1
|
Saidoune F, Lee D, Di Domizio J, Le Floc’h C, Jenelten R, Le Pen J, Bondet V, Joncic A, Morren MA, Béziat V, Zhang SY, Jouanguy E, Duffy D, Rice CM, Conrad C, Fellay J, Casanova JL, Gilliet M, Yatim A. Enhanced TLR7-dependent production of type I interferon by pDCs underlies pandemic chilblains. J Exp Med 2025; 222:e20231467. [PMID: 40227192 PMCID: PMC11995862 DOI: 10.1084/jem.20231467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
Outbreaks of chilblains were reported during the COVID-19 pandemic. Given the essential role of type I interferon (I-IFN) in protective immunity against SARS-CoV-2 and the association of chilblains with inherited type I interferonopathies, we hypothesized that excessive I-IFN responses to SARS-CoV-2 might underlie the occurrence of chilblains in this context. We identified a transient I-IFN signature in chilblain lesions, accompanied by an acral infiltration of activated plasmacytoid dendritic cells (pDCs). Patients with chilblains were otherwise asymptomatic or had mild disease without seroconversion. Their leukocytes produced abnormally high levels of I-IFN upon TLR7 stimulation with agonists or ssRNA viruses-particularly SARS-CoV-2-but not with DNA agonists of TLR9 or the dsDNA virus HSV-1. Moreover, the patients' pDCs displayed cell-intrinsic hyperresponsiveness to TLR7 stimulation regardless of TLR7 levels. Inherited TLR7 or I-IFN deficiency confers a predisposition to life-threatening COVID-19. Conversely, our findings suggest that enhanced TLR7 activity in predisposed individuals could confer innate, pDC-mediated, sterilizing immunity to SARS-CoV-2 infection, with I-IFN-driven chilblains as a trade-off.
Collapse
Affiliation(s)
- Fanny Saidoune
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Jeremy Di Domizio
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corentin Le Floc’h
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Raphael Jenelten
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Ana Joncic
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Anne Morren
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Curdin Conrad
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Michel Gilliet
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ahmad Yatim
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| |
Collapse
|
2
|
Noma K, Asano T, Taniguchi M, Ashihara K, Okada S. Anti-cytokine autoantibodies in human susceptibility to infectious diseases: insights from Inborn errors of immunity. Immunol Med 2025; 48:124-140. [PMID: 40197228 DOI: 10.1080/25785826.2025.2488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
The study of Inborn Errors of Immunity (IEIs) is critical for understanding the complex mechanisms of the human immune response to infectious diseases. Specific IEIs, characterized by selective susceptibility to certain pathogens, have enhanced our understanding of the key molecular pathways and cellular subsets involved in host defense against pathogens. These insights revealed that patients with anti-cytokine autoantibodies exhibit phenotypes similar to those with pathogenic mutations in genes encoding signaling molecules. This new disease concept is currently categorized as 'Phenocopies of IEI'. This category includes anti-cytokine autoantibodies targeting IL-17/IL-22, IFN-γ, IL-6, GM-CSF, and type I IFNs. Abundant anti-cytokine autoantibodies deplete corresponding cytokines, impair signaling pathways, and increase susceptibility to specific pathogens. We herein demonstrate the clinical and etiological significance of anti-cytokine autoantibodies in human immunity to pathogens. Insights from studies of rare IEIs underscore the pathological importance of cytokine-targeting autoantibodies. Simultaneously, the diverse clinical phenotype of patients with these autoantibodies suggests that the influences of cytokine dysfunction are broader than previously recognized. Furthermore, comprehensive studies prompted by the COVID-19 pandemic highlighted the substantial clinical impact of autoantibodies and their potential role in shaping the outcomes of infectious disease.
Collapse
Affiliation(s)
- Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Maki Taniguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Ashihara
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Fekrvand S, Saleki K, Abolhassani H, Almasi-Hashiani A, Hakimelahi A, Zargarzadeh N, Yekaninejad MS, Rezaei N. COVID-19 infection in inborn errors of immunity and their phenocopies: a systematic review and meta-analysis. Infect Dis (Lond) 2025; 57:483-517. [PMID: 40178994 DOI: 10.1080/23744235.2025.2483339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/09/2025] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Inborn errors of immunity (IEI) are congenital disorders of the immune system. Due to impaired immune system, they are at a higher risk to develop a more severe COVID-19 course compared to general population. OBJECTIVES Herein, we aimed to systematically review various aspects of IEI patients infected with SARS-CoV-2. Moreover, we performed a meta-analysis to determine the frequency of COVID-19 in patients with different IEI. METHODS Embase, Web of Science, PubMed, and Scopus were searched introducing terms related to IEI and COVID-19. RESULTS 3646 IEI cases with a history of COVID-19 infection were enrolled. The majority of patients had critical infections (1013 cases, 27.8%). The highest frequency of critical and severe cases was observed in phenocopies of IEI (95.2%), defects in intrinsic and innate immunity (69.4%) and immune dysregulation (23.9%). 446 cases (12.2%) succumbed to the disease and the highest mortality was observed in IEI phenocopies (34.6%). COVID-19 frequency in immunodeficient patients was 11.9% (95% CI: 8.3 to 15.5%) with innate immunodeficiency having the highest COVID-19 frequency [34.1% (12.1 to 56.0%)]. COVID-19 case fatality rate among IEI patients was estimated as 5.4% (95% CI: 3.5-8.3%, n = 8 studies, I2 = 17.5%). CONCLUSION IEI with underlying defects in specific branches of the immune system responding to RNA virus infection experience a higher frequency and mortality of COVID-19 infection. Increasing awareness about these entities and underlying genetic defects, adherence to prophylactic strategies and allocating more clinical attention to these patients could lead to a decrease in COVID-19 frequency and mortality in these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash Saleki
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, KarolinskaInstitutet, Karolinska University Hospital, Stockholm, Sweden
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Hakimelahi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikan Zargarzadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Marjot T, Armstrong MJ, Stine JG. Skeletal muscle and MASLD: Mechanistic and clinical insights. Hepatol Commun 2025; 9:e0711. [PMID: 40408301 DOI: 10.1097/hc9.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/25/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is intrinsically linked with widespread metabolic perturbations, including within skeletal muscle. Indeed, MASLD is associated with a range of skeletal muscle abnormalities, including insulin resistance, myosteatosis, and sarcopenia, which all converge on the liver to drive disease progression and adverse patient outcomes. This review explores the mechanistic links between skeletal muscle and MASLD, including the role of abnormal glycemic control, systemic inflammation, and disordered myokine signaling. In turn, we discuss how intrinsic liver pathology can feed back to further exacerbate poor skeletal muscle health. Given the central importance of skeletal muscle in MASLD pathogenesis, it offers clinicians an opportunity to intervene for therapeutic benefit. We, therefore, summarize the role of nutrition and physical activity on skeletal muscle mass, quality, and metabolic function and discuss the knock-on effect this has on the liver. An awareness of these treatment strategies is particularly important in the era of effective pharmacological and surgical weight loss interventions, which can be associated with the development of sarcopenia. Finally, we highlight a number of promising drug agents in the clinical trial pipeline that specifically target skeletal muscle in an attempt to improve metabolic and physical functioning.
