1
|
Castoldi NM, O'Rourke D, Antico M, Sansalone V, Gregory L, Pivonka P. Assessment of age-dependent sexual dimorphism in paediatric vertebral size and density using a statistical shape and statistical appearance modelling approach. Bone 2024; 189:117251. [PMID: 39251119 DOI: 10.1016/j.bone.2024.117251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
This work focuses on the growth patterns of the human fourth lumbar vertebra (L4) in a paediatric population, with specific attention to sexual dimorphism. The study aims to understand morphological and density changes in the vertebrae through age-dependent statistical shape and statistical appearance models, which can describe full three-dimensional anatomy. Results show that the main growth patterns are associated with isotropic volumetric vertebral growth, a decrease in the relative size of the vertebral foramen, and an increase in the length of the transverse processes. Moreover, significant sexual dimorphism was demonstrated during puberty. We observe significant age and sex interaction in the anterior vertebral body height (P = 0.005), where females exhibited an earlier increase in rates of vertebral height evolution. Moreover, we also observe an increase in cross-sectional area (CSA) with age (P = 0.020), where the CSA is smaller in females than in males (significant sex effect P = 0.042). Finally, although no significant increase in trabecular bone density with age is observed (P = 0.363), a trend in the statistical appearance model suggests an increase in density with age.
Collapse
Affiliation(s)
- Natalia M Castoldi
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; MSME UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Creteil, France.
| | - Dermot O'Rourke
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Maria Antico
- CSIRO Herston, Australian eHealth Research Centre, Brisbane, Australia
| | - Vittorio Sansalone
- MSME UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Creteil, France
| | - Laura Gregory
- Clinical Anatomy and Paediatric Imaging, Queensland University of Technology, Brisbane, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
2
|
Bishop PJ, Pierce SE. Late acquisition of erect hindlimb posture and function in the forerunners of therian mammals. SCIENCE ADVANCES 2024; 10:eadr2722. [PMID: 39454012 PMCID: PMC11506245 DOI: 10.1126/sciadv.adr2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
The evolutionary transition from early synapsids to therian mammals involved profound reorganization in locomotor anatomy and function, centered around a shift from "sprawled" to "erect" limb postures. When and how this functional shift was accomplished has remained difficult to decipher from the fossil record alone. Through biomechanical modeling of hindlimb force-generating performance in eight exemplar fossil synapsids, we demonstrate that the erect locomotor regime typifying modern therians did not evolve until just before crown Theria. Modeling also identifies a transient phase of increased performance in therapsids and early cynodonts, before crown mammals. Further, quantifying the global actions of major hip muscle groups indicates a protracted juxtaposition of functional redeployment and conservatism, highlighting the intricate interplay between anatomical reorganization and function across postural transitions. We infer a complex history of synapsid locomotor evolution and suggest that major evolutionary transitions between contrasting locomotor behaviors may follow highly nonlinear trajectories.
Collapse
Affiliation(s)
- Peter J. Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
3
|
Hillan EJ, Roberts LE, Criswell KE, Head JJ. Conservation of rib skeleton regionalization in the homoplastic evolution of the snake-like body form in squamates. Proc Biol Sci 2024; 291:20241160. [PMID: 39379001 DOI: 10.1098/rspb.2024.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Squamates have independently evolved an elongate, limb-reduced body form numerous times. This transition has been proposed to involve either changes to regulatory gene expression or downstream modification of target enhancers to produce a homogeneous, deregionalized axial skeleton. Analysis of vertebral morphology has suggested that regionalization is maintained in snake-like body forms, but morphological variation in the other primary component of the axial skeleton, the dorsal ribs, has not been previously examined. We quantified rib morphology along the anterior-posterior axis in limbed and snake-like squamates to test different regionalization models. We find that the relative position of regional boundaries remains consistent across taxa of differing body types, including in the homoplastic evolution of snake-like body forms. The consistent retention of regional boundaries in this primaxial domain is uncorrelated with more plastic abaxial region markers. Rather than loss of regions, rib shape at the anterior and posterior of the axis converges on those in the middle, resulting in axial regions being distinguishable by allometric shape changes rather than by discrete morphologies. This complexity challenges notions of deregionalization, revealing a nuanced evolutionary history shaped by shared functions.
Collapse
Affiliation(s)
- Emily J Hillan
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Lucy E Roberts
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- The Natural History Museum, London, UK
| | - Katharine E Criswell
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- Department of Biology, Saint Francis University, Loretto, PA, USA
| | - Jason J Head
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Gillet A, Jones KE, Pierce SE. Repatterning of mammalian backbone regionalization in cetaceans. Nat Commun 2024; 15:7587. [PMID: 39217194 PMCID: PMC11365943 DOI: 10.1038/s41467-024-51963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cetacean reinvasion of the aquatic realm is an iconic ecological transition that led to drastic modifications of the mammalian body plan, especially in the axial skeleton. Relative to the vertebral column of other mammals that is subdivided into numerous anatomical regions, regional boundaries of the cetacean backbone appear obscured. Whether the traditional mammalian regions are present in cetaceans but hard to detect due to anatomical homogenization or if regions have been entirely repatterned remains unresolved. Here we combine a segmented linear regression approach with spectral clustering to quantitatively investigate the number, position, and homology of vertebral regions across 62 species from all major cetacean clades. We propose the Nested Regions hypothesis under which the cetacean backbone is composed of six homologous modules subdivided into six to nine post-cervical regions, with the degree of regionalization dependent on vertebral count and ecology. Compared to terrestrial mammals, the cetacean backbone is less regionalized in the precaudal segment but more regionalized in the caudal segment, indicating repatterning of the vertebral column associated with the transition from limb-powered to axial-driven locomotion.
Collapse
Affiliation(s)
- Amandine Gillet
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK.
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Katrina E Jones
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK.
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Stuart BP, Huttenlocker AK, Botha J. The postcranial anatomy of Moschorhinus kitchingi (Therapsida: Therocephalia) from the Karoo Basin of South Africa. PeerJ 2024; 12:e17765. [PMID: 39148680 PMCID: PMC11326434 DOI: 10.7717/peerj.17765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024] Open
Abstract
Therocephalia are an important clade of non-mammalian therapsids that evolved a diverse array of morphotypes and body sizes throughout their evolutionary history. The postcranial anatomy of therocephalians has largely been overlooked, but remains important towards understanding aspects of their palaeobiology and phylogenetic relationships. Here, we provide the first postcranial description of the large akidnognathid eutherocephalian Moschorhinus kitchingi by examining multiple specimens from fossil collections in South Africa. We also compare the postcranial anatomy with previously described therocephalian postcranial material and provide an updated literature review to ensure a reliable foundation of comparison for future descriptive work. Moschorhinus shares all the postcranial features of eutherocephalians that differentiate them from early-diverging therocephalians, but is differentiated from other eutherocephalian taxa by aspects concerning the scapula, interclavicle, sternum, manus, and femur. The novel anatomical data from this contribution shows that Moschorhinus possessed a stocky bauplan with a particularly robust scapula, humerus, and femur. These attributes, coupled with the short and robust skull bearing enlarged conical canines imply that Moschorhinus was well equipped to grapple with and subdue prey items. Additionally, the combination of these attributes differ from those of similarly sized coeval gorgonopsians, which would have occupied a similar niche in late Permian ecosystems. Moreover, Moschorhinus was the only large carnivore known to have survived the Permo-Triassic mass extinction. Thus, the subtle but important postcranial differences may suggest a type of niche partitioning in the predator guild during the Permo-Triassic mass extinction interval.
Collapse
Affiliation(s)
- Brandon P Stuart
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- School of Geosciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Adam K Huttenlocker
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, California, United States
| | - Jennifer Botha
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- School of Geosciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- University of the Witwatersrand, GENUS: DSI-NRF Centre of Excellence in Palaeosciences, Johannesburg, Gauteng, South Africa
| |
Collapse
|
6
|
Jones KE, Angielczyk KD, Pierce SE. Origins of mammalian vertebral function revealed through digital bending experiments. Proc Biol Sci 2024; 291:20240820. [PMID: 38981526 PMCID: PMC11335002 DOI: 10.1098/rspb.2024.0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
Unravelling the functional steps that underlie major transitions in the fossil record is a significant challenge for biologists owing to the difficulties of interpreting functional capabilities of extinct organisms. New computational modelling approaches provide exciting avenues for testing function in the fossil record. Here, we conduct digital bending experiments to reconstruct vertebral function in non-mammalian synapsids, the extinct forerunners of mammals, to provide insights into the functional underpinnings of the synapsid-mammal transition. We estimate range of motion and stiffness of intervertebral joints in eight non-mammalian synapsid species alongside a comparative sample of extant tetrapods, including salamanders, reptiles and mammals. We show that several key aspects of mammalian vertebral function evolved outside crown Mammalia. Compared to early diverging non-mammalian synapsids, cynodonts stabilized the posterior trunk against lateroflexion, while evolving axial rotation in the anterior trunk. This was later accompanied by posterior sagittal bending in crown mammals, and perhaps even therians specifically. Our data also support the prior hypothesis that functional diversification of the mammalian trunk occurred via co-option of existing morphological regions in response to changing selective demands. Thus, multiple functional and evolutionary steps underlie the origin of remarkable complexity in the mammalian backbone.
