interspecies interaction can only generate nontrivial interspecies paired superfluid (super-counter-fluidity or pair-superfluid) states. In contrast, apart from interspecies paired superfluid, we reveal two new phases by considering this additional pair hopping interaction. These novel phases are intraspecies paired superfluid (molecular superfluid) and an exotic noninteger Mott insulator which shows a noninteger atom number at each site for each species, but an integer for total atom number.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
- School of Physics and Materials Science, Anhui University, Hefei 230601, China
| | - Chenrong Liu
- Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
| | - Yan Chen
- Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
22
|
Hartke T, Oreg B, Jia N, Zwierlein M. Doublon-Hole Correlations and Fluctuation Thermometry in a Fermi-Hubbard Gas. PHYSICAL REVIEW LETTERS 2020; 125:113601. [PMID: 32975995 DOI: 10.1103/physrevlett.125.113601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/19/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
We report on the single atom and single site-resolved detection of the total density in a cold atom realization of the 2D Fermi-Hubbard model. Fluorescence imaging of doublons is achieved by splitting each lattice site into a double well, thereby separating atom pairs. Full density readout yields a direct measurement of the equation of state, including direct thermometry via the fluctuation-dissipation theorem. Site-resolved density correlations reveal the Pauli hole at low filling, and strong doublon-hole correlations near half filling. These are shown to account for the difference between local and nonlocal density fluctuations in the Mott insulator. Our technique enables the study of atom-resolved charge transport in the Fermi-Hubbard model, the site-resolved observation of molecules, and the creation of bilayer Fermi-Hubbard systems.
Collapse
Affiliation(s)
- Thomas Hartke
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Botond Oreg
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ningyuan Jia
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Zwierlein
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
23
|
Yamamoto D, Suzuki C, Marmorini G, Okazaki S, Furukawa N. Quantum and Thermal Phase Transitions of the Triangular SU(3) Heisenberg Model under Magnetic Fields. PHYSICAL REVIEW LETTERS 2020; 125:057204. [PMID: 32794836 DOI: 10.1103/physrevlett.125.057204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We study the quantum and thermal phase transition phenomena of the SU(3) Heisenberg model on triangular lattice in the presence of magnetic fields. Performing a scaling analysis on large-size cluster mean-field calculations endowed with a density-matrix renormalization-group solver, we reveal the quantum phases selected by quantum fluctuations from the massively degenerate classical ground-state manifold. The magnetization process up to saturation reflects three different magnetic phases. The low- and high-field phases have strong nematic nature, and especially the latter is found only via a nontrivial reconstruction of symmetry generators from the standard spin and quadrupolar description. We also perform a semiclassical Monte Carlo simulation to show that thermal fluctuations prefer the same three phases as well. Moreover, we find that exotic topological phase transitions driven by the binding-unbinding of fractional (half-)vortices take place, due to the nematicity of the low- and high-field phases. Possible experimental realization with alkaline-earth-like cold atoms is also discussed.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Chihiro Suzuki
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Giacomo Marmorini
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Sho Okazaki
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Nobuo Furukawa
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
24
|
Chiu CS, Ji G, Bohrdt A, Xu M, Knap M, Demler E, Grusdt F, Greiner M, Greif D. String patterns in the doped Hubbard model. Science 2020; 365:251-256. [PMID: 31320533 DOI: 10.1126/science.aav3587] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/05/2019] [Indexed: 11/02/2022]
Abstract
Understanding strongly correlated quantum many-body states is one of the most difficult challenges in modern physics. For example, there remain fundamental open questions on the phase diagram of the Hubbard model, which describes strongly correlated electrons in solids. In this work, we realize the Hubbard Hamiltonian and search for specific patterns within the individual images of many realizations of strongly correlated ultracold fermions in an optical lattice. Upon doping a cold-atom antiferromagnet, we find consistency with geometric strings, entities that may explain the relationship between hole motion and spin order, in both pattern-based and conventional observables. Our results demonstrate the potential for pattern recognition to provide key insights into cold-atom quantum many-body systems.