Collapse
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Matthew J Armstrong
- Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham, UK
- Birmingham NIHR Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Jonathan G Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health-Milton S. Hershey Medical Centre, Hershey, Pennsylvania, USA
| |
Collapse
|
5
|
Rosa-Baez C, Borrego-Yaniz G, Rodriguez-Martin I, Kerick M, Acosta-Herrera M, Martín J, Ortiz-Fernández L. Cross-trait GWAS in COVID-19 and systemic sclerosis reveals novel genes implicated in fibrotic and inflammation pathways. Rheumatology (Oxford) 2025; 64:4022-4031. [PMID: 39878951 DOI: 10.1093/rheumatology/keaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
OBJECTIVES Coronavirus disease 2019 (COVID-19) and SSc share multiple similarities in their clinical manifestations, alterations in immune response and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc. METHODS For this study, we retrieved genomic data from two European-ancestry cohorts: 2 597 856 individuals from The COVID-19 Host Genetics Initiative consortium, and 26 679 individuals from the largest genomic scan in SSc. We performed a cross-trait meta-analyses including >9.3 million single nucleotide polymorphisms. Finally, we conducted functional annotation to prioritize potential causal genes and performed drug repurposing analysis. RESULTS Our results revealed a total of 19 non-HLA pleiotropic loci, including 2 novel associations for both conditions (BMP1 and PPARG) and 12 emerging as new shared loci. Functional annotation of these regions underscored their potential regulatory role and identified potential causal genes, many of which are implicated in fibrotic and inflammatory pathways. Remarkably, we observed an antagonistic pleiotropy model of the IFN signalling between COVID-19 and SSc, including the well-known TYK2 P1104A missense variant, showing a protective effect for SSc while being a risk factor for COVID-19, along with two additional novel pleiotropic associations (IRF8 and SENP7). Finally, our findings provide new therapeutic options that could potentially benefit both conditions. CONCLUSION Our study confirms the genetic resemblance between susceptibility to and severity of COVID-19 and SSc, revealing a novel common genetic contribution affecting fibrotic and immune pathways.
Collapse
Affiliation(s)
- Carlos Rosa-Baez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Gonzalo Borrego-Yaniz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Inmaculada Rodriguez-Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Martin Kerick
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Marialbert Acosta-Herrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Javier Martín
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Lourdes Ortiz-Fernández
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| |
Collapse
|
6
|
Knox AVC, Cominsky LY, Sun D, Cruz Cabrera E, Nolan BE, Ofray E, Benetti E, Visconti C, Barzaghi F, Rosenzweig SD, Lawrence MG, Sullivan KE, Yoon S, Rachimi S, Padem N, Conboy E, Stojanovic M, Petrovic G, Pasic S, Church J, Ferdman RM, Candotti F, Arlabosse T, Theodoropoulou K, Dutmer CM, Maródi L, Szücs G, Broides A, Nahum A, Levy J, Kettunen K, Daddali R, Seppänen M, Vänttinen M, Martelius T, Grönholm J, Peri M, Azzari C, Ricci S, Ojaimi S, Edwards ESJ, van Zelm MC, Sun J, Abolhassani H, Pan-Hammarström Q, Hakonarson H, Mayr D, Boztug K, Boisson B, Casanova JL, Le Coz C, Poon GMK, Romberg N. One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them. Blood 2025; 145:2549-2560. [PMID: 39854693 PMCID: PMC12163740 DOI: 10.1182/blood.2024026683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
ABSTRACT Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.1 loss either induces acute myeloid leukemia or arrests early B-cell and dendritic-cell development. Although humans with absolute PU.1 deficiency have not been reported, a small cadre of congenital agammaglobulinemia patients with sporadic, inborn PU.1 haploinsufficiency was recently described. To better estimate the penetrance, clinical complications, immunophenotypic features, and malignancy risks of PU.1-mutated agammaglobulinemia (PU.MA), a collection of 134 novel or rare PU.1 variants from publicly available databases, institutional cohorts, previously published reports, and unsolved agammaglobulinemia cases were functionally analyzed. In total, 25 loss-of-function (LOF) variants were identified in 33 heterozygous carriers from 21 kindreds across 13 nations. Of individuals harboring LOF PU.1 variants, 22 were agammaglobulinemic, 5 displayed antibody deficiencies, and 6 were unaffected, indicating an estimated disease penetrance of 81.8% with variable expressivity. In a cluster of patients, disease onset was delayed, sometimes into adulthood. All LOF variants conveyed effects via haploinsufficiency, either by destabilizing PU.1, impeding nuclear localization, or directly interfering with transcription. PU.MA patient immunophenotypes consistently demonstrated B-cell, conventional dendritic-cell, and plasmacytoid dendritic-cell deficiencies. Associated infectious and noninfectious symptoms hewed closely to X-linked agammaglobulinemia and not monogenic dendritic-cell deficiencies. No carriers of LOF PU.1 variants experienced hematologic malignancies. Collectively, in vitro and clinical data indicate heterozygous LOF PU.1 variants undermine humoral immunity but do not convey strong leukemic risks.