Collapse
Affiliation(s)
- Katrina E. Jones
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA02138, USA
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, ManchesterM13 9PL, UK
| | - Kenneth D. Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL60605-2496, USA
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA02138, USA
| |
Collapse
|
7
|
Arnold P, Janiszewska K, Li Q, O'Connor JK, Fostowicz-Frelik Ł. The Late Cretaceous eutherian Zalambdalestes reveals unique axis and complex evolution of the mammalian neck. Sci Bull (Beijing) 2024; 69:1767-1775. [PMID: 38702276 DOI: 10.1016/j.scib.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
The typical mammalian neck consisting of seven cervical vertebrae (C1-C7) was established by the Late Permian in the cynodont forerunners of modern mammals. This structure is precisely adapted to facilitate movements of the head during feeding, locomotion, predator evasion, and social interactions. Eutheria, the clade including crown placentals, has a fossil record extending back more than 125 million years revealing significant morphological diversification in the Mesozoic. Yet very little is known concerning the early evolution of eutherian cervical morphology and its functional adaptations. A specimen of Zalambdalestes lechei from the Late Cretaceous of Mongolia boasts exceptional preservation of an almost complete series of cervical vertebrae (C2-C7) revealing a highly modified axis (C2). The significance of this cervical morphology is explored utilizing an integrated approach combining comparative anatomical examination across mammals, muscle reconstruction, geometric morphometrics and virtual range of motion analysis. We compared the shape of the axis in Zalambdalestes to a dataset of 88 mammalian species (monotremes, marsupials, and placentals) using three-dimensional landmark analysis. The results indicate that the unique axis morphology of Zalambdalestes has no close analog among living mammals. Virtual range of motion analysis of the neck strongly implies Zalambdalestes was capable of exerting very forceful head movements and had a high degree of ventral flexion for an animal its size. These findings reveal unexpected complexity in the early evolution of the eutherian cervical morphology and suggest a feeding behavior similar to insectivores specialized in vermivory and defensive behaviors in Zalambdalestes akin to modern spiniferous mammals.
Collapse
Affiliation(s)
- Patrick Arnold
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam D-14476, Germany
| | - Katarzyna Janiszewska
- Environmental Paleobiology Department, Institute of Paleobiology, Polish Academy of Sciences, Warsaw 00-818, Poland
| | - Qian Li
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | | | - Łucja Fostowicz-Frelik
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago IL 60637, USA; Evolutionary Paleobiology Department, Institute of Paleobiology, Polish Academy of Sciences, Warsaw 00-818, Poland.
| |
Collapse
|
8
|
Taewcharoen N, Norris R, Sherratt E. Small- to medium-sized mammals show greater morphological disparity in cervical than lumbar vertebrae across different terrestrial modes of locomotion. Ecol Evol 2024; 14:e11478. [PMID: 38835523 PMCID: PMC11148397 DOI: 10.1002/ece3.11478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
During mammalian terrestrial locomotion, body flexibility facilitated by the vertebral column is expected to be correlated with observed modes of locomotion, known as gait (e.g., sprawl, trot, hop, bound, gallop). In small- to medium-sized mammals (average weight up to 5 kg), the relationship between locomotive mode and vertebral morphology is largely unexplored. Here we studied the vertebral column from 46 small- to medium-sized mammals. Nine vertebrae across cervical, thoracic, and lumbar regions were chosen to represent the whole vertebral column. Vertebra shape was analysed using three-dimensional geometric morphometrics with the phylogenetic comparative method. We also applied the multi-block method, which can consider all vertebrae as a single structure for analysis. We calculated morphological disparity, phylogenetic signal, and evaluated the effects of allometry and gait on vertebral shape. We also investigated the pattern of integration in the column. We found the cervical vertebrae show the highest degree of morphological disparity, and the first thoracic vertebra shows the highest phylogenetic signal. A significant effect of gait type on vertebrae shape was found, with the lumbar vertebrae having the strongest correlation; but this effect was not significant after taking phylogeny into account. On the other hand, allometry has a significant effect on all vertebrae regardless of the contribution from phylogeny. The regions showed differing degrees of integration, with cervical vertebrae most strongly correlated. With these results, we have revealed novel information that cannot be captured from study of a single vertebra alone: although the lumbar vertebrae are the most correlated with gait, the cervical vertebrae are more morphologically diverse and drive the diversity among species when considering whole column shape.
Collapse
Affiliation(s)
- Nuttakorn Taewcharoen
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
| | - Rachel Norris
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy South Australia Australia
| | - Emma Sherratt
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
9
|
Bishop PJ, Pierce SE. The fossil record of appendicular muscle evolution in Synapsida on the line to mammals: Part I-Forelimb. Anat Rec (Hoboken) 2024; 307:1764-1825. [PMID: 37726984 DOI: 10.1002/ar.25312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
This paper is the first in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the forelimb. Understanding forelimb muscular anatomy in extinct synapsids, and how this changed on the line to mammals, can provide important perspective for interpreting skeletal and functional evolution in this lineage, and how the diversity of forelimb functions in extant mammals arose. This study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 73 character-state complexes covering all muscles crossing the shoulder, elbow, and wrist joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. In addition to producing a comprehensive documentation of osteological evidence for muscle attachments in extinct synapsids, this work has clarified homology hypotheses across disparate taxa and helped resolve competing hypotheses of muscular anatomy in extinct species. The evolutionary history of mammalian forelimb musculature was a complex and nonlinear narrative, punctuated by multiple instances of convergence and concentrated phases of anatomical transformation. More broadly, this study highlights the great insight that a fossil-based perspective can provide for understanding the assembly of novel body plans.
Collapse
Affiliation(s)
- Peter J Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Rytel A, Böhmer C, Spiekman SNF, Tałanda M. Extreme neck elongation evolved despite strong developmental constraints in bizarre Triassic reptiles-implications for neck modularity in archosaurs. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240233. [PMID: 39076823 PMCID: PMC11285776 DOI: 10.1098/rsos.240233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 03/27/2024] [Indexed: 07/31/2024]
Abstract
The Triassic radiation of vertebrates saw the emergence of the modern vertebrate groups, as well as numerous extinct animals exhibiting conspicuous, unique anatomical characteristics. Among these, members of Tanystropheidae (Reptilia: Archosauromorpha) displayed cervical vertebral elongation to an extent unparalleled in any other vertebrate. Tanystropheids were exceptionally ecologically diverse and had a wide spatial and temporal distribution. This may have been related to their neck anatomy, yet its evolution and functional properties remain poorly understood. We used geometric morphometrics to capture the intraspecific variation between the vertebrae comprising the cervical column among early archosauromorphs, to trace the evolutionary history of neck elongation in these animals. Our results show that the cervical series of these reptiles can be divided into modules corresponding to those of extant animals. Tanystropheids achieved neck elongation through somite elongation and a shift between cervical and thoracic regions, without presacral vertebrae count increase-contrary to crown archosaurs. This suggests a peculiar developmental constraint that strongly affected the evolution of tanystropheids. The data obtained just at the base of the archosauromorph phylogenetic tree are crucial for further studies on the modularity of vertebral columns of not only Triassic reptile groups but extant and other extinct animals as well.
Collapse
Affiliation(s)
- Adam Rytel
- Institute of Paleobiology, Polish Academy of Sciences, , Warsaw00818, Poland
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, , Warsaw02089, Poland
| | - Christine Böhmer
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, , Kiel24118, Germany
| | | | - Mateusz Tałanda
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, , Warsaw02089, Poland
| |
Collapse
|
11
|
Smith SM, Heaney LR, Angielczyk KD. Small skeletons show size-specific scaling: an exploration of allometry in the mammalian lumbar spine. Proc Biol Sci 2024; 291:20232868. [PMID: 38628132 PMCID: PMC11021941 DOI: 10.1098/rspb.2023.2868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Studies of vertebrate bone biomechanics often focus on skeletal adaptations at upper extremes of body mass, disregarding the importance of skeletal adaptations at lower extremes. Yet mammals are ancestrally small and most modern species have masses under 5 kg, so the evolution of morphology and function at small size should be prioritized for understanding how mammals subsist. We examined allometric scaling of lumbar vertebrae in the small-bodied Philippine endemic rodents known as cloud rats, which vary in mass across two orders of magnitude (15.5 g-2700 g). External vertebral dimensions scale with isometry or positive allometry, likely relating to body size and nuances in quadrupedal posture. In contrast to most mammalian trabecular bone studies, bone volume fraction and trabecular thickness scale with positive allometry and isometry, respectively. It is physiologically impossible for these trends to continue to the upper extremes of mammalian body size, and we demonstrate a fundamental difference in trabecular bone allometry between large- and small-bodied mammals. These findings have important implications for the biomechanical capabilities of mammalian bone at small body size; for the selective pressures that govern skeletal evolution in small mammals; and for the way we define 'small' and 'large' in the context of vertebrate skeletons.
Collapse
Affiliation(s)
- S. M. Smith
- Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - L. R. Heaney
- Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - K. D. Angielczyk
- Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
12
|
Esteban JM, Martín-Serra A, Pérez-Ramos A, Rybczynski N, Jones K, Figueirido B. The influence of the land-to-sea macroevolutionary transition on vertebral column disparification in Pinnipedia. Proc Biol Sci 2024; 291:20232752. [PMID: 38593849 PMCID: PMC11003777 DOI: 10.1098/rspb.2023.2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
The repeated returns of vertebrates to the marine ecosystems since the Triassic serve as an evolutionary model to understand macroevolutionary change. Here we investigate the effects of the land-to-sea transition on disparity and constraint of the vertebral column in aquatic carnivorans (Carnivora; Pinnipedia) to assess how their functional diversity and evolutionary innovations influenced major radiations of crown pinnipeds. We use three-dimensional geometric morphometrics and multivariate analysis for high-dimensional data under a phylogenetic framework to quantify vertebral size and shape in living and extinct pinnipeds. Our analysis demonstrates an important shift in vertebral column evolution by 10-12 million years ago, from an unconstrained to a constrained evolutionary scenario, a point of time that coincides with the major radiation of crown pinnipeds. Moreover, we also demonstrate that the axial skeleton of phocids and otariids followed a different path of morphological evolution that was probably driven by their specialized locomotor strategies. Despite this, we found a significant effect of habitat preference (coastal versus pelagic) on vertebral morphology of crown taxa regardless of the family they belong. In summary, our analysis provides insights into how the land-to-sea transition influenced the complex evolutionary history of pinniped vertebral morphology.
