• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4633588)   Today's Articles (925)   Subscriber (49972)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Beck A, Newton MA, van de Water LGA, van Bokhoven JA. The Enigma of Methanol Synthesis by Cu/ZnO/Al2O3-Based Catalysts. Chem Rev 2024;124:4543-4678. [PMID: 38564235 DOI: 10.1021/acs.chemrev.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
2
Song B, Li Y, Wu XP, Wang F, Lin M, Sun Y, Jia AP, Ning X, Jin L, Ke X, Yu Z, Yang G, Hou W, Ding W, Gong XQ, Peng L. Unveiling the Surface Structure of ZnO Nanorods and H2 Activation Mechanisms with 17O NMR Spectroscopy. J Am Chem Soc 2022;144:23340-23351. [PMID: 36512749 DOI: 10.1021/jacs.2c08356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
3
Ortner N, Zhao D, Mena H, Weiß J, Lund H, Bartling S, Wohlrab S, Armbruster U, Kondratenko EV. Revealing Origins of Methanol Selectivity Loss in CO2 Hydrogenation over CuZn-Containing Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
4
Halim H, Morikawa Y. Elucidation of Cu-Zn Surface Alloying on Cu(997) by Machine-Learning Molecular Dynamics. ACS PHYSICAL CHEMISTRY AU 2022;2:430-447. [PMID: 36855689 PMCID: PMC9955186 DOI: 10.1021/acsphyschemau.2c00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
5
Co-Production of Methanol and Methyl Formate via Catalytic Hydrogenation of CO2 over Promoted Cu/ZnO Catalyst Supported on Al2O3 and SBA-15. Catalysts 2022. [DOI: 10.3390/catal12091018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
6
Kubovics M, Trigo A, Sánchez A, Marbán G, Borrás A, Vico JM, López-Periago AM, Domingo C. Role of graphene oxide aerogel support on the CuZnO catalytic activity: enhancing methanol selectivity in the hydrogenation reaction of CO2. ChemCatChem 2022. [DOI: 10.1002/cctc.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
7
Takeyasu K, Sawaki Y, Imabayashi T, Putra SEM, Halim HH, Quan J, Hamamoto Y, Hamada I, Morikawa Y, Kondo T, Fujitani T, Nakamura J. Hydrogenation of Formate Species Using Atomic Hydrogen on a Cu(111) Model Catalyst. J Am Chem Soc 2022;144:12158-12166. [PMID: 35762507 DOI: 10.1021/jacs.2c02797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
8
Amann P, Klötzer B, Degerman D, Köpfle N, Götsch T, Lömker P, Rameshan C, Ploner K, Bikaljevic D, Wang HY, Soldemo M, Shipilin M, Goodwin CM, Gladh J, Halldin Stenlid J, Börner M, Schlueter C, Nilsson A. The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst. Science 2022;376:603-608. [PMID: 35511988 DOI: 10.1126/science.abj7747] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
9
Wang Y, Feng K, Tian J, Zhang J, Zhao B, Luo KH, Yan B. Atomically Dispersed Zn-Stabilized Niδ+ Enabling Tunable Selectivity for CO2 Hydrogenation. CHEMSUSCHEM 2022;15:e202102439. [PMID: 35132790 DOI: 10.1002/cssc.202102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
10
Catalytic Hydrogenation of CO2 to Methanol: A Review. Catalysts 2022. [DOI: 10.3390/catal12040403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]  Open
11
Ma B, Pan H, Yang F, Liu X, Guo Y, Wang Y. Efficient CO2 catalytic hydrogenation over CuOx–ZnO/silicalite-1 with stable Cu+ species. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
12
Beck A, Zabilskiy M, Newton MA, Safonova O, Willinger MG, van Bokhoven JA. Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation. Nat Catal 2021. [DOI: 10.1038/s41929-021-00625-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
13
Docherty SR, Copéret C. Deciphering Metal–Oxide and Metal–Metal Interplay via Surface Organometallic Chemistry: A Case Study with CO2 Hydrogenation to Methanol. J Am Chem Soc 2021;143:6767-6780. [DOI: 10.1021/jacs.1c02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
14
Xu D, Wang Y, Ding M, Hong X, Liu G, Tsang SCE. Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 2021. [DOI: 10.1016/j.chempr.2020.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
15
Wang R, Jiang R, Dong C, Tong T, Li Z, Liu H, Du XW. Engineering a Cu/ZnOx Interface for High Methane Selectivity in CO2 Electrochemical Reduction. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Zabilskiy M, Sushkevich VL, Newton MA, van Bokhoven JA. Copper–Zinc Alloy-Free Synthesis of Methanol from Carbon Dioxide over Cu/ZnO/Faujasite. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol. Nat Commun 2020;11:2409. [PMID: 32415106 PMCID: PMC7229192 DOI: 10.1038/s41467-020-16342-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/24/2020] [Indexed: 12/02/2022]  Open
18
Schüttler KM, Bansmann J, Engstfeld AK, Behm RJ. Adlayer growth vs spontaneous (near-) surface alloy formation: Zn growth on Au(111). J Chem Phys 2020;152:124701. [DOI: 10.1063/1.5145294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
19
Ning S, Xu H, Qi Y, Song L, Zhang Q, Ouyang S, Ye J. Microstructure Induced Thermodynamic and Kinetic Modulation to Enhance CO2 Photothermal Reduction: A Case of Atomic-Scale Dispersed Co–N Species Anchored Co@C Hybrid. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04963] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
20
Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 2020;49:1385-1413. [DOI: 10.1039/c9cs00614a] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
21
Gonzalez GG, Zonetti PC, Silveira EB, Mendes FM, de Avillez RR, Rabello CR, Zotin FM, Appel LG. Two mechanisms for acetic acid synthesis from ethanol and water. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
22
A first-principles microkinetic study on the hydrogenation of carbon dioxide over Cu(211) in the presence of water. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9639-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
23
Surface Chemistry of Carbon Dioxide on Copper Model Catalysts Studied by Ambient-Pressure X-ray Photoelectron Spectroscopy. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2019. [DOI: 10.1380/ejssnt.2019.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
24
Dynamic changes of Au/ZnO catalysts during methanol synthesis: A model study by temporal analysis of products (TAP) and Zn LIII near Edge X-Ray absorption spectroscopy. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.11.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Abdel-Mageed AM, Klyushin A, Knop-Gericke A, Schlögl R, Behm RJ. Influence of CO on the Activation, O-Vacancy Formation, and Performance of Au/ZnO Catalysts in CO2 Hydrogenation to Methanol. J Phys Chem Lett 2019;10:3645-3653. [PMID: 31192610 DOI: 10.1021/acs.jpclett.9b00925] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
26
Sehested J. Industrial and scientific directions of methanol catalyst development. J Catal 2019. [DOI: 10.1016/j.jcat.2019.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
27
Ni Y, Liu Y, Chen Z, Yang M, Liu H, He Y, Fu Y, Zhu W, Liu Z. Realizing and Recognizing Syngas-to-Olefins Reaction via a Dual-Bed Catalyst. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04794] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
28
Hagman B, Posada-Borbón A, Schaefer A, Shipilin M, Zhang C, Merte LR, Hellman A, Lundgren E, Grönbeck H, Gustafson J. Steps Control the Dissociation of CO2 on Cu(100). J Am Chem Soc 2018;140:12974-12979. [PMID: 30226048 DOI: 10.1021/jacs.8b07906] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA