1
|
Liang X, Zhao Y, Yan J, Zhang Q, James TD, Lin W. Mechanosensitive fluorescence lifetime probes for investigating the dynamic mechanism of ferroptosis. Proc Natl Acad Sci U S A 2024; 121:e2316450121. [PMID: 39356672 PMCID: PMC11474025 DOI: 10.1073/pnas.2316450121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Deciphering the dynamic mechanism of ferroptosis can provide insights into pathogenesis, which is valuable for disease diagnosis and treatment. However, due to the lack of suitable time-resolved mechanosensitive tools, researchers have been unable to determine the membrane tension and morphology of the plasma membrane and the nuclear envelope during ferroptosis. With this research, we propose a rational strategy to develop robust mechanosensitive fluorescence lifetime probes which can facilitate simultaneous fluorescence lifetime imaging of the plasma membrane and nuclear envelope. Fluorescence lifetime imaging microscopy using the unique mechanosensitive probes reveal a dynamic mechanism for ferroptosis: The membrane tension of both the plasma membrane and the nuclear envelope decreases during ferroptosis, and the nuclear envelope exhibits budding during the advanced stage of ferroptosis. Significantly, the membrane tension of the plasma membrane is always larger than that of the nuclear envelope, and the membrane tension of the nuclear envelope is slightly larger than that of the nuclear membrane bubble. Meanwhile, the membrane lesions are repaired in the low-tension regions through exocytosis.
Collapse
Affiliation(s)
- Xing Liang
- School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People’s Republic of China
| | - Yuping Zhao
- School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People’s Republic of China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People’s Republic of China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People’s Republic of China
| | - Tony D. James
- Department of Chemistry, University of Bath, BathBA2 7AY, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang453007, People’s Republic of China
| | - Weiying Lin
- School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi530004, People’s Republic of China
| |
Collapse
|
2
|
Wang X, Xu K, Zhang E, Bai Q, Ma B, Zhao C, Zhang K, Liu T, Ma Z, Zeng H, Zhou Y, Li Z. Irreversible Electroporation Improves Tendon Healing in a Rat Model of Collagenase-Induced Achilles Tendinopathy. Am J Sports Med 2023:3635465231167860. [PMID: 37129100 DOI: 10.1177/03635465231167860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Treatment of painful chronic tendinopathy is challenging, and there is an urgent need to develop new regenerative methods. Irreversible electroporation (IRE) can lead to localized cell ablation by electrical pulses and induce new cell and tissue growth. Previously, the authors' group reported that electroporation-ablated tendons fully regenerated. PURPOSE To assess the efficiency of IRE in improving tendon healing using a collagenase-induced Achilles tendinopathy rat model. STUDY DESIGN Controlled laboratory study. METHODS After screening for the IRE ablation parameters, a collagenase-induced Achilles tendinopathy rat model was used to assess the efficacy of IRE in improving tendon healing via biomechanical, behavioral, histological, and immunofluorescence assessments. RESULTS The experiments showed that the parameter of 875 V/cm 180 pulses could ablate most tenocytes, and apoptosis was the main type of death in vitro. In vivo, IRE promoted the healing process of chronic tendinopathy in the Achilles tendon of rats, based on biomechanical, behavioral, and histological assessments. Finally, immunofluorescence results revealed that IRE improved blood supply in the early stages of tendon repair and could potentially reduce neuropathic pain. CONCLUSION IRE enhanced tendon tissue healing in a rat model of collagenase-induced Achilles tendinopathy. CLINICAL RELEVANCE IRE may as a potential alternative treatment for tendinopathy in clinical usage.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedics, Orthopedic Oncology Institute of PLA, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