Collapse
Affiliation(s)
- Christie S Chiu
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | - Geoffrey Ji
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | - Annabelle Bohrdt
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA.,Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Muqing Xu
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | - Michael Knap
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Eugene Demler
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | - Fabian Grusdt
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA.,Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Markus Greiner
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA.
| | - Daniel Greif
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
25
|
Kim AJ, Simkovic F, Kozik E. Spin and Charge Correlations across the Metal-to-Insulator Crossover in the Half-Filled 2D Hubbard Model. PHYSICAL REVIEW LETTERS 2020; 124:117602. [PMID: 32242729 DOI: 10.1103/physrevlett.124.117602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/12/2019] [Accepted: 02/06/2020] [Indexed: 06/11/2023]
Abstract
The 2D Hubbard model with nearest-neighbor hopping on the square lattice and an average of one electron per site is known to undergo an extended crossover from metallic to insulating behavior driven by proliferating antiferromagnetic correlations. We study signatures of this crossover in spin and charge correlation functions and present results obtained with controlled accuracy using the diagrammatic Monte Carlo approach in the range of parameters amenable to experimental verification with ultracold atoms in optical lattices. The qualitative changes in charge and spin correlations associated with the crossover are observed at well-separated temperature scales, which encase the intermediary regime of non-Fermi-liquid character, where local magnetic moments are formed and nonlocal fluctuations in both channels are essential.
Collapse
Affiliation(s)
- Aaram J Kim
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Fedor Simkovic
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Evgeny Kozik
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
26
|
Bohrdt A, Omran A, Demler E, Gazit S, Grusdt F. Multiparticle Interactions for Ultracold Atoms in Optical Tweezers: Cyclic Ring-Exchange Terms. PHYSICAL REVIEW LETTERS 2020; 124:073601. [PMID: 32142349 DOI: 10.1103/physrevlett.124.073601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Dominant multiparticle interactions can give rise to exotic physical phases with anyonic excitations and phase transitions without local order parameters. In spin systems with a global SU(N) symmetry, cyclic ring-exchange couplings constitute the first higher-order interaction in this class. In this Letter, we propose a protocol showing how SU(N)-invariant multibody interactions can be implemented in optical tweezer arrays. We utilize the flexibility to rearrange the tweezer configuration on short timescales compared to the typical lifetimes, in combination with strong nonlocal Rydberg interactions. As a specific example, we demonstrate how a chiral cyclic ring-exchange Hamiltonian can be implemented in a two-leg ladder geometry. We study its phase diagram using density-matrix renormalization group simulations and identify phases with dominant vector chirality, a ferromagnet, and an emergent spin-1 Haldane phase. We also discuss how the proposed protocol can be utilized to implement the strongly frustrated J-Q model, a candidate for hosting a deconfined quantum critical point.
Collapse
Affiliation(s)
- Annabelle Bohrdt
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
| | - Ahmed Omran
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eugene Demler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Snir Gazit
- Racah Institute of Physics and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Fabian Grusdt
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstrasse 37, München D-80333, Germany
| |
Collapse
|
27
|
Vijayan J, Sompet P, Salomon G, Koepsell J, Hirthe S, Bohrdt A, Grusdt F, Bloch I, Gross C. Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains. Science 2020; 367:186-189. [DOI: 10.1126/science.aay2354] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/14/2019] [Indexed: 11/02/2022]
Abstract
Elementary particles carry several quantum numbers, such as charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. For example, one-dimensional systems are described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here, we report on the dynamical deconfinement of spin and charge excitations in real space after the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we tracked the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multipoint correlators, we quantified the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures.