Collapse
Affiliation(s)
- Ainsley V. C. Knox
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lauren Y. Cominsky
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Di Sun
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Emylette Cruz Cabrera
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Brian E. Nolan
- Division of Rheumatology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Edann Ofray
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Elisa Benetti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Visconti
- Vita-Salute San Raffaele University, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD
| | - Monica G. Lawrence
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Kathleen E. Sullivan
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Samuel Yoon
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Suzanna Rachimi
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nurcicek Padem
- Division of Pediatric Pulmonology, Allergy-Immunology, and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Maja Stojanovic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
- Department of Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gordana Petrovic
- Department of Immunology, Mother and Child Health Care Institute of Serbia, Belgrade, Serbia
| | - Srdjan Pasic
- Department of Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Immunology, Mother and Child Health Care Institute of Serbia, Belgrade, Serbia
| | - Joseph Church
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ronald M. Ferdman
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tiphaine Arlabosse
- Department of Woman, Mother, Child, Unit of Pediatric Immunology, Allergology and Rheumatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Katerina Theodoropoulou
- Department of Woman, Mother, Child, Unit of Pediatric Immunology, Allergology and Rheumatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cullen M. Dutmer
- Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - László Maródi
- Department of Dermatology, Primary Immunodeficiency Clinical Unit and Laboratory, Semmelweis University, Budapest, Hungary
| | - Gabriella Szücs
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Arnon Broides
- Pediatric Immunology Clinic, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amit Nahum
- Pediatric Immunology Clinic, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jacov Levy
- Pediatric Immunology Clinic, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kaisa Kettunen
- Laboratory of Genetics, HUS Diagnostic Center, University of Helsinki, Helsinki, Finland
| | - Ravindra Daddali
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Seppänen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Rare Diseases Center and Pediatric Research Center, New Children’s Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Markku Vänttinen
- Department of Medicine, Unit of Infectious Diseases and Hospital Hygiene, Kuopio University Hospital, Kuopio, Finland
- Wellbeing Services, County of North Savo, Kuopio, Finland
| | - Timi Martelius
- Inflammation Center, Department of Infectious Disease, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Grönholm
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Division of Hematology, Oncology, and Stem Cell Transplantation and Pediatric Research Center, New Children’s Hospital, HUS Helsinki University Hospital, Helsinki, Finland
| | - Matilde Peri
- Department of Health Sciences, University of Florence, Florence, Italy
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - Samar Ojaimi
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Monash Health Pathology, Monash Health, Clayton, VIC, Australia
| | - Emily S. J. Edwards
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Menno C. van Zelm
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, Shanghai, China
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hakon Hakonarson
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Daniel Mayr
- Saint Anna Children’s Cancer Research Institute, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Kaan Boztug
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Center for Molecular Medicine Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Howard Hughes Medical Institute, New York, NY
| | - Carole Le Coz
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, National Centre for Scientific Research, INSERM, Toulouse, France
| | - Gregory M. K. Poon
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA
| | - Neil Romberg
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Antolí A, Vargas-Parra G, Sierra-Fortuny A, Gomez-Vazquez JL, Rofes P, Munté E, Viana-Errasti J, Marín-Montes R, López-Doriga A, Feliubadaló L, Del Valle J, Pérez-González A, Poveda E, Solanich X, Lázaro C. From Rare to Common: Genetic Insights into TLR7 Variants in a Multicentric Spanish Study on COVID-19 Severity. J Clin Immunol 2025; 45:100. [PMID: 40423910 PMCID: PMC12116960 DOI: 10.1007/s10875-025-01892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025]
Abstract
TLR7, which encodes a key receptor for single-stranded RNA (ssRNA) virus of the innate immune system, was recently associated with X-linked immunodeficiency and COVID-19 susceptibility. This study investigates the association between TLR7 variants and susceptibility to severe COVID-19 in a multicentric Spanish cohort. The TLR7 gene was sequenced in a cohort of 365 COVID-19 patients, stratified into two groups: one comprising mild and asymptomatic patients, considered as controls (n = 87), and the other consisting of moderate to severely affected patients hospitalized due to COVID-19 pneumonia, considered as cases (n = 278). A total of 152 unique TLR7 variants were identified, of note, six rare variants were identified in 11 cases (3.96%), all of whom belonged to the case group. The functional impact of rare TLR7 variants was assessed using a luciferase reporter assay and revealed that N215S is a loss-of-function (LOF) variant, while D332G exhibits an hypomorphic behavior. Conversely, H90Y, V219I, A448V, and R902K maintained normal signaling. No skewed X-inactivation was observed in female carriers of N215S or D332G. In addition, the common variants Q11L (rs179008), c.4-151A>G (rs179009) and c.*881C>G (rs3853839) were associated with severe pneumonia, while c.4-151A>G (rs179009) was specifically linked to Intensive Care Unit (ICU) admission. These findings highlight the role of TLR7 in antiviral immune response and its association with severe COVID-19 in men. The luciferase assay proves to be a reliable tool for evaluating TLR7 signaling, effectively distinguishing between neutral, LOF, and gain-of-function (GOF) variants. Further research is needed to better understand TLR7 variants and its implications in immunodeficiency and immune dysregulation.
Collapse
Affiliation(s)
- Arnau Antolí
- Internal Medicine Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Adult Primary Immunodeficiency Unit (UFIPA), Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- The Systemic, Vascular Diseases and Ageing Group. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Gardenia Vargas-Parra
- Hereditary Cancer Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Angels Sierra-Fortuny
- Internal Medicine Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- The Systemic, Vascular Diseases and Ageing Group. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Luis Gomez-Vazquez
- Internal Medicine Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- The Systemic, Vascular Diseases and Ageing Group. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Paula Rofes
- Hereditary Cancer Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabet Munté
- Hereditary Cancer Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julen Viana-Errasti
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Raúl Marín-Montes
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Adriana López-Doriga
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Nennisiwok AI Lab, Barcelona, Spain
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alexandre Pérez-González
- Internal Medicine Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Pontevedra, Spain
- Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Pontevedra, Spain
| | - Eva Poveda
- Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Pontevedra, Spain
| | - Xavier Solanich
- Internal Medicine Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Adult Primary Immunodeficiency Unit (UFIPA), Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- The Systemic, Vascular Diseases and Ageing Group. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Conxi Lázaro
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Hereditary Cancer Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain.