- Lintong Rehabilitation and Convalescent Centre of PLA Joint Logistics Support Force, Xi'an, Shaanxi, China
| | - Kui Xu
- Department of Orthopedics, Orthopedic Oncology Institute of PLA, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Eryang Zhang
- Department of Orthopedics, Yuncheng Center Hospital, Shanxi Medical University, Yuncheng, Shanxi, China
| | - Qian Bai
- The Hospital of 26th Base of PLA Strategic Support Force, Xi'an, Shaanxi, China
| | - Baoan Ma
- Department of Orthopedics, Orthopedic Oncology Institute of PLA, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - ChenGuang Zhao
- Department of Rehabilitation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Kailiang Zhang
- Department of Orthopedics, the 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, China
| | - Tao Liu
- Department of Orthopedics, Orthopedic Oncology Institute of PLA, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhouyong Ma
- Department of Orthopedics, Yuncheng Center Hospital, Shanxi Medical University, Yuncheng, Shanxi, China
| | - Hui Zeng
- Department of Orthopedics, Yuncheng Center Hospital, Shanxi Medical University, Yuncheng, Shanxi, China
| | - Yong Zhou
- Department of Orthopedics, Orthopedic Oncology Institute of PLA, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhao Li
- Department of Orthopedics, Yuncheng Center Hospital, Shanxi Medical University, Yuncheng, Shanxi, China
| |
Collapse
|
3
|
Ma L, Li B, Ma J, Wu C, Li N, Zhou K, Yan Y, Li M, Hu X, Yan H, Wang Q, Zheng Y, Wu Z. Novel discovery of Schisandrin A regulating the interplay of autophagy and apoptosis in oligoasthenospermia by targeting SCF/c-kit and TRPV1 via biosensors. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
4
|
Li M, Xing X, Huang H, Liang C, Gao X, Tang Q, Xu X, Yang J, Liao L, Tian W. BMSC-Derived ApoEVs Promote Craniofacial Bone Repair via ROS/JNK Signaling. J Dent Res 2022; 101:714-723. [PMID: 35114838 DOI: 10.1177/00220345211068338] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone defect caused by trauma, neoplasia, congenital defects, or periodontal disease is a major cause of disability and physical limitation. The transplantation of bone marrow mesenchymal stem cells (BMSCs) promotes bone repair and regeneration. However, it has been shown that most BMSCs die within a short period after transplantation. During apoptosis, BMSCs generate a large number of apoptotic cell-derived extracellular vesicles (ApoEVs). This study aims to understand the potential role of ApoEVs in craniofacial bone defect repair and regeneration. First, we confirmed that BMSCs undergo apoptosis within 2 d after transplantation into the defect of the cranium. Abundant ApoEVs were generated from apoptotic BMSCs. Uptake of ApoEVs efficiently promoted the proliferation, migration, and osteogenic differentiation of recipient BMSCs in vitro. ApoEVs from cells in the middle stage of apoptosis were the most efficient to enhance the regenerative capacity of BMSCs. Moreover, a critical size bone defect model in rats was used to evaluate the osteogenic property of ApoEVs in vivo. Local transplantation of ApoEVs promoted bone regeneration in the calvarial defect. Mechanistically, ApoEVs promoted new bone formation by increasing intracellular reactive oxygen species to activate JNK signaling. This study reveals a previously unknown role of the dying transplanted BMSCs in promoting the viability of endogenous BMSCs and repairing the calvarial defects. Since it could avoid several adverse effects and limits of BMSC cytotherapy, treatment of ApoEVs might be a promising strategy in craniofacial bone repair and regeneration.