Collapse
Affiliation(s)
- Jayadev Vijayan
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Pimonpan Sompet
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Guillaume Salomon
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Joannis Koepsell
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Sarah Hirthe
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Annabelle Bohrdt
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Fabian Grusdt
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München, Germany
| | - Immanuel Bloch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
| | - Christian Gross
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| |
Collapse
|
28
|
Lin J, Nan J, Luo Y, Yao XC, Li X. Quantum Adiabatic Doping with Incommensurate Optical Lattices. PHYSICAL REVIEW LETTERS 2019; 123:233603. [PMID: 31868469 DOI: 10.1103/physrevlett.123.233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Quantum simulations of Fermi-Hubbard models have been attracting considerable effort in the optical lattice research, with the ultracold antiferromagnetic atomic phase reached at half filling in recent years. An unresolved issue is to dope the system while maintaining the low thermal entropy. Here we propose to achieve the low temperature phase of the doped Fermi-Hubbard model using incommensurate optical lattices through adiabatic quantum evolution. In this theoretical proposal, we find that one major problem about the adiabatic doping is atomic localization in the incommensurate lattice, potentially causing an exponential slowing down of the adiabatic procedure. We study both one- and two-dimensional incommensurate optical lattices, and find that the localization prevents efficient adiabatic doping in the strong lattice regime for both cases. With density matrix renormalization group calculation, we further show that the slowing down problem in one dimension can be circumvented by considering interaction induced many-body delocalization, which is experimentally feasible using Feshbach resonance techniques. This protocol is expected to be efficient as well in two dimensions where the localization phenomenon is less stable.
Collapse
Affiliation(s)
- Jian Lin
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jue Nan
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuchen Luo
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Xing-Can Yao
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaopeng Li
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
29
|
Schlawin F, Jaksch D. Cavity-Mediated Unconventional Pairing in Ultracold Fermionic Atoms. PHYSICAL REVIEW LETTERS 2019; 123:133601. [PMID: 31697538 DOI: 10.1103/physrevlett.123.133601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 06/10/2023]
Abstract
We investigate long-range pairing interactions between ultracold fermionic atoms confined in an optical lattice which are mediated by the coupling to a cavity. In the absence of other perturbations, we find three degenerate pairing symmetries for a two-dimensional square lattice. By tuning a weak local atomic interaction via a Feshbach resonance or by tuning a weak magnetic field, the superfluid system can be driven from a topologically trivial s wave to topologically ordered, chiral superfluids containing Majorana edge states. Our work points out a novel path towards the creation of exotic superfluid states by exploiting the competition between long-range and short-range interactions.
Collapse
Affiliation(s)
- Frank Schlawin
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dieter Jaksch
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
30
|
Schauss P. Polarons leave a trace. Science 2019; 365:218. [DOI: 10.1126/science.aax6486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Spin and charge interplay leads to stringlike excitations in the 2D Hubbard model
Collapse
Affiliation(s)
- Peter Schauss
- Department of Physics, University of Virginia, Charlottesville, VA 22904-4714, USA
| |
Collapse
|
31
|
Mazurenko A, Blatt S, Huber F, Parsons MF, Chiu CS, Ji G, Greif D, Greiner M. Implementation of a stable, high-power optical lattice for quantum gas microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:033101. [PMID: 30927819 DOI: 10.1063/1.5066623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
We describe the design and implementation of a stable high-power 1064 nm laser system to generate optical lattices for experiments with ultracold quantum gases. The system is based on a low-noise laser amplified by an array of four heavily modified, high-power fiber amplifiers. The beam intensity is stabilized and controlled with a nonlinear feedback loop. Using real-time monitoring of the resulting optical lattice, we find the stability of the lattice site positions to be well below the lattice spacing over the course of hours. The position of the harmonic trap produced by the Gaussian envelope of the lattice beams is stable to about one lattice spacing and the long-term (six-month) relative root-mean-square stability of the lattice spacing itself is 0.5%.
Collapse
Affiliation(s)
- A Mazurenko
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - S Blatt
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - F Huber
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - M F Parsons
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - C S Chiu
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - G Ji
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - D Greif
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - M Greiner
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
32
|
Salomon G, Koepsell J, Vijayan J, Hilker TA, Nespolo J, Pollet L, Bloch I, Gross C. Direct observation of incommensurate magnetism in Hubbard chains. Nature 2018; 565:56-60. [DOI: 10.1038/s41586-018-0778-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/12/2018] [Indexed: 11/10/2022]
|
33
|
Nichols MA, Cheuk LW, Okan M, Hartke TR, Mendez E, Senthil T, Khatami E, Zhang H, Zwierlein MW. Spin transport in a Mott insulator of ultracold fermions. Science 2018; 363:383-387. [DOI: 10.1126/science.aat4387] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/20/2018] [Indexed: 11/02/2022]
Abstract
Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole–assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.
