1
|
Veillon A, Piquard C, Glidic P, Sato Y, Aassime A, Cavanna A, Jin Y, Gennser U, Anthore A, Pierre F. Observation of the scaling dimension of fractional quantum Hall anyons. Nature 2024; 632:517-521. [PMID: 38959958 PMCID: PMC11324513 DOI: 10.1038/s41586-024-07727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Unconventional quasiparticles emerging in the fractional quantum Hall regime1,2 present the challenge of observing their exotic properties unambiguously. Although the fractional charge of quasiparticles has been demonstrated for nearly three decades3-5, the first convincing evidence of their anyonic quantum statistics has only recently been obtained6,7 and, so far, the so-called scaling dimension that determines the propagation dynamics of the quasiparticles remains elusive. In particular, although the nonlinearity of the tunnelling quasiparticle current should reveal their scaling dimension, the measurements fail to match theory, arguably because this observable is not robust to non-universal complications8-12. Here we expose the scaling dimension from the thermal noise to shot noise crossover and observe an agreement with expectations. Measurements are fitted to the predicted finite-temperature expression involving both the scaling dimension of the quasiparticles and their charge12,13, in contrast to previous charge investigations focusing on the high-bias shot-noise regime14. A systematic analysis, repeated on several constrictions and experimental conditions, consistently matches the theoretical scaling dimensions for the fractional quasiparticles emerging at filling factors ν = 1/3, 2/5 and 2/3. This establishes a central property of fractional quantum Hall anyons and demonstrates a powerful and complementary window into exotic quasiparticles.
Collapse
Affiliation(s)
- A Veillon
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - C Piquard
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - P Glidic
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - Y Sato
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - A Aassime
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - A Cavanna
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - Y Jin
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - U Gennser
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - A Anthore
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France.
- Université Paris Cité, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France.
| | - F Pierre
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France.
| |
Collapse
|
2
|
Jonckheere T, Rech J, Grémaud B, Martin T. Anyonic Statistics Revealed by the Hong-Ou-Mandel Dip for Fractional Excitations. PHYSICAL REVIEW LETTERS 2023; 130:186203. [PMID: 37204883 DOI: 10.1103/physrevlett.130.186203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
The fractional quantum Hall effect (FQHE) is known to host anyons, quasiparticles whose statistics is intermediate between bosonic and fermionic. We show here that Hong-Ou-Mandel (HOM) interferences between excitations created by narrow voltage pulses on the edge states of a FQHE system at low temperature show a direct signature of anyonic statistics. The width of the HOM dip is universally fixed by the thermal time scale, independently of the intrinsic width of the excited fractional wave packets. This universal width can be related to the anyonic braiding of the incoming excitations with thermal fluctuations created at the quantum point contact. We show that this effect could be realistically observed with periodic trains of narrow voltage pulses using current experimental techniques.
Collapse
Affiliation(s)
- T Jonckheere
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - J Rech
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - B Grémaud
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - T Martin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| |
Collapse
|
3
|
Taktak I, Kapfer M, Nath J, Roulleau P, Acciai M, Splettstoesser J, Farrer I, Ritchie DA, Glattli DC. Two-particle time-domain interferometry in the fractional quantum Hall effect regime. Nat Commun 2022; 13:5863. [PMID: 36195621 PMCID: PMC9532452 DOI: 10.1038/s41467-022-33603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Quasi-particles are elementary excitations of condensed matter quantum phases. Demonstrating that they keep quantum coherence while propagating is a fundamental issue for their manipulation for quantum information tasks. Here, we consider anyons, the fractionally charged quasi-particles of the Fractional Quantum Hall Effect occurring in two-dimensional electronic conductors in high magnetic fields. They obey anyonic statistics, intermediate between fermionic and bosonic. Surprisingly, anyons show large quantum coherence when transmitted through the localized states of electronic Fabry-Pérot interferometers, but almost no quantum interference when transmitted via the propagating states of Mach-Zehnder interferometers. Here, using a novel interferometric approach, we demonstrate that anyons do keep quantum coherence while propagating. Performing two-particle time-domain interference measurements sensitive to the two-particle Hanbury Brown Twiss phase, we find 53 and 60% visibilities for anyons with charges e/5 and e/3. Our results give a positive message for the challenge of performing controlled quantum coherent braiding of anyons.