Collapse
Affiliation(s)
- M Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - X Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - H Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - C Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - X Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Q Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - X Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - J Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - L Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - W Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
5
|
Anticancer Action of Xiaoxianxiong Tang in Non-Small Cell Lung Cancer by Pharmacological Analysis and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9930082. [PMID: 34938346 PMCID: PMC8687818 DOI: 10.1155/2021/9930082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
Xiaoxianxiong Tang (XXXT) is a well-known traditional Chinese medicine formula. Evidence is emerging supporting the benefits of XXXT in ameliorating therapy for non-small cell lung cancer (NSCLC). The purpose of this study aimed to explore the effects and mechanisms of XXXT through network pharmacological analysis and biological validation. TCMSP database was used to identify potentially active compounds in XXXT with absorption, distribution, metabolism, excretion screening, and their potential targets. The disease targets related to NSCLC were predicted by searching for Therapeutic Target database, GeneCards database, DrugBank database, and DisGeNET database. Of the 4385 NSCLC-related targets, 156 targets were also the targets of compounds present in XXXT. Subsequently, GO function and KEGG pathway enrichment and PPI network analyses revealed that, of the 95 targets and 20 pathways influenced by 20 ingredients in XXXT, 20 targets were associated with patient survival, and XXXT could exert an inhibitory action on the PI3K-AKT signaling pathway. Moreover, XXXT restrained the proliferation of A549 and H460 cells in a concentration-dependent manner and suppressed the mRNA and protein levels of key targets CCNA2, FOSL2, and BIRC5 closely linked to the PI3K-AKT pathway. Hence, XXXT has the potential to improve therapy for NSCLC by targeting the PI3K-AKT signaling pathway.
Collapse
|
6
|
Lung T, Di Cesare P, Risch L, Nydegger U, Risch M. Elementary Laboratory Assays as Biomarkers of Ageing: Support for Treatment of COVID-19? Gerontology 2021; 67:503-516. [PMID: 34340235 PMCID: PMC8450824 DOI: 10.1159/000517659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Youth, working age and the elderly: On a timeline, chronological age (CA) and biological age (BA) may dissociate; nosological entities manifest themselves at different BAs. In determining which disease corresponds to a given age decade, statistical registries of causes of death are unreliable and this does not change with SARS CoV-2 infection. Beyond adolescence, ageing metrics involve estimations of changes in fitness, including prediction models to estimate the number of remaining years left to live. A substantial disparity in biomarker levels and health status of ageing can be observed: the difference in CA and BA in the large cohorts under consideration is glaring. Here, we focus more closely on ageing and senescence metrics in order to make information available for risk analysis non the least with COVID-19, including the most recent risk factors of ABO blood type and 3p21.31 chromosome cluster impacting on C5a and SC5b-9 plasma levels. From the multitude of routine medical laboratory assays, a potentially meaningful set of assays aimed to best reflect the stage of individual senescence; hence risk factors the observational prospective SENIORLABOR study of 1,467 healthy elderly performed since 2009 and similar approaches since 1958 can be instantiated as a network to combine a set of elementary laboratory assays quantifying senescence.
Collapse
Affiliation(s)
- Thomas Lung
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | | | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | - Urs Nydegger
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | | |
Collapse
|
7
|
Wang Q, Yang X, Song Y, Sun X, Li W, Zhang L, Hu X, Wang H, Zhao N, Zhuang R, Xie X, Tang F, Wang H. Astragaloside IV-targeting miRNA-1 attenuates lipopolysaccharide-induced cardiac dysfunction in rats through inhibition of apoptosis and autophagy. Life Sci 2021; 275:119414. [PMID: 33774032 DOI: 10.1016/j.lfs.2021.119414] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 01/23/2023]
Abstract
Astragaloside IV (AS-IV), the major active constituent purified from Astragalus membranaceus, was previously reported to have protective effects against cardiac dysfunction. However, the underlying mechanism remains unknown. In the present study, we investigated the protective effect of AS-IV on lipopolysaccharide (LPS)-induced cardiac dysfunction and explored the potential mechanism by focusing on miRNA-1 (miR-1) at the animal and cellular levels. A series of methods were used, including echocardiography, flow cytometry, ELISA, immunofluorescence, transmission electron microscopy, RT-PCR, and western blotting. The results showed that both AS-IV and the miR-1 inhibitor improved cardiac dysfunction, reduced heart injury, inhibited apoptosis and autophagy, and regulated the expression of calcium- and mitochondrial energy metabolism-related proteins in the heart tissue of rats treated with LPS. Importantly, AS-IV downregulated the expression of miR-1 mRNA in heart tissue. All effects of AS-IV were at least partly abolished by miR-1 mimics. In the in vitro study, both AS-IV and the miR-1 inhibitor inhibited apoptosis and autophagy and regulated the expression of calcium- and mitochondrial energy metabolism-related proteins in heart cells treated with LPS. Similarly, AS-IV downregulated the expression of miR-1 mRNA in heart cells. All effects of AS-IV on cells were at least partly abolished by miR-1 mimics. Furthermore, miR-1 mimics exhibited effects similar to LPS both in animal and cellular studies. Taken together, these results suggest that AS-IV protects against LPS-induced cardiac dysfunction by inhibiting calcium-mediated apoptosis and autophagy by targeting miR-1, highlighting a new mechanism for the therapeutic effect of AS-IV on cardiac dysfunction.