Collapse
|
34
|
Brown PT, Mitra D, Guardado-Sanchez E, Nourafkan R, Reymbaut A, Hébert CD, Bergeron S, Tremblay AMS, Kokalj J, Huse DA, Schauß P, Bakr WS. Bad metallic transport in a cold atom Fermi-Hubbard system. Science 2018; 363:379-382. [PMID: 30523078 DOI: 10.1126/science.aat4134] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/30/2018] [Indexed: 11/03/2022]
Abstract
Strong interactions in many-body quantum systems complicate the interpretation of charge transport in such materials. To shed light on this problem, we study transport in a clean quantum system: ultracold lithium-6 in a two-dimensional optical lattice, a testing ground for strong interaction physics in the Fermi-Hubbard model. We determine the diffusion constant by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity by using the Nernst-Einstein relation. That resistivity exhibits a linear temperature dependence and shows no evidence of saturation, two characteristic signatures of a bad metal. The techniques we developed in this study may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.
Collapse
Affiliation(s)
- Peter T Brown
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Debayan Mitra
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | | | - Reza Nourafkan
- Département de Physique, Institut Quantique, and Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Alexis Reymbaut
- Département de Physique, Institut Quantique, and Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Charles-David Hébert
- Département de Physique, Institut Quantique, and Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Simon Bergeron
- Département de Physique, Institut Quantique, and Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - A-M S Tremblay
- Département de Physique, Institut Quantique, and Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.,Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Jure Kokalj
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia.,Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - David A Huse
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Peter Schauß
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Waseem S Bakr
- Department of Physics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
35
|
Ozawa H, Taie S, Takasu Y, Takahashi Y. Antiferromagnetic Spin Correlation of SU(N) Fermi Gas in an Optical Superlattice. PHYSICAL REVIEW LETTERS 2018; 121:225303. [PMID: 30547600 DOI: 10.1103/physrevlett.121.225303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Large-spin cold atomic systems can exhibit unique phenomena that do not appear in spin-1/2 systems. We report the observation of nearest-neighbor antiferromagnetic spin correlations of a Fermi gas with SU(N) symmetry trapped in an optical lattice. The precise control of the spin degrees of freedom provided by an optical pumping technique enables us a straightforward comparison between the cases of SU(2) and SU(4). Our important finding is that the antiferromagnetic correlation is enhanced for the SU(4)-spin system compared with SU(2) as a consequence of a Pomeranchuk cooling effect. This work is an important step towards the realization of novel SU(N>2) quantum magnetism.
Collapse
Affiliation(s)
- Hideki Ozawa
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shintaro Taie
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yosuke Takasu
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshiro Takahashi
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
36
|
Wang B, Ünal FN, Eckardt A. Floquet Engineering of Optical Solenoids and Quantized Charge Pumping along Tailored Paths in Two-Dimensional Chern Insulators. PHYSICAL REVIEW LETTERS 2018; 120:243602. [PMID: 29956955 DOI: 10.1103/physrevlett.120.243602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 06/08/2023]
Abstract
The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.
Collapse
Affiliation(s)
- Botao Wang
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - F Nur Ünal
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - André Eckardt
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
37
|
Chiu CS, Ji G, Mazurenko A, Greif D, Greiner M. Quantum State Engineering of a Hubbard System with Ultracold Fermions. PHYSICAL REVIEW LETTERS 2018; 120:243201. [PMID: 29956952 DOI: 10.1103/physrevlett.120.243201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Accessing new regimes in quantum simulation requires the development of new techniques for quantum state preparation. We demonstrate the quantum state engineering of a strongly correlated many-body state of the two-component repulsive Fermi-Hubbard model on a square lattice. Our scheme makes use of an ultralow entropy doublon band insulator created through entropy redistribution. After isolating the band insulator, we change the underlying potential to expand it into a half-filled system. The final many-body state realized shows strong antiferromagnetic correlations and a temperature below the exchange energy. We observe an increase in entropy, which we find is likely caused by the many-body physics in the last step of the scheme. This technique is promising for low-temperature studies of cold-atom-based lattice models.