Collapse
Affiliation(s)
- I Taktak
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, Cedex, France
| | - M Kapfer
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, Cedex, France
| | - J Nath
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, Cedex, France
| | - P Roulleau
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, Cedex, France
| | - M Acciai
- Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, S-412 96, Göteborg, Sweden
| | - J Splettstoesser
- Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, S-412 96, Göteborg, Sweden
| | - I Farrer
- Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK
| | - D A Ritchie
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - D C Glattli
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, Cedex, France.
| |
Collapse
|
4
|
Nakamura J, Liang S, Gardner GC, Manfra MJ. Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nat Commun 2022; 13:344. [PMID: 35039497 PMCID: PMC8763912 DOI: 10.1038/s41467-022-27958-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Quantum Hall interferometers have been used to probe fractional charge and statistics of quasiparticles. We present measurements of a small Fabry-Perot interferometer in which the electrostatic coupling constants which affect interferometer behavior can be determined experimentally. Near the center of the ν = 1/3 state this device exhibits Aharonov-Bohm interference interrupted by a few discrete phase jumps, and Φ0 oscillations at higher and lower magnetic fields, consistent with theoretical predictions for detection of anyonic statistics. We estimate the electrostatic parameters KI and KIL by two methods: using the ratio of oscillation periods in compressible versus incompressible regions, and from finite-bias conductance measurements. We find that the extracted KI and KIL can account for the deviation of the phase jumps from the theoretical anyonic phase θa = 2π/3. At integer states, we find that KI and KIL can account for the Aharonov-Bohm and Coulomb-dominated behavior of different edge states.
Collapse
Affiliation(s)
- J Nakamura
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - S Liang
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - G C Gardner
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Microsoft Quantum Lab West Lafayette, West Lafayette, IN, USA
| | - M J Manfra
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
- Microsoft Quantum Lab West Lafayette, West Lafayette, IN, USA.
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Feldman DE, Halperin BI. Fractional charge and fractional statistics in the quantum Hall effects. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:076501. [PMID: 34015771 DOI: 10.1088/1361-6633/ac03aa] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Quasiparticles with fractional charge and fractional statistics are key features of the fractional quantum Hall effect. We discuss in detail the definitions of fractional charge and statistics and the ways in which these properties may be observed. In addition to theoretical foundations, we review the present status of the experiments in the area. We also discuss the notions of non-Abelian statistics and attempts to find experimental evidence for the existence of non-Abelian quasiparticles in certain quantum Hall systems.
Collapse
Affiliation(s)
- D E Feldman
- Brown Theoretical Physics Center and Department of Physics, Brown University, Providence, RI 02912, United States of America
| | - Bertrand I Halperin
- Department of Physics, Harvard University, Cambridge, MA 02138, United States of America
| |
Collapse
|
6
|
Röösli MP, Hug M, Nicolí G, Märki P, Reichl C, Rosenow B, Wegscheider W, Ensslin K, Ihn T. Fractional Coulomb blockade for quasi-particle tunneling between edge channels. SCIENCE ADVANCES 2021; 7:eabf5547. [PMID: 33962947 PMCID: PMC8104872 DOI: 10.1126/sciadv.abf5547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
In the fractional quantum Hall effect, the elementary excitations are quasi-particles with fractional charges as predicted by theory and demonstrated by noise and interference experiments. We observe Coulomb blockade of fractional charges in the measured magneto-conductance of a 1.4-micron-wide quantum dot. Interaction-driven edge reconstruction separates the dot into concentric compressible regions with fractionally charged excitations and incompressible regions acting as tunnel barriers for quasi-particles. Our data show the formation of incompressible regions of filling factors 2/3 and 1/3. Comparing data at fractional filling factors to filling factor 2, we extract the fractional quasi-particle charge e */e = 0.32 ± 0.03 and 0.35 ± 0.05. Our investigations extend and complement quantum Hall Fabry-Pérot interference experiments investigating the nature of anyonic fractional quasi-particles.
Collapse
Affiliation(s)
- Marc P Röösli
- Solid State Physics Laboratory, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Michael Hug
- Solid State Physics Laboratory, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Giorgio Nicolí
- Solid State Physics Laboratory, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Peter Märki
- Solid State Physics Laboratory, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian Reichl
- Solid State Physics Laboratory, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Bernd Rosenow
- Institute for Theoretical Physics, Leipzig University Leipzig D-04009, Germany
| | - Werner Wegscheider
- Solid State Physics Laboratory, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Klaus Ensslin
- Solid State Physics Laboratory, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Ihn
- Solid State Physics Laboratory, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Larocque S, Pinsolle E, Lupien C, Reulet B. Shot Noise of a Temperature-Biased Tunnel Junction. PHYSICAL REVIEW LETTERS 2020; 125:106801. [PMID: 32955311 DOI: 10.1103/physrevlett.125.106801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
We report the measurement of the current noise of a tunnel junction driven out of equilibrium by a temperature and/or voltage difference, i.e., the charge noise of heat and/or electrical current. This is achieved by a careful control of electron temperature below 1 K at the nanoscale, and a sensitive measurement of noise with wide bandwidth, from 0.1 to 1 GHz. An excellent agreement between experiment and theory with no fitting parameter is obtained. In particular, we find that the current noise of the junction of resistance R when one electrode is at temperature T and the other one at zero temperature is given by S=2 ln2k_{B}T/R.