Collapse
Affiliation(s)
- Juan Miguel Esteban
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Natalia Rybczynski
- Department of Palaeobiology, Canadian Museum of Nature, Ottawa, ON, Canada K1P 6P4
- Department of Earth Sciences & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Katrina Jones
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
13
|
Law CJ, Hlusko LJ, Tseng ZJ. Uncovering the mosaic evolution of the carnivoran skeletal system. Biol Lett 2024; 20:20230526. [PMID: 38263882 PMCID: PMC10806395 DOI: 10.1098/rsbl.2023.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
The diversity of vertebrate skeletons is often attributed to adaptations to distinct ecological factors such as diet, locomotion, and sensory environment. Although the adaptive evolution of skull, appendicular skeleton, and vertebral column is well studied in vertebrates, comprehensive investigations of all skeletal components simultaneously are rarely performed. Consequently, we know little of how modes of evolution differ among skeletal components. Here, we tested if ecological and phylogenetic effects led to distinct modes of evolution among the cranial, appendicular and vertebral regions in extant carnivoran skeletons. Using multivariate evolutionary models, we found mosaic evolution in which only the mandible, hindlimb and posterior (i.e. last thoracic and lumbar) vertebrae showed evidence of adaptation towards ecological regimes whereas the remaining skeletal components reflect clade-specific evolutionary shifts. We hypothesize that the decoupled evolution of individual skeletal components may have led to the origination of distinct adaptive zones and morphologies among extant carnivoran families that reflect phylogenetic hierarchies. Overall, our work highlights the importance of examining multiple skeletal components simultaneously in ecomorphological analyses. Ongoing work integrating the fossil and palaeoenvironmental record will further clarify deep-time drivers that govern the carnivoran diversity we see today and reveal the complexity of evolutionary processes in multicomponent systems.
Collapse
Affiliation(s)
- Chris J. Law
- Department of Integrative Biology, University of Texas, Austin, TX, USA
- Burke Museum and Department of Biology, University of Washington, Seattle, WA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Leslea J. Hlusko
- National Research Center on Human Evolution (CENIEH), Burgos, Spain
| | - Z. Jack Tseng
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
14
|
Esteban JM, Martín-Serra A, Pérez-Ramos A, Mulot B, Jones K, Figueirido B. The impact of the land-to-sea transition on evolutionary integration and modularity of the pinniped backbone. Commun Biol 2023; 6:1141. [PMID: 37949962 PMCID: PMC10638317 DOI: 10.1038/s42003-023-05512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
In this study, we investigate how the terrestrial-aquatic transition influenced patterns of axial integration and modularity in response to the secondary adaptation to a marine lifestyle. We use 3D geometric morphometrics to quantify shape covariation among presacral vertebrae in pinnipeds (Carnivora; Pinnipedia) and to compare with patterns of axial integration and modularity in their close terrestrial relatives. Our results indicate that the vertebral column of pinnipeds has experienced a decrease in the strength of integration among all presacral vertebrae when compared to terrestrial carnivores (=fissipeds). However, separate integration analyses among the speciose Otariidae (i.e., sea lions and fur seals) and Phocidae (i.e., true seals) also suggests the presence of different axial organizations in these two groups of crown pinnipeds. While phocids present a set of integrated "thoracic" vertebrae, the presacral vertebrae of otariids are characterized by the absence of any set of vertebrae with high integration. We hypothesize that these differences could be linked to their specific modes of aquatic locomotion -i.e., pelvic vs pectoral oscillation. Our results provide evidence that the vertebral column of pinnipeds has been reorganized from the pattern observed in fissipeds but is more complex than a simple "homogenization" of the modular pattern of their close terrestrial relatives.
Collapse
Affiliation(s)
- Juan Miguel Esteban
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Baptiste Mulot
- ZooParc de Beauval & Beauval Nature, 41110, Saint-Aignan, France
| | - Katrina Jones
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
15
|
Marek RD, Felice RN. The neck as a keystone structure in avian macroevolution and mosaicism. BMC Biol 2023; 21:216. [PMID: 37833771 PMCID: PMC10576348 DOI: 10.1186/s12915-023-01715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The origin of birds from non-avian theropod dinosaur ancestors required a comprehensive restructuring of the body plan to enable the evolution of powered flight. One of the proposed key mechanisms that allowed birds to acquire flight and modify the associated anatomical structures into diverse forms is mosaic evolution, which describes the parcelization of phenotypic traits into separate modules that evolve with heterogeneous tempo and mode. Avian mosaicism has been investigated with a focus on the cranial and appendicular skeleton, and as such, we do not understand the role of the axial column in avian macroevolution. The long, flexible neck of extant birds lies between the cranial and pectoral modules and represents an opportunity to study the contribution of the axial skeleton to avian mosaicism. RESULTS Here, we use 3D geometric morphometrics in tandem with phylogenetic comparative methods to provide, to our knowledge, the first integrative analysis of avian neck evolution in context with the head and wing and to interrogate how the interactions between these anatomical systems have influenced macroevolutionary trends across a broad sample of extant birds. We find that the neck is integrated with both the head and the forelimb. These patterns of integration are variable across clades, and only specific ecological groups exhibit either head-neck or neck-forelimb integration. Finally, we find that ecological groups that display head-neck and neck-forelimb integration tend to display significant shifts in the rate of neck morphological evolution. CONCLUSIONS Combined, these results suggest that the interaction between trophic ecology and head-neck-forelimb mosaicism influences the evolutionary variance of the avian neck. By linking together the biomechanical functions of these distinct anatomical systems, the cervical vertebral column serves as a keystone structure in avian mosaicism and macroevolution.
Collapse
Affiliation(s)
- Ryan D Marek
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK.
| | - Ryan N Felice
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
16
|
Marek RD. A surrogate forelimb: Evolution, function and development of the avian cervical spine. J Morphol 2023; 284:e21638. [PMID: 37708511 DOI: 10.1002/jmor.21638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The neck is a critical portion of the avian spine, one that works in tandem with the beak to act as a surrogate forelimb and allows birds to manipulate their surroundings despite the lack of a grasping capable hand. Birds display an incredible amount of diversity in neck morphology across multiple anatomical scales-from varying cervical counts down to intricate adaptations of individual vertebrae. Despite this morphofunctional disparity, little is known about the drivers of this enormous variation, nor how neck evolution has shaped avian macroevolution. To promote interest in this system, I review the development, function and evolution of the avian cervical spine. The musculoskeletal anatomy, basic kinematics and development of the avian neck are all documented, but focus primarily upon commercially available taxa. In addition, recent work has quantified the drivers of extant morphological variation across the avian neck, as well as patterns of integration between the neck and other skeletal elements. However, the evolutionary history of the avian cervical spine, and its contribution to the diversification and success of modern birds is currently unknown. Future work should aim to broaden our understanding of the cervical anatomy, development and kinematics to include a more diverse selection of extant birds, while also considering the macroevolutionary drivers and consequences of this important section of the avian spine.
Collapse
Affiliation(s)
- Ryan D Marek
- Department of Cell and Developmental Biology, Centre for Integrative Anatomy, University College London, London, UK
| |
Collapse
|
17
|
Urošević A, Ajduković M, Vučić T, Scholtes SJ, Arntzen JW, Ivanović A. Regionalization and morphological integration in the vertebral column of Eurasian small-bodied newts (Salamandridae: Lissotriton). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:403-413. [PMID: 37272301 DOI: 10.1002/jez.b.23205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Serially homologous structures may have complex patterns of regionalization and morphological integration, influenced by developmental Hox gene expression and functional constraints. The vertebral column, consisting of a number of repeated, developmentally constrained, and highly integrated units-vertebrae-is such a complex serially homologous structure. Functional diversification increases regionalization and modularity of the vertebral column, particularly in mammals. For salamanders, three concepts of regionalization of the vertebral column have been proposed, recognizing one, two, or three presacral regions. Using three-dimensional geometric morphometrics on vertebra models acquired with microcomputerized tomography scanning, we explored the covariation of vertebrae in four closely related taxa of small-bodied newts in the genus Lissotriton. The data were analyzed by segmented linear regression to explore patterns of vertebral regionalization and by a two-block partial least squares method to test for morphological integration. All taxa show a morphological shift posterior to the fifth trunk vertebra, which corresponds to the two-region concept. However, morphological integration is found to be strongest in the mid-trunk. Taken jointly, these results indicate a highly integrated presacral vertebral column with a subtle two-region differentiation. The results are discussed in relation to specific functional requirements, developmental and phylogenetic constraints, and specific requirements posed by a biphasic life cycle and different locomotor modes (swimming vs. walking). Further research should be conducted on different ontogenetic stages and closely related but ecologically differentiated species.
