1
|
Yin H, Tang J, Yamaguchi K, Sakurai H, Tsujikawa Y, Horio M, Kondo T, Matsuda I. Adsorption of Atomic Hydrogen on Hydrogen Boride Sheets Studied by Photoelectron Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4806. [PMID: 39410376 PMCID: PMC11478147 DOI: 10.3390/ma17194806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Hydrogen boride (HB) sheets are emerging as a promising two-dimensional (2D) boron material, with potential applications as unique electrodes, substrates, and hydrogen storage materials. The 2D layered structure of HB was successfully synthesized using an ion-exchange method. The chemical bonding and structure of the HB sheets were investigated using Fourier Transform Infrared (FT-IR) spectroscopy and Transmission Electron Microscopy (TEM), respectively. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical states and transformation of the components before and after atomic hydrogen adsorption, thereby elucidating the atomic hydrogen adsorption process on HB sheets. Our results indicate that, upon atomic hydrogen adsorption onto the HB sheets, the B-H-B bonds were broken and converted into B-H bonds. This research highlights and demonstrates the changes in chemical states and component transformations of the boron element on the HB sheets' surface before and after atomic hydrogen adsorption, thus providing a clearer understanding of the unique bonding and structural characteristics of the HB sheets.
Collapse
Affiliation(s)
- Heming Yin
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Jingmin Tang
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Kazuki Yamaguchi
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Haruto Sakurai
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Yuki Tsujikawa
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Masafumi Horio
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| | - Takahiro Kondo
- Department of Materials Science and Tsukuba Research Center for Energy Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Ibaraki, Japan;
- The Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Miyagi, Japan
| | - Iwao Matsuda
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Chiba, Japan; (H.Y.)
| |
Collapse
|
2
|
Liu R, Wang W, Cui X. Quartet Superfluid in Two-Dimensional Mass-Imbalanced Fermi Mixtures. PHYSICAL REVIEW LETTERS 2023; 131:193401. [PMID: 38000427 DOI: 10.1103/physrevlett.131.193401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023]
Abstract
Quartet superfluid (QSF) is a distinct type of fermion superfluidity that exhibits high-order correlation beyond the conventional BCS pairing paradigm. In this Letter, we report the emergent QSF in 2D mass-imbalanced Fermi mixtures with two-body contact interactions. This is facilitated by the formation of a quartet bound state in vacuum that consists of a light atom and three heavy fermions. For an optimized heavy-light number ratio 3:1, we identify QSF as the ground state in a considerable parameter regime of mass imbalance and 2D coupling strength. Its unique high-order correlation can be manifested in the momentum-space crystallization of a pairing field and density distribution of heavy fermions. Our results can be readily detected in Fermi-Fermi mixtures nowadays realized in cold atoms laboratories, and meanwhile shed light on exotic superfluidity in a broad context of mass-imbalanced fermion mixtures.
Collapse
Affiliation(s)
- Ruijin Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Cui
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Huang MZ, Mohan J, Visuri AM, Fabritius P, Talebi M, Wili S, Uchino S, Giamarchi T, Esslinger T. Superfluid Signatures in a Dissipative Quantum Point Contact. PHYSICAL REVIEW LETTERS 2023; 130:200404. [PMID: 37267563 DOI: 10.1103/physrevlett.130.200404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 06/04/2023]
Abstract
We measure superfluid transport of strongly interacting fermionic lithium atoms through a quantum point contact with local, spin-dependent particle loss. We observe that the characteristic non-Ohmic superfluid transport enabled by high-order multiple Andreev reflections transitions into an excess Ohmic current as the dissipation strength exceeds the superfluid gap. We develop a model with mean-field reservoirs connected via tunneling to a dissipative site. Our calculations in the Keldysh formalism reproduce the observed nonequilibrium particle current, yet do not fully explain the observed loss rate or spin current.
Collapse
Affiliation(s)
- Meng-Zi Huang
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeffrey Mohan
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Anne-Maria Visuri
- Physikalisches Institut, University of Bonn, Nussallee 12, 53115 Bonn, Germany
| | - Philipp Fabritius
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Mohsen Talebi
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Simon Wili
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Shun Uchino
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
| | - Thierry Giamarchi
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Tilman Esslinger
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Tunable itinerant spin dynamics with polar molecules. Nature 2023; 614:70-74. [PMID: 36725993 DOI: 10.1038/s41586-022-05479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/25/2022] [Indexed: 02/03/2023]
Abstract
Strongly interacting spins underlie many intriguing phenomena and applications1-4 ranging from magnetism to quantum information processing. Interacting spins combined with motion show exotic spin transport phenomena, such as superfluidity arising from pairing of spins induced by spin attraction5,6. To understand these complex phenomena, an interacting spin system with high controllability is desired. Quantum spin dynamics have been studied on different platforms with varying capabilities7-13. Here we demonstrate tunable itinerant spin dynamics enabled by dipolar interactions using a gas of potassium-rubidium molecules confined to two-dimensional planes, where a spin-1/2 system is encoded into the molecular rotational levels. The dipolar interaction gives rise to a shift of the rotational transition frequency and a collision-limited Ramsey contrast decay that emerges from the coupled spin and motion. Both the Ising and spin-exchange interactions are precisely tuned by varying the strength and orientation of an electric field, as well as the internal molecular state. This full tunability enables both static and dynamical control of the spin Hamiltonian, allowing reversal of the coherent spin dynamics. Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics using the strong, tunable dipolar interaction.