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Ghimire R, Shrestha R, Amaradhi R, Liu L, More S, Ganesh T, Ford AK, Channappanavar R. Toll-like receptor 7 (TLR7)-mediated antiviral response protects mice from lethal SARS-CoV-2 infection. J Virol 2025; 99:e0166824. [PMID: 40162785 PMCID: PMC12090760 DOI: 10.1128/jvi.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced impaired antiviral immunity and excessive inflammatory responses cause lethal pneumonia. However, the in vivo roles of key pattern recognition receptors that elicit protective antiviral and fatal inflammatory responses, specifically in the lungs, are not well described. Coronaviruses possess single-stranded RNA genome that activates TLR7/8 to induce an antiviral interferon (IFN) and robust inflammatory cytokine response. Here, using wild-type and TLR7-deficient (TLR7-/-) mice infected with mouse-adapted SARS-CoV-2 (MA-CoV-2), we examined the role of TLR7 in the lung antiviral and inflammatory response and severe pneumonia. We showed that TLR7 deficiency significantly increased lung virus loads and morbidity/mortality, which correlated with reduced levels of type I IFNs (Ifna/b), type III IFNs (Ifnl), and IFN-stimulated genes (ISGs) in the lungs. A detailed evaluation of MA-CoV-2-infected lungs revealed increased neutrophil accumulation and lung pathology in TLR7-/- mice. We further showed that blocking type I IFN receptor (IFNAR) signaling enhanced SARS-CoV-2 replication in the lungs and caused severe lung pathology, leading to 100% mortality compared to infected control mice. Moreover, immunohistochemical assessment of the lungs revealed increased numbers of SARS-CoV-2 antigen-positive macrophages, pneumocytes, and bronchial epithelial cells in TLR7-/- and IFNAR-deficient mice compared to control mice. In summary, we conclusively demonstrated that despite TLR7-induced robust lung inflammation, TLR7-induced IFN/ISG responses suppress lung virus replication and pathology and provide protection against SARS-CoV-2-induced fatal pneumonia. Additionally, given the similar disease outcomes in control, TLR7-/-, and IFNAR-deficient MA-CoV-2-infected mice and coronavirus disease 2019 (COVID-19) patients, we propose that MA-CoV-2-infected mice constitute an excellent model for studying COVID-19.IMPORTANCESevere coronavirus disease 2019 (COVID-19) is caused by a delicate balance between a strong antiviral and an exuberant inflammatory response. A robust antiviral immunity and regulated inflammation are protective, while a weak antiviral response and excessive inflammation are detrimental. However, the key host immune sensors that elicit protective antiviral and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge are poorly defined. Here, we examined the role of viral RNA-mediated TLR7 activation in the lung antiviral and inflammatory responses in SARS-CoV-2-infected mice. We demonstrate that TLR7 deficiency led to a high rate of morbidity and mortality, which correlated with an impaired antiviral interferon (IFN)-I/III response, enhanced lung virus replication, and severe lung pathology. Furthermore, we show that blocking IFN-I signaling using anti-IFN receptor antibody promoted SARS-CoV-2 replication in the lungs and caused severe disease. These results provide conclusive evidence that TLR7 and IFN-I receptor deficiencies lead to severe disease in mice, replicating clinical features observed in COVID-19 patients.
Collapse
Affiliation(s)
- Roshan Ghimire
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lin Liu
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
9
|
Pădureanu V, Dop D, Pădureanu R, Pîrșcoveanu DFV, Olaru G, Streata I, Bugă AM. Anti-NMDA Receptor Encephalitis: A Narrative Review. Brain Sci 2025; 15:518. [PMID: 40426689 PMCID: PMC12110449 DOI: 10.3390/brainsci15050518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/14/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025] Open
Abstract
Antibodies against the NR1 or NR2 subunits of the NMDA receptor are linked to anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, a type of encephalitis that mainly affects women. Clinicians who treat patients of all ages should be aware of this type of encephalitis since it may be a treatable differential for symptoms and indicators observed in neurology and psychiatric clinics. Auditory and visual hallucinations, delusions, altered behavior (often accompanied by agitation), reduced consciousness, motor disruption (from dyskinesia to catatonia), seizures, and autonomic dysfunction are typical clinical characteristics. In recent years, the incidence of autoimmune encephalitis diagnoses has markedly risen among adults, children, and adolescents. This fact is unequivocally connected to the dynamic evolution of novel diagnostic techniques and the advancement of medical knowledge. A specific variant of this illness is anti-NMDA receptor encephalitis. Psychiatrists frequently serve as the initial specialists to treat patients with this diagnosis, owing to the manifestation of psychiatric symptoms associated with the condition. The differential diagnosis is quite challenging and predominantly relies on the patient's history and the manifestation of characteristic clinical signs. Given its high prevalence, anti-NMDA receptor encephalitis should be included in the differential diagnosis in routine psychiatric treatment. We provide an overview of the research on the condition, covering its prognosis, management, epidemiology, differential diagnosis, and clinical presentation.
Collapse
Affiliation(s)
- Vlad Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Dalia Dop
- Department of Pediatrics, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Rodica Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | | | - Gabriela Olaru
- Doctoral School, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Ioana Streata
- Department of Molecular Biology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Ana Maria Bugă
- Department of Biochemistry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| |
Collapse
|
10
|
Denz PJ, Yount JS. IFITM3 variants point to a critical role in emergent virus infections. mBio 2025; 16:e0334724. [PMID: 40237465 PMCID: PMC12077130 DOI: 10.1128/mbio.03347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a cellular protein that restricts numerous viral infections by blocking virus-host membrane fusion. In humans, there are two IFITM3 single nucleotide polymorphisms (SNPs), rs12252-C and rs34481144-A, that decrease IFITM3 activity and have been associated with severe illness following influenza virus infections. Mice lacking IFITM3 show increased influenza severity, supporting this association. However, some studies do not find a consistent link between IFITM3 SNPs and infection severity, causing uncertainty about its role in vivo. Review of the literature indicates that IFITM3 SNPs are primarily associated with increased viral disease in infections with emergent influenza viruses, such as the 2009 H1N1 pandemic virus and zoonotic H7N9 virus. Similarly, IFITM3 SNPs are reported to be risk factors for increased severity in other emergent infections, including SARS-CoV-2, Hantaan virus, and HIV. In contrast, most studies that failed to find an association examined seasonal influenza. We posit that adaptive immune mechanisms, including pre-existing antibodies and memory T cells against seasonally circulating viruses, compensate for IFITM3 deficiencies, therefore masking its role in seasonal influenza. We propose that IFITM3 is most critical in defending against emergent viruses and should be a key focus of public health strategies to prevent the emergence and spread of novel pathogens, with individuals carrying IFITM3 SNPs potentially benefiting from broadened vaccine coverage, avoidance of animal reservoirs, or enhanced masking to protect themselves and the wider population.
Collapse
Affiliation(s)
- Parker J. Denz
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Yeung ST, Damani-Yokota P, Thannickal SA, Bartnicki E, Bernier ED, Barnett CR, Khairallah C, Duerr R, Noval MG, Segal LN, Stapleford KA, Khanna KM. Nerve- and airway-associated interstitial macrophages mitigate SARS-CoV-2 pathogenesis via type I interferon signaling. Immunity 2025; 58:1327-1342.e5. [PMID: 40286790 DOI: 10.1016/j.immuni.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/27/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Despite vaccines, rapidly mutating viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to threaten human health due to an impaired immunoregulatory pathway and a hyperactive immune response. Our understanding of the local immune mechanisms used by tissue-resident macrophages to safeguard the host from excessive inflammation during SARS-CoV-2 infection remains limited. Here, we found that nerve- and airway-associated interstitial macrophages (NAMs) are required to control mouse-adapted SARS-CoV-2 (MA-10) infection. Control mice restricted lung viral distribution and survived infection, whereas NAM depletion enhanced viral spread and inflammation and led to 100% mortality. Mechanistically, type I interferon receptor (IFNAR) signaling by NAMs was critical for limiting inflammation and viral spread, and IFNAR deficiency in CD169+ macrophages mirrored NAM-depleted outcomes and abrogated their expansion. These findings highlight the essential protective role of NAMs in regulating viral spread and inflammation, offering insights into SARS-CoV-2 pathogenesis and underscoring the importance of NAMs in mediating host immunity and disease tolerance.