Collapse
Affiliation(s)
- Aleksandar Urošević
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Ajduković
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana Vučić
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Animal Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherland
| | | | - Jan W Arntzen
- Animal Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherland
| | - Ana Ivanović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Harano T, Asahara M. Revisiting the evolutionary trend toward the mammalian lower jaw in non-mammalian synapsids in a phylogenetic context. PeerJ 2023; 11:e15575. [PMID: 37361048 PMCID: PMC10289081 DOI: 10.7717/peerj.15575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The mammalian lower jaw comprises a single bone, the dentary, which is a unique feature among vertebrates. The lower jaws of extinct non-mammalian synapsids were composed of the dentary and several postdentary bones. Synapsid fossils exhibit variation in the dentary size relative to the overall lower jaw. An evolutionary trend toward dentary enlargement and postdentary reduction in non-mammalian synapsids has long been documented but has not been established using modern phylogenetic comparative methods. In this study, we examine the evolutionary pattern of dentary size relative to the lower jaw through phylogenetic analyses of measurements in a broad range of non-mammalian synapsid taxa. Our analyses revealed an evolutionary trend toward dentary area enlargement relative to the overall lower jaw in the lateral view across all non-mammalian synapsids. This trend is likely due to vertical expansion of the dentary given that the same trend is not evident when looking at anterior to posterior measurements of the dentary relative to the lower jaw as a whole in lateral view. Ancestral character reconstructions revealed that the evolution of the measurements was not unidirectional in non-mammalian synapsids. Our results provide no evidence of an evolutionary trend toward the dentary enlargement at the expense of postdentary bones across non-mammalian synapsids. This implies that the evolutionary origin of the mammalian lower jaw is not adequately explained by the evolutionary trend of dentary enlargement throughout non-mammalian synapsids. Instead, selection that occurred during the transition from non-mammalian cynodonts to early mammals may have produced the mammalian lower jaw.
Collapse
Affiliation(s)
- Tomohiro Harano
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Masakazu Asahara
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
19
|
Figueirido B, Pérez-Ramos A, Martín-Serra A. Intravertebral vs. intervertebral integration and modularity in the vertebral column of mammalian carnivorans. J Anat 2023; 242:642-656. [PMID: 36584354 PMCID: PMC10008293 DOI: 10.1111/joa.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
The vertebral column is a multicomponent structure whose organization results from developmental and functional demands. According to their distinct somitic origins, individual vertebrae exhibit intravertebral modularity between the centrum and neural spine. However, vertebrae are also organized into larger units called intervertebral modules that result from integration between adjacent vertebrae due to locomotory demands or from common developmental origins due to resegmentation. A previous hypothesis suggested that the boundaries of intervertebral modules coincide with changes in the patterns of intravertebral integration. Here, we explicitly test whether the patterns of modularity and integration between the centrum and neural spine (i.e., intravertebral) in the boundary vertebrae among previously defined intervertebral modules change with respect to those in the vertebrae within intervertebral modules. We quantified intravertebral modularity patterns and quantified the strength of intravertebral integration for each vertebra of the presacral region in 41 species of carnivoran mammals using 3D geometric morphometrics. Our results demonstrate a significant intravertebral modular signal between the centrum and neural spine in all post-cervical vertebrae, including the boundary vertebrae among intervertebral modules. However, the strength of intravertebral integration decreases at the boundary vertebrae. We also found a significant correlation between the degree of intravertebral integration and intervertebral integration. Following our results, we hypothesize that natural selection does not override the integration between the centrum and neural spine at the boundary vertebrae, a pattern that should be influenced by their distinct somitic origins and separate ossification centers during early development. However, natural selection has probably influenced (albeit indirectly) the integration between the centrum and neural spine in the vertebrae that compose the intervertebral modules.
Collapse
Affiliation(s)
- Borja Figueirido
- Facultad de Ciencias, Departamento de Ecología y Geología, Universidad de Málaga, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Facultad de Ciencias, Departamento de Ecología y Geología, Universidad de Málaga, Málaga, Spain
| | - Alberto Martín-Serra
- Facultad de Ciencias, Departamento de Ecología y Geología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
20
|
Marconi A, Yang CZ, McKay S, Santos ME. Morphological and temporal variation in early embryogenesis contributes to species divergence in Malawi cichlid fishes. Evol Dev 2023; 25:170-193. [PMID: 36748313 PMCID: PMC10909517 DOI: 10.1111/ede.12429] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023]
Abstract
The cichlid fishes comprise the largest extant vertebrate family and are the quintessential example of rapid "explosive" adaptive radiations and phenotypic diversification. Despite low genetic divergence, East African cichlids harbor a spectacular intra- and interspecific morphological diversity, including the hyper-variable, neural crest (NC)-derived traits such as coloration and craniofacial skeleton. Although the genetic and developmental basis of these phenotypes has been investigated, understanding of when, and specifically how early, in ontogeny species-specific differences emerge, remains limited. Since adult traits often originate during embryonic development, the processes of embryogenesis could serve as a potential source of species-specific variation. Consequently, we designed a staging system by which we compare the features of embryogenesis between three Malawi cichlid species-Astatotilapia calliptera, Tropheops sp. 'mauve' and Rhamphochromis sp. "chilingali"-representing a wide spectrum of variation in pigmentation and craniofacial morphologies. Our results showed fundamental differences in multiple aspects of embryogenesis that could underlie interspecific divergence in adult adaptive traits. First, we identified variation in the somite number and signatures of temporal variation, or heterochrony, in the rates of somite formation. The heterochrony was also evident within and between species throughout ontogeny, up to the juvenile stages. Finally, the identified interspecific differences in the development of pigmentation and craniofacial cartilages, present at the earliest stages of their overt formation, provide compelling evidence that the species-specific trajectories begin divergence during early embryogenesis, potentially during somitogenesis and NC development. Altogether, our results expand our understanding of fundamental cichlid biology and provide new insights into the developmental origins of vertebrate morphological diversity.
Collapse
Affiliation(s)
| | | | - Samuel McKay
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
21
|
Li Y, Brinkworth A, Green E, Oyston J, Wills M, Ruta M. Divergent vertebral formulae shape the evolution of axial complexity in mammals. Nat Ecol Evol 2023; 7:367-381. [PMID: 36878987 PMCID: PMC9998275 DOI: 10.1038/s41559-023-01982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/03/2023] [Indexed: 03/08/2023]
Abstract
Complexity, defined as the number of parts and their degree of differentiation, is a poorly explored aspect of macroevolutionary dynamics. The maximum anatomical complexity of organisms has undoubtedly increased through evolutionary time. However, it is unclear whether this increase is a purely diffusive process or whether it is at least partly driven, occurring in parallel in most or many lineages and with increases in the minima as well as the means. Highly differentiated and serially repeated structures, such as vertebrae, are useful systems with which to investigate these patterns. We focus on the serial differentiation of the vertebral column in 1,136 extant mammal species, using two indices that quantify complexity as the numerical richness and proportional distribution of vertebrae across presacral regions and a third expressing the ratio between thoracic and lumbar vertebrae. We address three questions. First, we ask whether the distribution of complexity values in major mammal groups is similar or whether clades have specific signatures associated with their ecology. Second, we ask whether changes in complexity throughout the phylogeny are biased towards increases and whether there is evidence of driven trends. Third, we ask whether evolutionary shifts in complexity depart from a uniform Brownian motion model. Vertebral counts, but not complexity indices, differ significantly between major groups and exhibit greater within-group variation than recognized hitherto. We find strong evidence of a trend towards increasing complexity, where higher values propagate further increases in descendant lineages. Several increases are inferred to have coincided with major ecological or environmental shifts. We find support for multiple-rate models of evolution for all complexity metrics, suggesting that increases in complexity occurred in stepwise shifts, with evidence for widespread episodes of recent rapid divergence. Different subclades evolve more complex vertebral columns in different configurations and probably under different selective pressures and constraints, with widespread convergence on the same formulae. Further work should therefore focus on the ecological relevance of differences in complexity and a more detailed understanding of historical patterns.
Collapse
Affiliation(s)
- Yimeng Li
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.,Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Andrew Brinkworth
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Emily Green
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Lincoln, UK
| | - Jack Oyston
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Matthew Wills
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | - Marcello Ruta
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Lincoln, UK.
| |
Collapse
|
22
|
Molnar J, Watanabe A. Morphological and functional regionalization of trunk vertebrae as an adaptation for arboreal locomotion in chameleons. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221509. [PMID: 36998764 PMCID: PMC10049746 DOI: 10.1098/rsos.221509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Regionalization of the vertebral column can help animals adapt to different kinds of locomotion, including arboreal locomotion. Although functional axial regionalization has been described in both chameleons and arboreal mammals, no morphological basis for this functional regionalization in chameleons has been proposed. However, recent studies have described regionalization in the presacral vertebral column of other extant squamates. To investigate possible morphological regionalization in the vertebral column of chameleons, we took morphometric measurements from the presacral vertebrae of 28 chameleon species representing all extant chameleon genera, both fully arboreal and ground-dwelling, and performed comparative analyses. Our results support chameleons exhibiting three or four presacral morphological regions that correspond closely to those in other sauropsids, but we detected evolutionary shifts in vertebral traits occurring in only arboreal chameleons. Specifically, the anterior dorsal region in arboreal chameleons has more vertically oriented zygapophyseal joints, predicting decreased mediolateral flexibility. This shift is functionally significant because stiffening of the anterior thoracic vertebral column has been proposed to help bridge gaps between supports in primates. Thus, specialization of existing morphological regions in the vertebral column of chameleons may have played an important role in the evolution of extreme arboreal locomotion, paralleling the adaptations of arboreal primates.
Collapse
Affiliation(s)
- Julia Molnar
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Akinobu Watanabe
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
- Life Sciences Department, Natural History Museum, London, SW7 5BD UK
| |
Collapse
|
23
|
Regionalization, constraints, and the ancestral ossification patterns in the vertebral column of amniotes. Sci Rep 2022; 12:22257. [PMID: 36564413 PMCID: PMC9789111 DOI: 10.1038/s41598-022-24983-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The development of the vertebral column has been studied extensively in modern amniotes, yet many aspects of its evolutionary history remain enigmatic. Here we expand the existing data on four major vertebral developmental patterns in amniotes based on exceptionally well-preserved specimens of the early Permian mesosaurid reptile Mesosaurus tenuidens: (i) centrum ossification, (ii) neural arch ossification, (iii) neural arch fusion, and (iv) neurocentral fusion. We retrace the evolutionary history of each pattern and reconstruct the ancestral condition in amniotes. Despite 300 million years of evolutionary history, vertebral development patterns show a surprisingly stability in amniotes since their common ancestor. We propose that this stability may be linked to conservatism in the constraints posed by underlying developmental processes across amniotes. We also point out that birds, mammals, and squamates each show specific trends deviating from the ancestral condition in amniotes, and that they remain rather unchanged within these lineages. The stability of their unique patterns demonstrates a certain homogeneity of vertebral developmental constraints within these lineages, which we suggest might be linked to their specific modes of regionalization. Our research provides a framework for the evolution of axial development in amniotes and a foundation for future studies.