Collapse
Affiliation(s)
- Samuel Larocque
- Université de Sherbrooke, Institut Quantique, Département de Physique, Sherbrooke, Québec J1K 2R1, Canada
| | - Edouard Pinsolle
- Université de Sherbrooke, Institut Quantique, Département de Physique, Sherbrooke, Québec J1K 2R1, Canada
| | - Christian Lupien
- Université de Sherbrooke, Institut Quantique, Département de Physique, Sherbrooke, Québec J1K 2R1, Canada
| | - Bertrand Reulet
- Université de Sherbrooke, Institut Quantique, Département de Physique, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
8
|
Filippone M, Marguerite A, Le Hur K, Fève G, Mora C. Phase-Coherent Dynamics of Quantum Devices with Local Interactions. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E847. [PMID: 33286618 PMCID: PMC7517448 DOI: 10.3390/e22080847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
This review illustrates how Local Fermi Liquid (LFL) theories describe the strongly correlated and coherent low-energy dynamics of quantum dot devices. This approach consists in an effective elastic scattering theory, accounting exactly for strong correlations. Here, we focus on the mesoscopic capacitor and recent experiments achieving a Coulomb-induced quantum state transfer. Extending to out-of-equilibrium regimes, aimed at triggered single electron emission, we illustrate how inelastic effects become crucial, requiring approaches beyond LFLs, shedding new light on past experimental data by showing clear interaction effects in the dynamics of mesoscopic capacitors.
Collapse
Affiliation(s)
- Michele Filippone
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Arthur Marguerite
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Karyn Le Hur
- CPHT, CNRS, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France;
| | - Gwendal Fève
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France;
| | - Christophe Mora
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS, Université de Paris, F-75013 Paris, France;
| |
Collapse
|
9
|
Bartolomei H, Kumar M, Bisognin R, Marguerite A, Berroir JM, Bocquillon E, Plaçais B, Cavanna A, Dong Q, Gennser U, Jin Y, Fève G. Fractional statistics in anyon collisions. Science 2020; 368:173-177. [PMID: 32273465 DOI: 10.1126/science.aaz5601] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/12/2020] [Indexed: 11/03/2022]
Abstract
Two-dimensional systems can host exotic particles called anyons whose quantum statistics are neither bosonic nor fermionic. For example, the elementary excitations of the fractional quantum Hall effect at filling factor ν = 1/m (where m is an odd integer) have been predicted to obey Abelian fractional statistics, with a phase ϕ associated with the exchange of two particles equal to π/m However, despite numerous experimental attempts, clear signatures of fractional statistics have remained elusive. We experimentally demonstrate Abelian fractional statistics at filling factor ν = ⅓ by measuring the current correlations resulting from the collision between anyons at a beamsplitter. By analyzing their dependence on the anyon current impinging on the splitter and comparing with recent theoretical models, we extract ϕ = π/3, in agreement with predictions.
Collapse
Affiliation(s)
- H Bartolomei
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - M Kumar
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - R Bisognin
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - A Marguerite
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - J-M Berroir
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - E Bocquillon
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - B Plaçais
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - A Cavanna
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - Q Dong
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - U Gennser
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - Y Jin
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - G Fève
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| |
Collapse
|
10
|
Acciai M, Calzona A, Carrega M, Sassetti M. Spectral features of voltage pulses in interacting helical channels. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the interplay of voltage-driven excitations and electron-electron interactions in a pair of counterpropagating helical channels capacitively coupled to a time-dependent gate. By focusing on the non-equilibrium spectral properties of the system, we show how the spectral function is modified by external drives with different time profile in presence of Coulomb interactions. In particular, we focus on a Lorentzian drive and a square single pulse. In presence of strong enough electron-electron interactions, we find that both drives can result in minimal excitations, i.e. characterized by an excess spectral function with a definite sign. This is in contrast with what happens in the non-interacting case, where only properly quantized Lorentzian pulses are able to produce minimal excitations.
Collapse
|
11
|
Majhi J, Ghosh S, Maiti SK. Relativistic Anyon Beam: Construction and Properties. PHYSICAL REVIEW LETTERS 2019; 123:164801. [PMID: 31702367 DOI: 10.1103/physrevlett.123.164801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Motivated by recent interest in photon and electron vortex beams, we propose the construction of a relativistic anyon beam. Following Jackiw and Nair [R. Jackiw and V. P. Nair, Phys. Rev. D 43, 1933 (1991).PRVDAQ0556-282110.1103/PhysRevD.43.1933] we derive an explicit form of the relativistic plane wave solution of a single anyon. Subsequently we construct the planar anyon beam by superposing these solutions. Explicit expressions for the conserved anyon current are derived. Finally, we provide expressions for the anyon beam current using the superposed waves and discuss its properties. We also comment on the possibility of laboratory construction of an anyon beam.