Collapse
Affiliation(s)
- Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara A Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eric Bartnicki
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eduardo D Bernier
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Clea R Barnett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Camille Khairallah
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ralf Duerr
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, Vaccine Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Leopoldo N Segal
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
12
|
Schloer S, Hennesen J, Rueschpler L, Zamzamy M, Flomm F, Ip WH, Pirosu A, Dobner T, Altfeld M. The host cell factor DDX3 mediates sex dimorphism in the IFNα response of plasmacytoid dendritic cells upon TLR activation. Pharmacol Res 2025; 216:107764. [PMID: 40354846 DOI: 10.1016/j.phrs.2025.107764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
During the course of viral infections, IFN-I producing pDCs are fundamental in establishing antiviral defense. However, little is known about the molecular mechanisms by which biological sex contributes to differences in IFN-I production by pDCs. Here, we aimed to identify X-chromosome-encoded proteins as a source of sex differences in IFN-I responses by pDCs. We identified the host-cell factor DDX3 as a key mediator for the sex dimorphism in the IFNα response. DDX3 was significantly higher expressed in female pDCs and was translocated together with IRF7 to the nucleus to orchestrate IFN-I transcription. DDX3 as driver of sex differences in the initial and chronic IFN-I response might serve as a novel target to limit IFN-I-mediated hyperactivation of immune cells.
Collapse
Affiliation(s)
- Sebastian Schloer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany.
| | - Jana Hennesen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Lena Rueschpler
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Mohamed Zamzamy
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Felix Flomm
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Wing Hang Ip
- Research Department Viral Transformation, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Andrea Pirosu
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Thomas Dobner
- Research Department Viral Transformation, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Marcus Altfeld
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany.
| |
Collapse
|
13
|
Mayerhöfer T, Joannidis M, Klein S, Franke A, Margarita S, Ronzoni L, Pertler E, Wagner S, Sahanic S, Tancevski I, Haschka D, Hochhold C, Treml B, Valenti L, Tilg H, Schaefer B, Zoller H. The common genetic variant rs1278960 determining expression of Interferon-lambda predicts inflammatory response in critically ill COVID-19 patients. Sci Rep 2025; 15:15802. [PMID: 40328868 PMCID: PMC12056047 DOI: 10.1038/s41598-025-91628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/21/2025] [Indexed: 05/08/2025] Open
Abstract
The single nucleotide polymorphism rs12979860 is associated with the production of IFNλ4, a type III interferon, which offers protection from viral infection via its proinflammatory properties. We investigated if a genetically determined increase in IFNλ4 affects disease progression in SARS-CoV-2. This prospective, single-center study involved critically ill SARS-CoV-2 patients admitted to the intensive care unit. We performed genotyping for rs12979860 and analyzed daily laboratory data. Genotype frequencies were compared with an external validation cohort. Critically ill individuals with COVID-19 (n = 184; 29.3% women) were included. Median age was 63 years. The TT genotype was present in 11%, CT in 48% and CC in 41%. At baseline, CRP, ferritin, transferrin and neopterin did not differ significantly between groups. Longitudinal analysis revealed significant genotype-dependent differences in CRP, ferritin and neopterin with the highest peak in TT patients after 10-15 days. A higher need for renal replacement therapy (31.6% vs. 11.7%, p = 0.044) and mechanical ventilation (22 days vs. 15 days, p = 0.018) was observed in the TT group. The SNP rs12979860 near IFNL4 is associated with distinct inflammatory trajectories in critically ill COVID-19 patients. Genetic determinants of the immune response influence the severity of inflammation and clinical outcomes in severe COVID-19.
Collapse
Affiliation(s)
- Timo Mayerhöfer
- Department of Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Klein
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Department of Internal Medicine 2, University Hospital St. Pölten, St. Pölten, Austria
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sara Margarita
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ronzoni
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elke Pertler
- Department of Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Christian Doppler Laboratory for Iron and Phosphate Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sonja Wagner
- Department of Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Christian Doppler Laboratory for Iron and Phosphate Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Hochhold
- Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Benedikt Treml
- Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Herbert Tilg
- Department of Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Benedikt Schaefer
- Department of Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Heinz Zoller
- Department of Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Christian Doppler Laboratory for Iron and Phosphate Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Broomfield BJ, Tan CW, Qin RZ, Abberger H, Duckworth BC, Alvarado C, Dalit L, Lee CL, Shandre Mugan R, Mazrad ZA, Muramatsu H, Mackiewicz L, Williams BE, Chen J, Takanashi A, Fabb S, Pellegrini M, Rogers KL, Moon WJ, Pouton CW, Davis MJ, Nutt SL, Pardi N, Wimmer VC, Groom JR. Transient inhibition of type I interferon enhances CD8+ T cell stemness and vaccine protection. J Exp Med 2025; 222:e20241148. [PMID: 40062995 PMCID: PMC11893171 DOI: 10.1084/jem.20241148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/25/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Developing vaccines that promote CD8+ T cell memory is a challenge for infectious disease and cancer immunotherapy. TCF-1+ stem cell-like memory CD8+ T (TSCM) cells are important determinants of long-lived memory. Yet, the developmental requirements for TSCM cell formation are unclear. Here, we identify the temporal window for type I interferon receptor (IFNAR) blockade to drive TSCM cell generation following viral infection and mRNA-lipid nanoparticle vaccination. We reveal a reversible developmental trajectory where transcriptionally distinct TSCM cells emerged from a transitional precursor of exhausted T cellular state concomitant with viral clearance. TSCM cell differentiation correlated with T cell retention within the lymph node paracortex due to disrupted CXCR3 chemokine gradient formation. These effects were linked to increased antigen load and a counterintuitive increase in IFNγ, which controlled cell location. Vaccination with the IFNAR blockade promoted TSCM cell differentiation and enhanced protection against chronic infection. These findings propose an approach to vaccine design whereby modulation of inflammation promotes memory formation and function.