Collapse
|
24
|
Adler KA, De Nault DL, Cardoza CM, Womack M. Evolutionary rates and shape variation along the anuran vertebral column with attention to phylogeny, body size, and ecology. Evolution 2022; 76:2724-2738. [PMID: 36117276 DOI: 10.1111/evo.14614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 01/22/2023]
Abstract
The vertebral column is critical to a vertebrate species' flexibility and skeletal support, making vertebrae a clear target for selection. Anurans (frogs and toads) have a unique, truncated vertebral column that appears constrained to provide axial rigidity for efficient jumping. However, no study has examined how presacral vertebrae shape varies among anuran species at the macroevolutionary scale nor how intrinsic (developmental and phylogenetic) and extrinsic (ecological) factors may have influenced vertebrae shape evolution. We used microCT scans and phylogenetic comparative methods to examine the vertebrae of hundreds of anuran species that vary in body size as well as adult and larval ecology. We found variation in shape and evolutionary rates among anuran vertebrae, dispelling any notion that trunk vertebrae evolve uniformly. We discovered the highest evolutionary rates in the cervical vertebrae and in the more caudal trunk vertebrae. We found little evidence for selection pressures related to adult or larval ecology affecting vertebrae evolution, but we did find body size was highly associated with vertebrae shape and microhabitat (mainly burrowing) affected those allometric relationships. Our results provide an interesting comparison to vertebrae evolution in other clades and a jumping-off point for studies of anuran vertebrae evolution and development.
Collapse
Affiliation(s)
- Katie A Adler
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, 94720
| | - Diego L De Nault
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, 94720
| | - Cassandra M Cardoza
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, 94720
| | - Molly Womack
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, 94720.,Department of Biology, Utah State University, Logan, Utah, 84322
| |
Collapse
|
25
|
Jung H, von Cramon-Taubadel N. Morphological modularity in the anthropoid axial skeleton. J Hum Evol 2022; 172:103256. [PMID: 36156434 DOI: 10.1016/j.jhevol.2022.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
Previous research has found that hominoids have stronger modularity between limb elements than other anthropoids, suggesting that there is less constraint on morphological diversification (e.g., limb proportions) in hominoids in terms of evolutionary independence. However, degrees of modularity in the axial skeleton have not been investigated across a broad range of anthropoid taxa. Thus, it is unknown whether hominoids also have stronger modularity in the axial skeleton than other anthropoids, which has implications for the evolution of diverse torso morphologies in Miocene apes as well as the evolution of novel characteristics in the skull and vertebrae of fossil hominins. In this study, 12 anthropoid genera were sampled to examine degrees of modularity between axial skeletal elements (i.e., cranium, mandible, vertebrae, and sacrum). Covariance ratio coefficients were calculated using variance/covariance matrices of interlandmark distances for each axial skeletal element to evaluate degrees of modularity. The results showed that Alouatta, Hylobates, Gorilla, Pan, and Homo showed generally stronger modularity than other anthropoid taxa when considering all axial skeletal elements. When only considering the vertebral elements (i.e., vertebrae and sacrum), Alouatta, Hylobates, Gorilla, and Pan showed generally stronger modularity than other anthropoid taxa. Humans showed stronger modularity between the skull and vertebrae than other hominoids. Thus, the evolution of novel characteristics in the skull and vertebral column may have been less constrained in fossil hominins due to the dissociation of trait covariation between axial skeletal elements in hominoid ancestors, thus fostering more evolutionary independence between the skull and vertebral column.
Collapse
Affiliation(s)
- Hyunwoo Jung
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, SUNY, 380 Academic Center, Ellicott Complex, Buffalo, NY 14261, USA; Department of Anatomy, College of Graduate Studies, Midwestern University, 19555 N 59th Ave, Glendale, AZ 85308, USA.
| | - Noreen von Cramon-Taubadel
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, SUNY, 380 Academic Center, Ellicott Complex, Buffalo, NY 14261, USA
| |
Collapse
|
26
|
Lowie A, De Kegel B, Wilkinson M, Measey J, O'Reilly JC, Kley NJ, Gaucher P, Brecko J, Kleinteich T, Herrel A, Adriaens D. Regional differences in vertebral shape along the axial skeleton in caecilians (Amphibia: Gymnophiona). J Anat 2022; 241:716-728. [PMID: 35488423 PMCID: PMC9358739 DOI: 10.1111/joa.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022] Open
Abstract
Caecilians are elongate, limbless and annulated amphibians that, as far as is known, all have an at least partly fossorial lifestyle. It has been suggested that elongate limbless vertebrates show little morphological differentiation throughout the postcranial skeleton. However, relatively few studies have explored the axial skeleton in limbless tetrapods. In this study, we used μCT data and three-dimensional geometric morphometrics to explore regional differences in vertebral shape across a broad range of caecilian species. Our results highlight substantial differences in vertebral shape along the axial skeleton, with anterior vertebrae being short and bulky, whereas posterior vertebrae are more elongated. This study shows that despite being limbless, elongate tetrapods such as caecilians still show regional heterogeneity in the shape of individual vertebrae along the vertebral column. Further studies are needed, however, to understand the possible causes and functional consequences of the observed variation in vertebral shape in caecilians.
Collapse
Affiliation(s)
- Aurélien Lowie
- Department of Biology, Evolutionary Morphology of VertebratesGhent UniversityGhentBelgium
| | - Barbara De Kegel
- Department of Biology, Evolutionary Morphology of VertebratesGhent UniversityGhentBelgium
| | - Mark Wilkinson
- Department of Life SciencesNatural History MuseumLondonUK
| | - John Measey
- Centre for Invasion Biology, Department of Botany & ZoologyStellenbosch UniversityStellenboschSouth Africa
| | | | - Nathan J. Kley
- Department of Anatomical SciencesHealth Sciences Center, Stony Brook UniversityStony BrookNew YorkUSA
| | - Philippe Gaucher
- USR 3456, CNRSCentre de recherche de Montabo IRDCNRS‐GuyaneCayenneFrance
| | - Jonathan Brecko
- Royal Museum for Central AfricaBiological Collections and Data ManagementTervurenBelgium
| | | | - Anthony Herrel
- Department of Biology, Evolutionary Morphology of VertebratesGhent UniversityGhentBelgium
- UMR 7179 C.N.R.S/M.N.H.NDépartement d'Ecologie et de Gestion de la BiodiversitéParis Cedex 5France
| | - Dominique Adriaens
- Department of Biology, Evolutionary Morphology of VertebratesGhent UniversityGhentBelgium
| |
Collapse
|
27
|
Heart Position is Associated with Vertebral Regionalization in Two Species of Garter Snakes (Thamnophis). J HERPETOL 2022. [DOI: 10.1670/21-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Wright MA, Sears KE, Pierce SE. Comparison of Hindlimb Muscle Architecture Properties in Small-Bodied, Generalist Mammals Suggests Similarity in Soft Tissue Anatomy. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Scholtes SJ, Arntzen JW, Ajduković M, Ivanović A. Variation in vertebrae shape across small-bodied newts reveals functional and developmental constraints acting upon the trunk region. J Anat 2022; 240:639-646. [PMID: 34761388 PMCID: PMC8930814 DOI: 10.1111/joa.13591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022] Open
Abstract
The salamander vertebral column is largely undifferentiated with a series of more or less uniform rib-bearing presacral vertebrae traditionally designated as the trunk region. We explored regionalization of the salamander trunk in seven species and two subspecies of the salamander genus Lissotriton by the combination of microcomputed tomography scanning and geometric morphometrics. The detailed information on trunk vertebral shape was subjected to a multidimensional cluster analysis and a phenotypic trajectory analysis. With these complementary approaches, we observed a clear morphological regionalization. Clustering analysis showed that the anterior trunk vertebrae (T1 and T2) have distinct morphologies that are shared by all taxa, whereas the subsequent, more posterior vertebrae show significant disparity between species. The phenotypic trajectory analysis revealed that all taxa share a common pattern and amount of shape change along the trunk region. Altogether, our results support the hypothesis of a conserved anterior-posterior developmental patterning which can be associated with different functional demands, reflecting (sub)species' and, possibly, regional ecological divergences within species.
Collapse
Affiliation(s)
| | | | - Maja Ajduković
- Department of Evolutionary BiologyInstitute for Biological Research “Siniša Stanković”National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Ana Ivanović
- Faculty of BiologyUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
30
|
Brocklehurst N, Ford DP, Benson RBJ. Early origins of divergent patterns of morphological evolution on the mammal and reptile stem-lineages. Syst Biol 2022; 71:1195-1209. [PMID: 35274702 PMCID: PMC9366456 DOI: 10.1093/sysbio/syac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/09/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022] Open
Abstract
The origin of amniotes 320 million years ago signaled independence from water in vertebrates and was closely followed by divergences within the mammal and reptile stem lineages (Synapsida and Reptilia). Early members of both groups had highly similar morphologies, being superficially “lizard-like” forms with many plesiomorphies. However, the extent to which they might have exhibited divergent patterns of evolutionary change, with the potential to explain the large biological differences between their living members, is unresolved. We use a new, comprehensive phylogenetic dataset to quantify variation in rates and constraints of morphological evolution among Carboniferous–early Permian amniotes. We find evidence for an early burst of evolutionary rates, resulting in the early origins of morphologically distinctive subgroups that mostly persisted through the Cisuralian. Rates declined substantially through time, especially in reptiles. Early reptile evolution was also more constrained compared with early synapsids, exploring a more limited character state space. Postcranial innovation in particular was important in early synapsids, potentially related to their early origins of large body size. In contrast, early reptiles predominantly varied the temporal region, suggesting disparity in skull and jaw kinematics, and foreshadowing the variability of cranial biomechanics seen in reptiles today. Our results demonstrate that synapsids and reptiles underwent an early divergence of macroevolutionary patterns. This laid the foundation for subsequent evolutionary events and may be critical in understanding the substantial differences between mammals and reptiles today. Potential explanations include an early divergence of developmental processes or of ecological factors, warranting cross-disciplinary investigation. [Amniote; body size; constraint; phylogeny; rate.]