Collapse
Affiliation(s)
- Joydeep Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India
| | - Subir Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India
| | - Santanu K Maiti
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India
| |
Collapse
|
12
|
Bisognin R, Bartolomei H, Kumar M, Safi I, Berroir JM, Bocquillon E, Plaçais B, Cavanna A, Gennser U, Jin Y, Fève G. Microwave photons emitted by fractionally charged quasiparticles. Nat Commun 2019; 10:1708. [PMID: 30979891 PMCID: PMC6461615 DOI: 10.1038/s41467-019-09758-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/27/2019] [Indexed: 11/21/2022] Open
Abstract
Strongly correlated low-dimensional systems can host exotic elementary excitations carrying a fractional charge q and potentially obeying anyonic statistics. In the fractional quantum Hall effect, their fractional charge has been successfully determined owing to low frequency shot noise measurements. However, a universal method for sensing them unambiguously and unraveling their intricate dynamics was still lacking. Here, we demonstrate that this can be achieved by measuring the microwave photons emitted by such excitations when they are transferred through a potential barrier biased with a dc voltage Vdc. We observe that only photons at frequencies f below qVdc/h are emitted. This threshold provides a direct and unambiguous determination of the charge q, and a signature of exclusion statistics. Derived initially within the Luttinger model, this feature is also predicted by universal non-equilibrium fluctuation relations which agree fully with our measurements. Our work paves the way for further exploration of anyonic statistics using microwave measurements.
Collapse
Affiliation(s)
- R Bisognin
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005, Paris, France
| | - H Bartolomei
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005, Paris, France
| | - M Kumar
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005, Paris, France
| | - I Safi
- Laboratoire de Physique des Solides, Université Paris-Saclay, 91405, Orsay, France
| | - J-M Berroir
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005, Paris, France
| | - E Bocquillon
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005, Paris, France
| | - B Plaçais
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005, Paris, France
| | - A Cavanna
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris Sud, Université Paris-Saclay, 91120, Palaiseau, France
| | - U Gennser
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris Sud, Université Paris-Saclay, 91120, Palaiseau, France
| | - Y Jin
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris Sud, Université Paris-Saclay, 91120, Palaiseau, France
| | - G Fève
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005, Paris, France.
| |
Collapse
|
13
|
Wagner G, Nguyen DX, Kovrizhin DL, Simon SH. Interaction Effects and Charge Quantization in Single-Particle Quantum Dot Emitters. PHYSICAL REVIEW LETTERS 2019; 122:127701. [PMID: 30978103 DOI: 10.1103/physrevlett.122.127701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Indexed: 06/09/2023]
Abstract
We discuss a theoretical model of an on-demand single-particle emitter that employs a quantum dot, attached to an integer or fractional quantum Hall edge state. Via an exact mapping of the model onto the spin-boson problem we show that Coulomb interactions between the dot and the chiral quantum Hall edge state, unavoidable in this setting, lead to a destruction of precise charge quantization in the emitted wave packet. Our findings cast doubt on the viability of this setup as a single-particle source of quantized charge pulses. We further show how to use a spin-boson master equation approach to explicitly calculate the current pulse shape in this setup.
Collapse
Affiliation(s)
- Glenn Wagner
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dung X Nguyen
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dmitry L Kovrizhin
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
- NRC Kurchatov Institute, 1 Kurchatov Square, 123182 Moscow, Russia
| | - Steven H Simon
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
14
|
Kapfer M, Roulleau P, Santin M, Farrer I, Ritchie DA, Glattli DC. A Josephson relation for fractionally charged anyons. Science 2019; 363:846-849. [DOI: 10.1126/science.aau3539] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/15/2019] [Indexed: 11/02/2022]
Affiliation(s)
- M. Kapfer
- Service de Physique de l’Etat Condensé, IRAMIS/DSM (CNRS UMR 3680), CEA Saclay, F-91191 Gif-sur-Yvette, France
| | - P. Roulleau
- Service de Physique de l’Etat Condensé, IRAMIS/DSM (CNRS UMR 3680), CEA Saclay, F-91191 Gif-sur-Yvette, France
| | - M. Santin
- Service de Physique de l’Etat Condensé, IRAMIS/DSM (CNRS UMR 3680), CEA Saclay, F-91191 Gif-sur-Yvette, France
| | - I. Farrer
- Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - D. A. Ritchie
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - D. C. Glattli
- Service de Physique de l’Etat Condensé, IRAMIS/DSM (CNRS UMR 3680), CEA Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|