1
|
Guo J, Tan J, Hu P, T Cundiff S. Analysis of light coupling in Al xGa 1-xAs waveguide arrays. OPTICS EXPRESS 2021; 29:3956-3964. [PMID: 33770984 DOI: 10.1364/oe.414312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Light propagation in arrays of AlxGa1-xAs waveguides is studied. The power coupling constant between two adjacent waveguides is precisely measured as waveguide material and structure is varied. Aluminum concentration contrast between waveguide core/cladding layers and waveguide width/height produce an asymmetric effective refractive index between linearly polarized modes, which in turn causes a polarization dependence of the coupling constants. Experimental measurement results agree well with an analytical model. The sensitivity of coupling constant to the waveguide parameters is analyzed. Through a careful geometric design, comparable coupling constants can be achieved in three waveguide arrays with different structure. Similar formation processes of discrete spatial optical solitons are observed respectively, confirming that the parameterization in the discrete nonlinear Schrödinger equation characterizes waveguide arrays.
Collapse
|
2
|
Gupta SK, Zou Y, Zhu XY, Lu MH, Zhang LJ, Liu XP, Chen YF. Parity-Time Symmetry in Non-Hermitian Complex Optical Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903639. [PMID: 31830340 DOI: 10.1002/adma.201903639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/25/2019] [Indexed: 06/10/2023]
Abstract
The exploration of quantum-inspired symmetries in optical and photonic systems has witnessed immense research interest both fundamentally and technologically in a wide range of subject areas in physics and engineering. One of the principal emerging fields in this context is non-Hermitian physics based on parity-time symmetry, originally proposed in the studies pertaining to quantum mechanics and quantum field theory and recently ramified into a diverse set of areas, particularly in optics and photonics. The intriguing physical effects enabled by non-Hermitian physics and PT symmetry have enhanced significant application prospects and engineering of novel materials. In addition, there has been increasing research interest in many emerging directions beyond optics and photonics. Here, the state-of-the art developments in the field of complex non-Hermitian physics based on PT symmetry in various physical settings are brought together, and key concepts, a background, and a detailed perspective on new emerging directions are described. It can be anticipated that this trendy field of interest will be indispensable in providing new perspectives in maneuvering the flow of light in the diverse physical platforms in optics, photonics, condensed matter, optoelectronics, and beyond, and will offer distinctive application prospects in novel functional materials.
Collapse
Affiliation(s)
- Samit Kumar Gupta
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Yi Zou
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Xue-Yi Zhu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Ming-Hui Lu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Li-Jian Zhang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xiao-Ping Liu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yan-Feng Chen
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|