Collapse
Affiliation(s)
- Neil Brocklehurst
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, UK
| | - David P Ford
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
31
|
Smith SM, Angielczyk KD. A Shrewd Inspection of Vertebral Regionalization in Large Shrews (Soricidae: Crocidurinae). Integr Org Biol 2022; 4:obac006. [PMID: 35291671 PMCID: PMC8915212 DOI: 10.1093/iob/obac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The regionalization of the mammalian spinal column is an important evolutionary, developmental, and functional hallmark of the clade. Vertebral column regions are usually defined using transitions in external bone morphology, such as the presence of transverse foraminae or rib facets, or measurements of vertebral shape. Yet the internal structure of vertebrae, specifically the trabecular (spongy) bone, plays an important role in vertebral function, and is subject to the same variety of selective, functional, and developmental influences as external bone morphology. Here, we investigated regionalization of external and trabecular bone morphology in the vertebral column of a group of shrews (family Soricidae). The primary goals of this study were to: (1) determine if vertebral trabecular bone morphology is regionalized in large shrews, and if so, in what configuration relative to external morphology; (2) assess correlations between trabecular bone regionalization and functional or developmental influences; and (3) determine if external and trabecular bone regionalization patterns provide clues about the function of the highly modified spinal column of the hero shrew Scutisorex. Trabecular bone is regionalized along the soricid vertebral column, but the configuration of trabecular bone regions does not match that of the external vertebral morphology, and is less consistent across individuals and species. The cervical region has the most distinct and consistent trabecular bone morphology, with dense trabeculae indicative of the ability to withstand forces in a variety of directions. Scutisorex exhibits an additional external morphology region compared to unmodified shrews, but this region does not correspond to a change in trabecular architecture. Although trabecular bone architecture is regionalized along the soricid vertebral column, and this regionalization is potentially related to bone functional adaptation, there are likely aspects of vertebral functional regionalization that are not detectable using trabecular bone morphology. For example, the external morphology of the Scutisorex lumbar spine shows signs of an extra functional region that is not apparent in trabecular bone analyses. It is possible that body size and locomotor mode affect the degree to which function is manifest in trabecular bone, and broader study across mammalian size and ecology is warranted to understand the relationship between trabecular bone morphology and other measures of vertebral function such as intervertebral range of motion.
Collapse
Affiliation(s)
- Stephanie M Smith
- Field Museum of Natural History, Negaunee Integrative Research Center, 1400 S DuSable Lake Shore Drive, Chicago IL 60605, USA
| | - Kenneth D Angielczyk
- Field Museum of Natural History, Negaunee Integrative Research Center, 1400 S DuSable Lake Shore Drive, Chicago IL 60605, USA
| |
Collapse
|
32
|
Jhwueng DC. On the covariance of phylogenetic quantitative trait evolution models and their matrix condition. COMMUN STAT-SIMUL C 2022. [DOI: 10.1080/03610918.2022.2037639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
hox gene expression predicts tetrapod-like axial regionalization in the skate, Leucoraja erinacea. Proc Natl Acad Sci U S A 2021; 118:2114563118. [PMID: 34903669 PMCID: PMC8713815 DOI: 10.1073/pnas.2114563118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 01/11/2023] Open
Abstract
The axial skeleton of tetrapods is organized into distinct anteroposterior regions of the vertebral column (cervical, trunk, sacral, and caudal), and transitions between these regions are determined by colinear anterior expression boundaries of Hox5/6, -9, -10, and -11 paralogy group genes within embryonic paraxial mesoderm. Fishes, conversely, exhibit little in the way of discrete axial regionalization, and this has led to scenarios of an origin of Hox-mediated axial skeletal complexity with the evolutionary transition to land in tetrapods. Here, combining geometric morphometric analysis of vertebral column morphology with cell lineage tracing of hox gene expression boundaries in developing embryos, we recover evidence of at least five distinct regions in the vertebral skeleton of a cartilaginous fish, the little skate (Leucoraja erinacea). We find that skate embryos exhibit tetrapod-like anteroposterior nesting of hox gene expression in their paraxial mesoderm, and we show that anterior expression boundaries of hox5/6, hox9, hox10, and hox11 paralogy group genes predict regional transitions in the differentiated skate axial skeleton. Our findings suggest that hox-based axial skeletal regionalization did not originate with tetrapods but rather has a much deeper evolutionary history than was previously appreciated.
Collapse
|
34
|
Oliver JD, Jones KE, Pierce SE, Hautier L. Size and shape regional differentiation during the development of the spine in the nine-banded armadillo (Dasypus novemcinctus). Evol Dev 2021; 23:496-512. [PMID: 34813149 DOI: 10.1111/ede.12393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Xenarthrans (armadillos, anteaters, sloths, and their extinct relatives) are unique among mammals in displaying a distinctive specialization of the posterior trunk vertebrae-supernumerary vertebral xenarthrous articulations. This study seeks to understand how xenarthry develops through ontogeny and if it may be constrained to appear within pre-existing vertebral regions. Using three-dimensional geometric morphometrics on the neural arches of vertebrae, we explore phenotypic, allometric, and disparity patterns of the different axial morphotypes during the ontogeny of nine-banded armadillos. Shape-based regionalization analyses showed that the adult thoracolumbar column is divided into three regions according to the presence or absence of ribs and the presence or absence of xenarthrous articulations. A three-region division was retrieved in almost all specimens through development, although younger stages (e.g., fetuses, neonates) have more region boundary variability. In size-based regionalization analyses, thoracolumbar vertebrae are separated into two regions: a prediaphragmatic, prexenarthrous region, and a postdiaphragmatic xenarthrous region. We show that posterior thoracic vertebrae grow at a slower rate, while anterior thoracics and lumbars grow at a faster rate relatively, with rates decreasing anteroposteriorly in the former and increasing anteroposteriorly in the latter. We propose that different proportions between vertebrae and vertebral regions might result from differences in growth pattern and timing of ossification.
Collapse
Affiliation(s)
- Jillian D Oliver
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Katrina E Jones
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Stephanie E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Lionel Hautier
- Institut des Sciences de l'Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
35
|
Klembara J, Ruta M, Hain M, Berman DS. Braincase and Inner Ear Anatomy of the Late Carboniferous Tetrapod Limnoscelis dynatis (Diadectomorpha) Revealed by High-Resolution X-ray Microcomputed Tomography. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.709766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The braincase anatomy of the Pennsylvanian diadectomorph Limnoscelis dynatis is described in detail, based upon high-resolution X-ray microcomputed tomography. Both supraoccipitals and most of the prootics and opisthotics are preserved. The known portions of the left prootic, opisthotic, and supraoccipital enclose complete sections of the endosseous labyrinth, including the anterior, posterior, and lateral semicircular canals, the vestibule, the cochlear recess, and the canal for the endolymphatic duct. The fossa subarcuata is visible anteromedial to the anterior semicircular canal. The presumed endolymphatic fossae occur in the dorsal wall of the posteromedial portion of the supraoccipital. Both the fossa subarcuata and the fossa endolymphatica lie in the cerebellar portion of the cranial cavity. In order to investigate the phylogenetic position of L. dynatis we used a recently published data matrix, including characters of the braincase, and subjected it to maximum parsimony analyses under a variety of character weighting schemes and to a Bayesian analysis. Limnoscelis dynatis emerges as sister taxon to L. paludis, and both species form the sister group to remaining diadectomorphs. Synapsids and diadectomorphs are resolved as sister clades in ∼90% of all the most parsimonious trees from the unweighted analysis, in the single trees from both the reweighted and the implied weights analyses, as well in the Bayesian tree.
Collapse
|
36
|
Figueirido B, Martín-Serra A, Pérez-Ramos A, Velasco D, Pastor FJ, Benson RJ. Serial disparity in the carnivoran backbone unveils a complex adaptive role in metameric evolution. Commun Biol 2021; 4:863. [PMID: 34267313 PMCID: PMC8282787 DOI: 10.1038/s42003-021-02346-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/20/2021] [Indexed: 11/09/2022] Open
Abstract
Organisms comprise multiple interacting parts, but few quantitative studies have analysed multi-element systems, limiting understanding of phenotypic evolution. We investigate how disparity of vertebral morphology varies along the axial column of mammalian carnivores — a chain of 27 subunits — and the extent to which morphological variation have been structured by evolutionary constraints and locomotory adaptation. We find that lumbars and posterior thoracics exhibit high individual disparity but low serial differentiation. They are pervasively recruited into locomotory functions and exhibit relaxed evolutionary constraint. More anterior vertebrae also show signals of locomotory adaptation, but nevertheless have low individual disparity and constrained patterns of evolution, characterised by low-dimensional shape changes. Our findings demonstrate the importance of the thoracolumbar region as an innovation enabling evolutionary versatility of mammalian locomotion. Moreover, they underscore the complexity of phenotypic macroevolution of multi-element systems and that the strength of ecomorphological signal does not have a predictable influence on macroevolutionary outcomes. Figueirido et al. use a 3D geometric morphometric approach to study functional among-species disparity in the vertebral column of Carnivora, as well as assessing the effect of different sampling methods on homology. Disparity is generally higher in more caudal regions, compared to more cranial regions, but recruitment for locomotor function is pervasive throughout the whole studied column.