Collapse
|
5
|
Sobirey L, Biss H, Luick N, Bohlen M, Moritz H, Lompe T. Observing the Influence of Reduced Dimensionality on Fermionic Superfluids. PHYSICAL REVIEW LETTERS 2022; 129:083601. [PMID: 36053698 DOI: 10.1103/physrevlett.129.083601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Understanding the origins of unconventional superconductivity has been a major focus of condensed matter physics for many decades. While many questions remain unanswered, experiments have found the highest critical temperatures in layered two-dimensional materials. However, to what extent the remarkable stability of these strongly correlated 2D superfluids is affected by their reduced dimensionality is still an open question. Here, we use dilute gases of ultracold fermionic atoms as a model system to directly observe the influence of dimensionality on the stability of strongly interacting fermionic superfluids. We find that the superfluid gap follows the same universal function of the interaction strength regardless of dimensionality, which suggests that there is no inherent difference in the stability of two- and three-dimensional fermionic superfluids. Finally, we compare our data to results from solid state systems and find a similar relation between the interaction strength and the gap for a wide range of two- and three-dimensional superconductors.
Collapse
Affiliation(s)
- Lennart Sobirey
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hauke Biss
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg
| | - Niclas Luick
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg
| | - Markus Bohlen
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg
| | - Henning Moritz
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg
| | - Thomas Lompe
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg
| |
Collapse
|
6
|
He YY, Shi H, Zhang S. Precision Many-Body Study of the Berezinskii-Kosterlitz-Thouless Transition and Temperature-Dependent Properties in the Two-Dimensional Fermi Gas. PHYSICAL REVIEW LETTERS 2022; 129:076403. [PMID: 36018705 DOI: 10.1103/physrevlett.129.076403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
We perform large-scale, numerically exact calculations on the two-dimensional interacting Fermi gas with a contact attraction. Reaching much larger lattice sizes and lower temperatures than previously possible, we determine systematically the finite-temperature phase diagram of the Berezinskii-Kosterlitz-Thouless (BKT) transitions for interaction strengths ranging from BCS to crossover to BEC regimes. The evolutions of the pairing wave functions and the fermion and Cooper pair momentum distributions with temperature are accurately characterized. In the crossover regime, we find that the contact has a nonmonotonic temperature dependence, first increasing as temperature is lowered, and then showing a slight decline below the BKT transition temperature to approach the ground-state value from above.
Collapse
Affiliation(s)
- Yuan-Yao He
- Institute of Modern Physics, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Hao Shi
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| |
Collapse
|
7
|
Sunami S, Singh VP, Garrick D, Beregi A, Barker AJ, Luksch K, Bentine E, Mathey L, Foot CJ. Observation of the Berezinskii-Kosterlitz-Thouless Transition in a Two-Dimensional Bose Gas via Matter-Wave Interferometry. PHYSICAL REVIEW LETTERS 2022; 128:250402. [PMID: 35802452 DOI: 10.1103/physrevlett.128.250402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/15/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
We probe local phase fluctuations of trapped two-dimensional Bose gases using matter-wave interferometry. This enables us to measure the phase correlation function, which changes from an algebraic to an exponential decay when the system crosses the Berezinskii-Kosterlitz-Thouless (BKT) transition. We determine the temperature dependence of the BKT exponent η and find the critical value η_{c}=0.17(3) for our trapped system. Furthermore, we measure the local vortex density as a function of the local phase-space density, which shows a scale-invariant behavior across the transition. Our experimental investigation is supported by Monte Carlo simulations and provides a comprehensive understanding of the BKT transition in a trapped system.
Collapse
Affiliation(s)
- S Sunami
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - V P Singh
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
- Zentrum für Optische Quantentechnologien and Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
| | - D Garrick
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - A Beregi
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - A J Barker
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - K Luksch
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - E Bentine
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - L Mathey
- Zentrum für Optische Quantentechnologien and Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - C J Foot
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
8
|
Cai Y, Allman DG, Sabharwal P, Wright KC. Persistent Currents in Rings of Ultracold Fermionic Atoms. PHYSICAL REVIEW LETTERS 2022; 128:150401. [PMID: 35499879 DOI: 10.1103/physrevlett.128.150401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
We have produced persistent currents of ultracold fermionic atoms trapped in a ring, with lifetimes greater than 10 sec in the strongly interacting regime. These currents remain stable well into the BCS regime at sufficiently low temperature. We drive a circulating BCS superfluid into the normal phase and back by changing the interaction strength and find that the probability for quantized superflow to reappear is remarkably insensitive to the time spent in the normal phase and the minimum interaction strength. After ruling out spontaneous current formation for our experimental conditions, we argue that the reappearance of superflow is due to weak damping of normal currents in this limit. These results establish that ultracold fermionic atoms with tunable interactions can be used to create matter-wave circuits similar to those previously created with weakly interacting bosonic atoms.