Collapse
Affiliation(s)
- Christie S Chiu
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Geoffrey Ji
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Anton Mazurenko
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Daniel Greif
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Markus Greiner
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
38
|
Agarwal K, Bhatt RN, Sondhi SL. Fast Preparation of Critical Ground States Using Superluminal Fronts. PHYSICAL REVIEW LETTERS 2018; 120:210604. [PMID: 29883141 DOI: 10.1103/physrevlett.120.210604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/19/2018] [Indexed: 06/08/2023]
Abstract
We propose a spatiotemporal quench protocol that allows for the fast preparation of ground states of gapless models with Lorentz invariance. Assuming the system initially resides in the ground state of a corresponding massive model, we show that a superluminally moving "front" that locally quenches the mass, leaves behind it (in space) a state arbitrarily close to the ground state of the gapless model. Importantly, our protocol takes time O(L) to produce the ground state of a system of size ∼L^{d} (d spatial dimensions), while a fully adiabatic protocol requires time ∼O(L^{2}) to produce a state with exponential accuracy in L. The physics of the dynamical problem can be understood in terms of relativistic rarefaction of excitations generated by the mass front. We provide proof of concept by solving the proposed quench exactly for a system of free bosons in arbitrary dimensions, and for free fermions in d=1. We discuss the role of interactions and UV effects on the free-theory idealization, before numerically illustrating the usefulness of the approach via simulations on the quantum Heisenberg spin chain.
Collapse
Affiliation(s)
- Kartiek Agarwal
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
| | - R N Bhatt
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
| | - S L Sondhi
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
39
|
Kinnunen JJ, Baarsma JE, Martikainen JP, Törmä P. The Fulde-Ferrell-Larkin-Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:046401. [PMID: 29293087 DOI: 10.1088/1361-6633/aaa4ad] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We review the concepts and the present state of theoretical studies of spin-imbalanced superfluidity, in particular the elusive Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, in the context of ultracold quantum gases. The comprehensive presentation of the theoretical basis for the FFLO state that we provide is useful also for research on the interplay between magnetism and superconductivity in other physical systems. We focus on settings that have been predicted to be favourable for the FFLO state, such as optical lattices in various dimensions and spin-orbit coupled systems. These are also the most likely systems for near-future experimental observation of the FFLO state. Theoretical bounds, such as Bloch's and Luttinger's theorems, and experimentally important limitations, such as finite-size effects and trapping potentials, are considered. In addition, we provide a comprehensive review of the various ideas presented for the observation of the FFLO state. We conclude our review with an analysis of the open questions related to the FFLO state, such as its stability, superfluid density, collective modes and extending the FFLO superfluid concept to new types of lattice systems.
Collapse
Affiliation(s)
- Jami J Kinnunen
- COMP Center of Excellence, Department of Applied Physics, Aalto University, Fi-00076, Aalto, Finland
| | | | | | | |
Collapse
|
40
|
Kantian A, Langer S, Daley AJ. Dynamical Disentangling and Cooling of Atoms in Bilayer Optical Lattices. PHYSICAL REVIEW LETTERS 2018; 120:060401. [PMID: 29481272 DOI: 10.1103/physrevlett.120.060401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/07/2017] [Indexed: 06/08/2023]
Abstract
We show how experimentally available bilayer lattice systems can be used to prepare quantum many-body states with exceptionally low entropy in one layer, by dynamically disentangling the two layers. This disentangling operation moves one layer-subsystem A-into a regime where excitations in A develop a single-particle gap. As a result, this operation maps directly to cooling for subsystem A, with entropy being shuttled to the other layer. For both bosonic and fermionic atoms, we study the corresponding dynamics showing that disentangling can be realized cleanly in ongoing experiments. The corresponding entanglement entropies are directly measurable with quantum gas microscopes, and, as a tool for producing lower-entropy states, this technique opens a range of applications beginning with simplifying production of magnetically ordered states of bosons and fermions.
Collapse
Affiliation(s)
- A Kantian
- Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - S Langer
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - A J Daley
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| |
Collapse
|