Collapse
Affiliation(s)
- Qiuning Wang
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xuefeng Yang
- Department of Physiology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ying Song
- Cardiovascular Laboratory, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xiaowei Sun
- Department of Neurosurgery, China Resources Liaojian Group, General Hospital of Fuxin Mining Group (10th Clinical College of China Medical University), Fuxin, 123000, Liaoning, China
| | - Wentao Li
- Jinzhou Inspection and Testing Certification Center, Jinzhou, 121001, Liaoning, China
| | - Ling Zhang
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xueling Hu
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Hong Wang
- Allergy and Clinical Immunology Center, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Nan Zhao
- Allergy and Clinical Immunology Center, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ruming Zhuang
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xinling Xie
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Futian Tang
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Hongxin Wang
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
8
|
Mongre RK, Mishra CB, Prakash A, Jung S, Lee BS, Kumari S, Hong JT, Lee MS. Novel Carbazole-Piperazine Hybrid Small Molecule Induces Apoptosis by Targeting BCL-2 and Inhibits Tumor Progression in Lung Adenocarcinoma in Vitro and Xenograft Mice Model. Cancers (Basel) 2019; 11:E1245. [PMID: 31450709 PMCID: PMC6770606 DOI: 10.3390/cancers11091245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is a type of deadly cancer and a leading cause of cancer associated death worldwide. BCL-2 protein is considered as an imperative target for the treatment of cancer due to their significant involvement in cell survival and death. A carbazole-piperazine hybrid molecule ECPU-0001 was designed and synthesized as a potent BCL-2 targeting agent with effective anticancer cancer activity. Interaction of ECPU-001 has been assessed by docking, molecular dynamics (MD) simulation, and thermal shift assay. Further, in vitro and in vivo anticancer activity was executed by cytotoxicity assay, FACS, colony formation and migration assay, western blotting, immunocyto/histochemistry and xenograft nude mice model. Molecular docking and MD simulation study confirmed that ECPU-0001 nicely interacts with the active site of BCL-2 by displaying a Ki value of 5.72 µM and binding energy (ΔG) of -8.35 kcal/mol. Thermal shift assay also validated strong interaction of this compound with BCL-2. ECPU-0001 effectively exerted a cytotoxic effect against lung adenocarnoma cells A459 with an IC50 value of 1.779 µM. Molecular mechanism of action have also been investigated and found that ECPU-0001 induced apoptosis in A459 cell by targeting BCL-2 to induce intrinsic pathway of apoptosis. Administration of ECPU-0001 significantly inhibited progression of tumor in a xenograft model without exerting severe toxicity and remarkably reduced tumor volume as well as tumor burden in treated animals. Our investigation bestowed ECPU-0001 as an effective tumoricidal agent which exhibited impressive anticancer activity in vitro as well as in vivo by targeting BCL-2 associated intrinsic pathway of apoptosis. Thus, ECPU-0001 may provide a valuable input for therapy of lung adenosarcoma in future, however, further extensive investigation of this compound will be needed.
Collapse
Affiliation(s)
- Raj Kumar Mongre
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea
| | - Chandra Bhushan Mishra
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea
| | - Beom Suk Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea
| | - Shikha Kumari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea.
| |
Collapse
|