Collapse
Affiliation(s)
- Yanping Cai
- Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA
| | - Daniel G Allman
- Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA
| | - Parth Sabharwal
- Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA
| | - Kevin C Wright
- Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA
| |
Collapse
|
9
|
Biss H, Sobirey L, Luick N, Bohlen M, Kinnunen JJ, Bruun GM, Lompe T, Moritz H. Excitation Spectrum and Superfluid Gap of an Ultracold Fermi Gas. PHYSICAL REVIEW LETTERS 2022; 128:100401. [PMID: 35333076 DOI: 10.1103/physrevlett.128.100401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Ultracold atomic gases are a powerful tool to experimentally study strongly correlated quantum many-body systems. In particular, ultracold Fermi gases with tunable interactions have allowed to realize the famous BEC-BCS crossover from a Bose-Einstein condensate (BEC) of molecules to a Bardeen-Cooper-Schrieffer (BCS) superfluid of weakly bound Cooper pairs. However, large parts of the excitation spectrum of fermionic superfluids in the BEC-BCS crossover are still unexplored. In this work, we use Bragg spectroscopy to measure the full momentum-resolved low-energy excitation spectrum of strongly interacting ultracold Fermi gases. This enables us to directly observe the smooth transformation from a bosonic to a fermionic superfluid that takes place in the BEC-BCS crossover. We also use our spectra to determine the evolution of the superfluid gap and find excellent agreement with previous experiments and self-consistent T-matrix calculations both in the BEC and crossover regime. However, toward the BCS regime a calculation that includes the effects of particle-hole correlations shows better agreement with our data.
Collapse
Affiliation(s)
- Hauke Biss
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Lennart Sobirey
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Niclas Luick
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Bohlen
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jami J Kinnunen
- Department of Applied Physics, Aalto University School of Science, FI-00076 Aalto, Finland
| | - Georg M Bruun
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Thomas Lompe
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Henning Moritz
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
10
|
Li X, Luo X, Wang S, Xie K, Liu XP, Hu H, Chen YA, Yao XC, Pan JW. Second sound attenuation near quantum criticality. Science 2022; 375:528-533. [PMID: 35113717 DOI: 10.1126/science.abi4480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Second sound attenuation, a distinctive dissipative hydrodynamic phenomenon in a superfluid, is crucial for understanding superfluidity and elucidating critical phenomena. Here, we report the observation of second sound attenuation in a homogeneous Fermi gas of lithium-6 atoms at unitarity by performing Bragg spectroscopy with high energy resolution in the long-wavelength limit. We successfully obtained the temperature dependence of second sound diffusivity [Formula: see text] and thermal conductivity κ. Furthermore, we observed a sudden rise-a precursor of critical divergence-in both [Formula: see text] and κ at a temperature of about 0.95 superfluid transition temperature [Formula: see text]. This suggests that the unitary Fermi gas has a much larger critical region than does liquid helium. Our results pave the way for determining the universal critical scaling functions near quantum criticality.
Collapse
Affiliation(s)
- Xi Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Xiang Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Shuai Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Ke Xie
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Xiang-Pei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Hui Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,Centre for Quantum Technology Theory, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Yu-Ao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Xing-Can Yao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
11
|
Sobirey L, Luick N, Bohlen M, Biss H, Moritz H, Lompe T. Observation of superfluidity in a strongly correlated two-dimensional Fermi gas. Science 2021; 372:844-846. [PMID: 34016777 DOI: 10.1126/science.abc8793] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/17/2021] [Indexed: 11/02/2022]
Abstract
Understanding how strongly correlated two-dimensional (2D) systems can give rise to unconventional superconductivity with high critical temperatures is one of the major unsolved problems in condensed matter physics. Ultracold 2D Fermi gases have emerged as clean and controllable model systems to study the interplay of strong correlations and reduced dimensionality, but direct evidence of superfluidity in these systems has been missing. We demonstrate superfluidity in an ultracold 2D Fermi gas by moving a periodic potential through the system and observing no dissipation below a critical velocity v c We measure v c as a function of interaction strength and find a maximum in the crossover regime between bosonic and fermionic superfluidity. Our measurements enable systematic studies of the influence of reduced dimensionality on fermionic superfluidity.
Collapse
Affiliation(s)
- Lennart Sobirey
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. .,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Niclas Luick
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Bohlen
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Hauke Biss
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Henning Moritz
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas Lompe
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|