Collapse
Affiliation(s)
- Benjamin J. Broomfield
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Chin Wee Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Raymond Z. Qin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Hanna Abberger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Brigette C. Duckworth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Carolina Alvarado
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Lennard Dalit
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Chee Leng Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Rekha Shandre Mugan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Zihnil A.I. Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bailey E. Williams
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jinjin Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Asuka Takanashi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Stewart Fabb
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Marc Pellegrini
- Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, Australia
| | - Kelly L. Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | | | - Colin W. Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Melissa J. Davis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Stephen L. Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Verena C. Wimmer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
15
|
Zadeh VR, Lew JM, Zahoor MA, Santer D, Feld JJ, Falzarano D. Combination therapy enhances the antiviral activity of IFN-λ against SARS-CoV-2 and MERS-CoV. Virus Res 2025; 355:199560. [PMID: 40113092 PMCID: PMC11994970 DOI: 10.1016/j.virusres.2025.199560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/07/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Therapeutic options against pathogenic human coronaviruses remain limited. In a recent clinical trial, we demonstrated the therapeutic efficacy of pegylated-IFN-λ in COVID-19 outpatients. However, the emergence of variants that have the potential to evade IFN-mediated antiviral responses raises concerns regarding the continued efficacy of this approach. In this work, we compared the sensitivity of SARS-CoV-2 variants and MERS-CoV to IFN-λ treatment in vitro and explored the potential of combination therapy with other FDA-authorized or approved antiviral agents. We observed that in contrast to the ancestral strain, all other SARS-CoV-2 lineages showed varying, but increased resistance to IFN-λ treatment, from a 5.7-fold increase in EC50 value for the P.1 strain to a 32.7-fold increase for the B.1.1.7 variant. We further show that combination treatment with remdesivir or nirmatrelvir enhanced the antiviral effect of IFN-λ against both SARS-CoV-2 and MERS-CoV. These findings justify the initiation of further in vivo testing that ultimately can help inform the development of more effective therapeutic guidelines against pathogenic coronaviruses.
Collapse
Affiliation(s)
- Vahid Rajabali Zadeh
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyne M Lew
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - M Atif Zahoor
- Toronto Centre for Liver Disease, University of Toronto, Toronto, ON, Canada; University Health Network, University of Toronto, Toronto, ON, Canada
| | - Deanna Santer
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University of Toronto, Toronto, ON, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
16
|
Shang Z, Huang L, Qin S. The underlying mechanism behind the different outcomes of COVID-19 in children and adults. Front Immunol 2025; 16:1440169. [PMID: 40370452 PMCID: PMC12075420 DOI: 10.3389/fimmu.2025.1440169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has affected hundreds of millions of people globally, resulting in millions of deaths. During this pandemic, children have demonstrated greater resistance than adults, exhibiting lower infection rates, reduced mortality, and milder symptoms. Summarizing the differences in resistance between children and adults during COVID-19 can provide insights into protective mechanisms and potential implications for future treatments. In this review, we focused on summarizing and discussing the mechanisms for better protection of children in COVID-19. These protective mechanisms encompass several factors: the baseline expression of cell surface receptor ACE2 and hydrolase TMPRSS2, the impact of complications on COVID-19, and age-related cytokine profiles. Additionally, differences in local and systemic immune responses between children and adults also contribute significantly, particularly interferon responses, heterologous protection from non-COVID-19 vaccinations, and immune status variations influenced by micronutrient levels. The advantageous protection mechanisms of these children may provide insights into the prevention and treatment of COVID-19. Importantly, while age-related metabolic profiles and differential COVID-19 vaccine responses may contribute to protection in children, current comparative research remains limited and requires further investigation.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Ling Huang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shijie Qin
- Innovative Vaccine and Immunotherapy Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
17
|
Yang OO. The immunopathogenesis of SARS-CoV-2 infection: Overview of lessons learned in the first 5 years. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf033. [PMID: 40180332 DOI: 10.1093/jimmun/vkaf033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 04/05/2025]
Abstract
This review provides a broad overview of lessons learned in the five years since COVID-19 was identified. It is a bimodal disease, starting with an initially virus-driven phase, followed by resolution or ensuing inappropriate immune activation causing severe inflammation that is no longer strictly virus dependent. Humoral immunity is beneficial for preventing or attenuating the early stage, without benefit once the later stage begins. Neutralizing antibodies elicited by natural infection or vaccination are short-lived and highly vulnerable to viral sequence variation. By contrast, cellular immunity, particularly the CD8+ T cell arm, has a role in preventing or attenuating severe disease, is far less susceptible to viral variation, and is longer-lived than antibodies. Finally, an ill-defined phenomenon of prolonged symptoms after acute infection, termed "long COVID," is poorly understood but may involve various immunologic defects that are hyperactivating or immunosuppressive. Remaining issues include needing to better understand the immune dysregulation of severe disease to allow more tailored therapeutic interventions, developing antibody strategies that cope with the viral spike sequence variability, prolonging vaccine efficacy, and unraveling the mechanisms of long COVID to design therapeutic approaches.
Collapse
Affiliation(s)
- Otto O Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Zabalza A, Thompson A, Rotstein DL, Bar-Or A, Montalban X. Multiple sclerosis and COVID-19: interactions and unresolved issues. Lancet Neurol 2025; 24:361-370. [PMID: 40120619 DOI: 10.1016/s1474-4422(25)00006-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/17/2024] [Accepted: 01/08/2025] [Indexed: 03/25/2025]
Abstract
Serious symptomatic SARS-CoV-2 infection and COVID-19 complications are particular concerns for people with multiple sclerosis, especially those receiving immunosuppressants or immunomodulators. Studies have aimed to identify individuals with multiple sclerosis who are at high risk for SARS-CoV-2 infection, to analyse the interplay between SARS-CoV-2 and multiple sclerosis and to evaluate immunological responses to SARS-CoV-2 infection and vaccines. The emergence of evolving dominant SARS-CoV-2 variants, a range of available vaccines, and novel therapeutic approaches requires that clinical neurologists be regularly updated with the latest information. Unresolved issues include optimisation of vaccination strategies to enhance vaccine efficacy and the management of patients who do not show seroconversion post vaccination. Tailored vaccination has the potential to improve patient care, and future studies should focus on evaluating novel therapies and preventive measures while constantly updating our knowledge of potential SARS-CoV-2 variants, in preparation for future outbreaks or pandemics.
Collapse
Affiliation(s)
- Ana Zabalza
- Servei de Neurologia and Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alan Thompson
- Queen Square Multiple Sclerosis Centre and Faculty of Brain Sciences, University College London, London, UK
| | - Dalia L Rotstein
- St Michael's Hospital, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xavier Montalban
- Servei de Neurologia and Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain; Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| |
Collapse
|
19
|
Mukherjee S, Bayry J. The Yin and Yang of TLR4 in COVID-19. Cytokine Growth Factor Rev 2025; 82:70-85. [PMID: 39490235 DOI: 10.1016/j.cytogfr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Various pattern recognition receptors (PRRs), including toll-like receptors (TLRs), play a crucial role in recognizing invading pathogens as well as damage-associated molecular patterns (DAMPs) released in response to infection. The resulting signaling cascades initiate appropriate immune responses to eliminate these pathogens. Current evidence suggests that SARS-CoV-2-driven activation of TLR4, whether through direct recognition of the spike glycoprotein (alone or in combination with endotoxin) or by sensing various TLR4-activating DAMPs or alarmins released during viral infection, acts as a critical mediator of antiviral immunity. However, TLR4 exerts a dual role in COVID-19, demonstrating both beneficial and deleterious effects. Dysregulated TLR4 signaling is implicated in the proinflammatory consequences linked to the immunopathogenesis of COVID-19. Additionally, TLR4 polymorphisms contribute to severity of the disease. Given its significant immunoregulatory impact on COVID-19 immunopathology and host immunity, TLR4 has emerged as a key target for developing inhibitors and immunotherapeutic strategies to mitigate the adverse effects associated with SARS-CoV-2 and related infections. Furthermore, TLR4 agonists are also being explored as adjuvants to enhance immune responses to SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713 340, India.