Collapse
Affiliation(s)
- Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - David Velasco
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco J Pastor
- Departamento de Anatomía y Radiología, Museo de Anatomía, Universidad de Valladolid, Valladolid, Spain
| | - Roger J Benson
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Weisbecker V. Evolution: Bend it like basal synapsids. Curr Biol 2021; 31:R437-R439. [PMID: 33974869 DOI: 10.1016/j.cub.2021.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mammals can amplify their strides through unique up-and-down spinal movements. This ability was long considered to have evolved from lizard-like ancestors with spines moving sideways. A new study now suggests that, instead, it derived from an extinct, previously unknown spinal form.
Collapse
Affiliation(s)
- Vera Weisbecker
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
38
|
Martín-Serra A, Pérez-Ramos A, Pastor FJ, Velasco D, Figueirido B. Phenotypic integration in the carnivoran backbone and the evolution of functional differentiation in metameric structures. Evol Lett 2021; 5:251-264. [PMID: 34136273 DOI: 10.1002/evl3.224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 11/06/2022] Open
Abstract
Explaining the origin and evolution of a vertebral column with anatomically distinct regions that characterizes the tetrapod body plan provides understanding of how metameric structures become repeated and how they acquire the ability to perform different functions. However, despite many decades of inquiry, the advantages and costs of vertebral column regionalization in anatomically distinct blocks, their functional specialization, and how they channel new evolutionary outcomes are poorly understood. Here, we investigate morphological integration (and how this integration is structured [modularity]) between all the presacral vertebrae of mammalian carnivorans to provide a better understanding of how regionalization in metameric structures evolves. Our results demonstrate that the subunits of the presacral column are highly integrated. However, underlying to this general pattern, three sets of vertebrae are recognized as presacral modules-the cervical module, the anterodorsal module, and the posterodorsal module-as well as one weakly integrated vertebra (diaphragmatic) that forms a transition between both dorsal modules. We hypothesize that the strength of integration organizing the axial system into modules may be associated with motion capability. The highly integrated anterior dorsal module coincides with a region with motion constraints to avoid compromising ventilation, whereas for the posterior dorsal region motion constraints avoid exceeding extension of the posterior back. On the other hand, the weakly integrated diaphragmatic vertebra belongs to the "Diaphragmatic joint complex"-a key region of the mammalian column of exceedingly permissive motion. Our results also demonstrate that these modules do not match with the traditional morphological regions, and we propose natural selection as the main factor shaping this pattern to stabilize some regions and to allow coordinate movements in others.
Collapse
Affiliation(s)
- Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| | - Francisco J Pastor
- Departmento de Anatomía y Radiología, Museo de Anatomía Universidad de Valladolid Valladolid 47002 Spain
| | - David Velasco
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| |
Collapse
|
39
|
Fossoriality and evolutionary development in two Cretaceous mammaliamorphs. Nature 2021; 592:577-582. [PMID: 33828300 DOI: 10.1038/s41586-021-03433-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
Mammaliamorpha comprises the last common ancestor of Tritylodontidae and Mammalia plus all its descendants1. Tritylodontids are nonmammaliaform herbivorous cynodonts that originated in the Late Triassic epoch, diversified in the Jurassic period2-5 and survived into the Early Cretaceous epoch6,7. Eutriconodontans have generally been considered to be an extinct mammalian group, although different views exist8. Here we report a newly discovered tritylodontid and eutriconodontan from the Early Cretaceous Jehol Biota of China. Eutriconodontans are common in this biota9, but it was not previously known to contain tritylodontids. The two distantly related species show convergent features that are adapted for fossorial life, and are the first 'scratch-diggers' known from this biota. Both species also show an increased number of presacral vertebrae, relative to the ancestral state in synapsids or mammals10,11, that display meristic and homeotic changes. These fossils shed light on the evolutionary development of the axial skeleton in mammaliamorphs, which has been the focus of numerous studies in vertebrate evolution12-17 and developmental biology18-28. The phenotypes recorded by these fossils indicate that developmental plasticity in somitogenesis and HOX gene expression in the axial skeleton-similar to that observed in extant mammals-was already in place in stem mammaliamorphs. The interaction of these developmental mechanisms with natural selection may have underpinned the diverse phenotypes of body plan that evolved independently in various clades of mammaliamorph.
Collapse
|
40
|
Netto TFDS, Tavares WC. Historical, allometric and ecological effects on the shape of the lumbar vertebrae of spiny rats (Rodentia: Echimyidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
In mammals, the lumbar vertebrae are important for sustaining the trunk, for allowing the trunk to flex and extend, and, during locomotion, for transferring forces from the sacroiliac region to the anterior region of the body. The Echimyidae is a group that comprises spiny rats, the coypu and hutias. It is the caviomorph rodent family with the greatest ecological diversity and species richness, as well as having a wide variation in body mass. Thus, echimyid rodents provide a promising model for understanding how phylogenetic, allometric and ecological factors associated with locomotion affect the evolution of the post-cranial skeleton. To assess the effect of these three factors on the morphology of the lumbar vertebrae, the penultimate lumbar vertebra of 26 echimyid species was photographed under five views and submitted to phylogenetically informed comparative analysis using 2D geometric morphometrics. Vertebral shape variation showed a low correlation with body mass and vertebral size, and a low to moderate phylogenetic signal. Remarkably, locomotory habit had a strong influence on lumbar morphology, particularly when analysed in lateral view. Our results indicate that the echimyid penultimate lumbar vertebra is potentially useful for future ecomorphological studies on living and fossil small mammals.
Collapse
Affiliation(s)
- Thomas Furtado Da Silva Netto
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - William Corrêa Tavares
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, Km 104,5, Santa Cruz da Serra, Duque de Caxias, RJ, Brazil
| |
Collapse
|
41
|
Marek RD, Falkingham PL, Benson RBJ, Gardiner JD, Maddox TW, Bates KT. Evolutionary versatility of the avian neck. Proc Biol Sci 2021; 288:20203150. [PMID: 33653136 PMCID: PMC7934994 DOI: 10.1098/rspb.2020.3150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bird necks display unparalleled levels of morphological diversity compared to other vertebrates, yet it is unclear what factors have structured this variation. Using three-dimensional geometric morphometrics and multivariate statistics, we show that the avian cervical column is a hierarchical morpho-functional appendage, with varying magnitudes of ecologically driven osteological variation at different scales of organization. Contrary to expectations given the widely varying ecological functions of necks in different species, we find that regional modularity of the avian neck is highly conserved, with an overall structural blueprint that is significantly altered only by the most mechanically demanding ecological functions. Nevertheless, the morphologies of vertebrae within subregions of the neck show more prominent signals of adaptation to ecological pressures. We also find that both neck length allometry and the nature of neck elongation in birds are different from other vertebrates. In contrast with mammals, neck length scales isometrically with head mass and, contrary to previous work, we show that neck elongation in birds is achieved predominantly by increasing vertebral lengths rather than counts. Birds therefore possess a cervical spine that may be unique in its versatility among extant vertebrates, one that, since the origin of flight, has adapted to function as a surrogate forelimb in varied ecological niches.
Collapse
Affiliation(s)
- Ryan D Marek
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Peter L Falkingham
- Biological and Environmental Sciences, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - James D Gardiner
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Thomas W Maddox
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
42
|
Jones KE, Dickson BV, Angielczyk KD, Pierce SE. Adaptive landscapes challenge the "lateral-to-sagittal" paradigm for mammalian vertebral evolution. Curr Biol 2021; 31:1883-1892.e7. [PMID: 33657406 DOI: 10.1016/j.cub.2021.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
The evolution of mammals from their extinct forerunners, the non-mammalian synapsids, is one of the most iconic locomotor transitions in the vertebrate fossil record. In the limb skeleton, the synapsid-mammal transition is traditionally characterized by a shift from a sprawling limb posture, resembling that of extant reptiles and amphibians, to more adducted limbs, as seen in modern-day mammals. Based on proposed postural similarities between early synapsids and extant reptiles, this change is thought to be accompanied by a shift from ancestral reptile-like lateral bending to mammal-like sagittal bending of the vertebral column. To test this "lateral-to-sagittal" evolutionary paradigm, we used combinatorial optimization to produce functionally informed adaptive landscapes and determined the functional trade-offs associated with evolutionary changes in vertebral morphology. We show that the synapsid adaptive landscape is different from both extant reptiles and mammals, casting doubt on the reptilian model for early synapsid axial function, or indeed for the ancestral condition of amniotes more broadly. Further, the synapsid-mammal transition is characterized by not only increasing sagittal bending in the posterior column but also high stiffness and increasing axial twisting in the anterior column. Therefore, we refute the simplistic lateral-to-sagittal hypothesis and instead suggest the synapsid-mammal locomotor transition involved a more complex suite of functional changes linked to increasing regionalization of the backbone. These results highlight the importance of fossil taxa for understanding major evolutionary transitions.
Collapse
Affiliation(s)
- Katrina E Jones
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK.
| | - Blake V Dickson
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Evolutionary Anthropology, Duke University, Biological Sciences Building, 130 Science Drive, Durham, NC 27708, USA
| | - Kenneth D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
43
|
McKenna KZ, Wagner GP, Cooper KL. A developmental perspective of homology and evolutionary novelty. Curr Top Dev Biol 2021; 141:1-38. [PMID: 33602485 DOI: 10.1016/bs.ctdb.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development and evolution of multicellular body plans is complex. Many distinct organs and body parts must be reproduced at each generation, and those that are traceable over long time scales are considered homologous. Among the most pressing and least understood phenomena in evolutionary biology is the mode by which new homologs, or "novelties" are introduced to the body plan and whether the developmental changes associated with such evolution deserve special treatment. In this chapter, we address the concepts of homology and evolutionary novelty through the lens of development. We present a series of case studies, within insects and vertebrates, from which we propose a developmental model of multicellular organ identity. With this model in hand, we make predictions regarding the developmental evolution of body plans and highlight the need for more integrative analysis of developing systems.