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris 75006, France; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678 623, India.
| |
Collapse
|
20
|
Kim DR, Park BK, Baek JY, Shin A, Lee JW, Ju HY, Cho HW, Yoo KH, Sung KW, Jeong CH, Kim TY, Koh JY, Ko JH, Kim YJ. Rapid Recovery From SARS-CoV-2 Infection Among Immunocompromised Children Despite Limited Neutralizing Antibody Response: A Virologic and Sero-Immunologic Analysis of a Single-Center Cohort. J Korean Med Sci 2025; 40:e52. [PMID: 40165575 PMCID: PMC11964902 DOI: 10.3346/jkms.2025.40.e52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/18/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Immunocompromised (IC) pediatric patients are at increased risk of severe acute respiratory syndrome coronavirus 2 infection, but the viral kinetics and sero-immunologic response in pediatric IC patients are not fully understood. METHODS From April to June 2022, a prospective cohort study was conducted. IC pediatric patients hospitalized for coronavirus disease 2019 (COVID-19) were enrolled. Serial saliva swab and serum specimens were subjected to reverse transcription polymerase chain reaction assays with mutation sequencing, viral culture, anti-spike-protein, anti-nucleocapsid antibody assays, plaque reduction neutralization test (PRNT) and multiplex cytokine assays. RESULTS Eleven IC children were evaluated. Their COVID-19 symptoms resolved promptly (median, 2.5 days; interquartile range, 2.0-4.3). Saliva swab specimens contained lower viral loads than nasopharyngeal swabs (P = 0.008). All cases were BA.2 infection, and 45.5% tested negative within 14 days by saliva swab from symptom onset. Eight (72.7%) showed a time-dependent increase in BA.2 PRNT titers, followed by rapid waning. Multiplex cytokine assays revealed that monocyte/macrophage activation and Th₁ responses were comparable to those of non-IC adults. Activation of interleukin (IL)-1Ra and IL-6 was brief, and IL-17A was suppressed. Activated interferon (IFN)-γ and IL-18/IL-1F4 signals were observed. CONCLUSION IC pediatric patients rapidly recovered from COVID-19 with low viral loads. Antibody response was limited, but cytokine analysis suggested an enhanced IFN-γ- and IL-18-mediated immune response without excessive activation of inflammatory cascades. To validate our observation, immune cell-based functional studies need to be conducted among IC and non-IC children.
Collapse
Affiliation(s)
- Doo Ri Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung Kwon Park
- Center for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Jin Yang Baek
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, Korea
| | - Areum Shin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chae-Hong Jeong
- Center for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Seoul, Korea.
| |
Collapse
|
21
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2025; 89:e0001623. [PMID: 39699237 PMCID: PMC11948496 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A. Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Ma R, Zhang X, Li R, Dong X, Wang W, Jiang Q, Xiao X, Shi Y, Chen L, Zheng T, Xiang Z, Ren L, Zhou Z, Lei X, Wang J. PLSCR1 suppresses SARS-CoV-2 infection by downregulating cell surface ACE2. J Virol 2025; 99:e0208524. [PMID: 39945535 PMCID: PMC11915802 DOI: 10.1128/jvi.02085-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Type I interferons exert their antiviral effects against SARS-CoV-2 by inducing the expression of interferon-stimulated genes (ISGs), including but not limited to LY6E, CH25H, IFITM2/3, and IFIH1. However, the antiviral effect and underlying mechanisms of action of most ISGs in SARS-CoV-2 infection are not yet fully understood. By screening 109 ISG-knockout cell lines, we identify that phospholipid scramblase 1 (PLSCR1), an interferon-inducible protein, acts as a crucial restriction factor against SARS-CoV-2 infection. Cells lacking PLSCR1 are highly susceptible to SARS-CoV-2 infection. Conversely, overexpression of PLSCR1 inhibits SARS-CoV-2 infection. Depletion of PLSCR1 enhances cellular entry of both pseudotyped and authentic SARS-CoV-2. Mechanistically, PLSCR1 inhibits SARS-CoV-2 entry by specifically downregulating plasma membrane expression of ACE2, the virus's receptor, without affecting the overall levels of ACE2 within the cell. As such, we unraveled previously unappreciated mechanisms by which PLSCR1 exerts its restrictive effect on SARS-CoV-2. These data provide new insights into the interplay between host innate antiviral immunity and SARS-CoV-2 and shed light on novel antiviral therapeutics. IMPORTANCE Phospholipid scramblase 1 (PLSCR1) has been identified as a critical host restriction factor against SARS-CoV-2 infection. In this study, we demonstrated that PLSCR1 inhibited SARS-CoV-2 entry by downregulating the plasma membrane expression of ACE2, the primary receptor for viral entry. Our findings elucidate a novel host-pathogen interaction that not only deepens our understanding of the innate immune response to SARS-CoV-2 but offers potential strategies for therapeutic interventions against COVID-19.
Collapse
Affiliation(s)
- Ruiyi Ma
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xinyi Zhang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ruonan Li
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Wenjing Wang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Qi Jiang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xia Xiao
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Yujin Shi
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Lan Chen
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Tian Zheng
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
| | - Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Rivera-Cardona J, Mahajan T, Kakuturu NR, Teo QW, Lederer J, Thayer EA, Rowland EF, Heimburger K, Sun J, McDonald CA, Mickelson CK, Langlois RA, Wu NC, Milenkovic O, Maslov S, Brooke CB. Intrinsic OASL expression licenses interferon induction during influenza A virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643375. [PMID: 40166309 PMCID: PMC11956916 DOI: 10.1101/2025.03.14.643375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Effective control of viral infection requires rapid induction of the innate immune response, especially the type I and type III interferon (IFN) systems. Despite the critical role of IFN induction in host defense, numerous studies have established that most cells fail to produce IFNs in response to viral stimuli. The specific factors that govern cellular heterogeneity in IFN induction potential during infection are not understood. To identify specific host factors that license some cells but not others to mount an IFN response to viral infection, we developed an approach for analyzing temporal scRNA-seq data of influenza A virus (IAV)-infected cells. This approach identified the expression of several interferon stimulated genes (ISGs) within pre-infection cells as correlates of IFN induction potential of those cells, post-infection. Validation experiments confirmed that intrinsic expression of the ISG OASL is essential for robust IFNL induction during IAV infection. Altogether, our findings reveal an important role for IFN-independent, intrinsic expression of ISGs in promoting IFN induction and provide new insights into the mechanisms that regulate cell-to-cell heterogeneity in innate immune activation.