Collapse
Affiliation(s)
- Kenneth Z McKenna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States.
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
44
|
Müller MA, Merten LJF, Böhmer C, Nyakatura JA. Pushing the boundary? Testing the "functional elongation hypothesis" of the giraffe's neck. Evolution 2021; 75:641-655. [PMID: 33443310 DOI: 10.1111/evo.14171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
Although giraffes maintain the usual mammalian cervical number of seven vertebrae, their first thoracic vertebra (T1) exhibits aberrant anatomy and has been hypothesized to functionally elongate the neck. We test this "functional elongation hypothesis" by combining phylogenetically informed analyses of neck length, three-dimensional (3D) vertebral shape, and of the functional significance of shape differences across a broad sample of ruminants and camelids. Digital bone models of the cervicothoracic transition were subjected to 3D geometric morphometric analysis revealing how the shape of the seventh cervical (C7) has converged in several long-necked species. However, we find a unique "cervicalization" of the giraffe's T1. In contrast, we demonstrate a "thoracalization" of C7 for the European bison. Other giraffids (okapi and extinct Sivatherium) did not exhibit "cervicalized" T1 morphology. Quantitative range of motion (ROM) analysis at the cervicothoracic transition in ruminants and camelids confirms the "functional elongation hypothesis" for the giraffe in terms of increased mobility, especially with regard to dorsoventral flexion/extension. Additionally, other factors related to the unique morphology of the giraffe's cervicothoracic transition such as neck posture and intervertebral stability are discussed and should be considered in future studies of giraffe neck evolution.
Collapse
Affiliation(s)
- Marilena A Müller
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Luisa J F Merten
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Christine Böhmer
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, 75005, France.,Department für Geo- und Umweltwissenschaften und GeoBio-Center, Ludwig-Maximilians-Universität München, München, 80333, Germany
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| |
Collapse
|
45
|
Law CJ. Evolutionary and morphological patterns underlying carnivoran body shape diversity. Evolution 2020; 75:365-375. [PMID: 33314085 DOI: 10.1111/evo.14143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
The diversity of body shapes is one of the most prominent features of phenotypic variation in vertebrates. Biologists, however, still lack a full understanding of the underlying morphological components that contribute to its diversity, particularly in endothermic vertebrates such as mammals. In this study, hypotheses pertaining to the evolution of the cranial and axial components that contribute to the diversity of carnivoran body shapes were tested. Three trends were found in the evolution of carnivoran body shapes: (1) carnivorans exhibit diverse body shapes with intrafamilial variation predicted best by family clade age, (2) body shape is driven by strong allometric effects of body size where species become more elongate with decreasing size, and (3) the thoracic and lumbar regions and rib length contribute the most to body shape variation, albeit pathways differ between different families. These results reveal the morphological patterns that led to increased diversity in carnivoran body shapes and elucidate the similarities and dissimilarities that govern body shape diversity across vertebrates.
Collapse
Affiliation(s)
- Chris J Law
- Department of Mammalogy and Division of Paleontology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024.,Department of Biology, University of Washington, Seattle, WA, 98105
| |
Collapse
|
46
|
Siomava N, Fuentes JSM, Diogo R. Deconstructing the long‐standing a priori assumption that serial homology generally involves ancestral similarity followed by anatomical divergence. J Morphol 2020; 281:1110-1132. [DOI: 10.1002/jmor.21236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Natalia Siomava
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| | | | - Rui Diogo
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| |
Collapse
|
47
|
Machnicki AL, Reno PL. Great apes and humans evolved from a long-backed ancestor. J Hum Evol 2020; 144:102791. [DOI: 10.1016/j.jhevol.2020.102791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
|
48
|
Peskin B, Henke K, Cumplido N, Treaster S, Harris MP, Bagnat M, Arratia G. Notochordal Signals Establish Phylogenetic Identity of the Teleost Spine. Curr Biol 2020; 30:2805-2814.e3. [PMID: 32559448 DOI: 10.1016/j.cub.2020.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
The spine is a defining feature of the vertebrate body plan. However, broad differences in vertebral structures and morphogenetic strategies occur across vertebrate groups, clouding the homology between their developmental programs. Analysis of a zebrafish mutant, spondo, whose spine is dysmorphic, prompted us to reconstruct paleontological evidence, highlighting specific transitions during teleost spine evolution. Interestingly, the spondo mutant recapitulates characteristics present in basal fishes, not found in extant teleosts. Further analysis of the mutation implicated the teleost-specific notochord protein, Calymmin, as a key regulator of spine patterning in zebrafish. The mutation in cmn results in loss of notochord sheath segmentation, altering osteoblast migration to the developing spine, and increasing sensitivity to somitogenesis defects associated with congenital scoliosis in amniotes. These data suggest that signals from the notochord define the evolutionary identity of the spine and demonstrate how simple shifts in development can revert traits canalized for about 250 million years.
Collapse
Affiliation(s)
- Brianna Peskin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Orthopedic Research, Boston Children's Hospital, Boston, MA 02215, USA
| | - Nicolás Cumplido
- FONDAP Center for Genome Regulation, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Stephen Treaster
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Orthopedic Research, Boston Children's Hospital, Boston, MA 02215, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Orthopedic Research, Boston Children's Hospital, Boston, MA 02215, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gloria Arratia
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
49
|
Evolution of the Mammalian Neck from Developmental, Morpho-Functional, and Paleontological Perspectives. J MAMM EVOL 2020. [DOI: 10.1007/s10914-020-09506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractThe mammalian neck adopts a variety of postures during daily life and generates numerous head trajectories. Despite its functional diversity, the neck is constrained to seven cervical vertebrae in (almost) all mammals. Given this low number, an unexpectedly high degree of modularity of the mammalian neck has more recently been uncovered. This work aims to review neck modularity in mammals from a developmental, morpho-functional, and paleontological perspective and how high functional diversity evolved in the mammalian neck after the occurrence of meristic limitations. The fixed number of cervical vertebrae and the developmental modularity of the mammalian neck are closely linked to anterior Hox genes expression and strong developmental integration between the neck and other body regions. In addition, basic neck biomechanics promote morpho-functional modularity due to preferred motion axes in the cranio-cervical and cervico-thoracic junction. These developmental and biomechanical determinants result in the characteristic and highly conserved shape variation among the vertebrae that delimits morphological modules. The step-wise acquisition of these unique cervical traits can be traced in the fossil record. The increasing functional specialization of neck modules, however, did not evolve all at once but started much earlier in the upper than in the lower neck. Overall, the strongly conserved modularity in the mammalian neck represents an evolutionary trade-off between the meristic constraints and functional diversity. Although a morpho-functional partition of the neck is common among amniotes, the degree of modularity and the way neck disparity is realized is unique in mammals.
Collapse
|
50
|
Maddin HC, Piekarski N, Reisz RR, Hanken J. Development and evolution of the tetrapod skull-neck boundary. Biol Rev Camb Philos Soc 2020; 95:573-591. [PMID: 31912655 PMCID: PMC7318664 DOI: 10.1111/brv.12578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/26/2022]
Abstract
The origin and evolution of the vertebrate skull have been topics of intense study for more than two centuries. Whereas early theories of skull origin, such as the influential vertebral theory, have been largely refuted with respect to the anterior (pre-otic) region of the skull, the posterior (post-otic) region is known to be derived from the anteriormost paraxial segments, i.e. the somites. Here we review the morphology and development of the occiput in both living and extinct tetrapods, taking into account revised knowledge of skull development by augmenting historical accounts with recent data. When occipital composition is evaluated relative to its position along the neural axis, and specifically to the hypoglossal nerve complex, much of the apparent interspecific variation in the location of the skull-neck boundary stabilizes in a phylogenetically informative way. Based on this criterion, three distinct conditions are identified in (i) frogs, (ii) salamanders and caecilians, and (iii) amniotes. The position of the posteriormost occipital segment relative to the hypoglossal nerve is key to understanding the evolution of the posterior limit of the skull. By using cranial foramina as osteological proxies of the hypoglossal nerve, a survey of fossil taxa reveals the amniote condition to be present at the base of Tetrapoda. This result challenges traditional theories of cranial evolution, which posit translocation of the occiput to a more posterior location in amniotes relative to lissamphibians (frogs, salamanders, caecilians), and instead supports the largely overlooked hypothesis that the reduced occiput in lissamphibians is secondarily derived. Recent advances in our understanding of the genetic basis of axial patterning and its regulation in amniotes support the hypothesis that the lissamphibian occipital form may have arisen as the product of a homeotic shift in segment fate from an amniote-like condition.
Collapse
Affiliation(s)
- Hillary C. Maddin
- Museum of Comparative ZoologyHarvard University, 26 Oxford StreetCambridgeMA02138U.S.A.
- Department of Earth SciencesCarleton University, 1125 Colonel By DriveOttawaOntarioK1S 5B6Canada
| | - Nadine Piekarski
- Museum of Comparative ZoologyHarvard University, 26 Oxford StreetCambridgeMA02138U.S.A.
| | - Robert R. Reisz
- Department of BiologyUniversity of Toronto Mississauga3359 Mississauga Road, MississaugaOntarioL5L 1C6Canada
| | - James Hanken
- Museum of Comparative ZoologyHarvard University, 26 Oxford StreetCambridgeMA02138U.S.A.
| |
Collapse
|