Collapse
Affiliation(s)
- Joel Rivera-Cardona
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tarun Mahajan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Neeharika R. Kakuturu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Qi Wen Teo
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Urbana, Illinois, USA
| | - Joseph Lederer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth A. Thayer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth F. Rowland
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kyle Heimburger
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jiayi Sun
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Cera A. McDonald
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clayton K. Mickelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas C. Wu
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Urbana, Illinois, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Olgica Milenkovic
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Artificial Intelligence and Modeling, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Artificial Intelligence and Modeling, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Karali Y, Karali Z, Cekic S, Cakir I, Kilic SS. Monitoring of immunoglobulin treatment compliance of patients with an inborn error of immunity during the pandemic period. BMC Immunol 2025; 26:22. [PMID: 40089660 PMCID: PMC11909802 DOI: 10.1186/s12865-025-00703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND During the coronavirus disease 2019 (COVID-19) pandemic, significant challenges have been encountered in managing patients with chronic diseases. This study aimed to evaluate the effects of the pandemic on follow-up and treatment adherence in patients receiving immunoglobulin replacement therapy (IRT). METHODS A study examining the changes in IRT application methods was conducted between March 2020 and September 2021. An online message line, under the control of nurses and doctors, was established for our patients, and their usage rates for this communication system were recorded. RESULTS A total of 169 patients, 93 males and 76 females, were included in the study. Among the patients, 124 (73.4%) received intravenous immunoglobulin (IVIG), and 45 (26.6%) received subcutaneous immunoglobulin (SCIG) treatment. Male sex was more common in both the IVIG and SCIG groups. Although all patients in the subcutaneous treatment group continued the treatments regularly, this rate was 80.6% in the IVIG group. During the pandemic, 26 patients switched from IVIG to SCIG treatment. Furthermore, 24 patients interrupted immunoglobulin treatment for various reasons. Patients who received subcutaneous treatment took a long break from their hospital controls, although they applied them properly at home. Routine immunoglobulin trough values were measured in only 17 (37.7%) patients who were on SCIG. In the presence of symptoms, 100% of SCIG patients contacted the remote medical team via the online message line, compared to 48.3% of IVIG patients. CONCLUSION During the pandemic, the route of immunoglobulin treatment should be individualized based on each patient's characteristics and expectations. Telehealth services have emerged as a crucial tool for monitoring patients with chronic disorders, facilitating effective communication and personalized care.
Collapse
Affiliation(s)
- Yasin Karali
- Division of Pediatric Immunology, Bursa Uludag University Faculty of Medicine, Bursa, 16100, Turkey
| | - Zuhal Karali
- Division of Pediatric Immunology, Bursa Uludag University Faculty of Medicine, Bursa, 16100, Turkey
| | - Sukru Cekic
- Division of Pediatric Immunology, Bursa Uludag University Faculty of Medicine, Bursa, 16100, Turkey
| | - Irem Cakir
- Division of Pediatric Immunology, Bursa Uludag University Faculty of Medicine, Bursa, 16100, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology, Bursa Uludag University Faculty of Medicine, Bursa, 16100, Turkey.
| |
Collapse
|
25
|
Lopes da Silva VG, Schmitz GJH, Sullivan KE, Barbate J, de Haro Azinar MI, Aranda CS, de Moraes-Pinto MI. Enhanced T-cell immunity and lower humoral responses following 5-dose SARS-CoV-2 vaccination in patients with inborn errors of immunity compared with healthy controls. Front Immunol 2025; 16:1538453. [PMID: 40114918 PMCID: PMC11922935 DOI: 10.3389/fimmu.2025.1538453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
Objective Patients with Inborn Errors of Immunity (IEI) are at higher risk of severe SARS-CoV-2 infection. We evaluated humoral and cellular responses to COVID-19 vaccines in Brazilian patients with IEI and healthy controls. Methods Fifty-five patients with IEI (13-61 years) and 60 controls (13-71 years) received inactivated SARS-CoV-2 (CoronaVac), non-replicating virus-vectored (ChAdOx1 nCoV-19, AstraZeneca) or monovalent mRNA (Original strain of BNT162b2, Pfizer-BioNTech) and bivalent mRNA (Original/Omicron BA.1, Pfizer-BioNTech) vaccines and were sampled five times. Diagnoses included common variable immunodeficiency (n=25), specific antibody deficiency (n=9), ataxia-telangiectasia (n=5), X-linked agammaglobulinemia (n=4), PIK3CD-related disorders (n=4), hyper-IgM syndrome (n=4), combined immunodeficiency (n=3), and STAT1 gain-of-function (n=1). Humoral immunity was assessed via multiplex microarray for Spike, Nucleocapsid, RBD-Wuhan, RBD-Delta, RBD-BA.1, RBD-BA.2 and RBD-BA.5 neutralizing antibodies. T-cell responses to Spike and Nucleocapsid were assessed using ELISpot. Results Patients with IEI exhibited significantly lower levels of Nucleocapsid and RBD-neutralizing antibodies (p < 0.05). Notable differences in RBD-BA.2 (p = 0.008) and IgG-Nucleocapsid (p = 0.010) levels emerged over time. T-cell responses to Spike were stronger in patients with IEI post-booster (405 vs. 149 spot-forming cells/million PBMC; p = 0.002). Both groups showed enhanced Nucleocapsid-specific cellular responses over time (p = 0.017). COVID-19 hospitalization rates among patients with IEI with SARS-CoV-2 diagnosis dropped from 33.3% to zero after the first booster dose. Conclusions While humoral responses to SARS-CoV-2 vaccines were weaker in patients with IEI, their cellular immunity was similar to controls. Boosters enhanced both humoral and cellular responses. After completion of the vaccination protocol, none of the patients with IEI were hospitalized with COVID-19. Robust T-cell responses may play a critical role in protecting patients with IEI from severe COVID-19 and mortality.
Collapse
Affiliation(s)
| | | | - Kathleen E. Sullivan
- The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Júlia Barbate
- Departamento de Pediatria, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Izabel de Haro Azinar
- Departamento de Pediatria, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina Sanchez Aranda
- Departamento de Pediatria, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
26
|
Hansen KS, Jørgensen SE, Cömert C, Schiøttz‐Christensen B, Bross P, Agergaard J, Leth S, Østergaard L, Palmfeldt J, Olsen RKJ, Mogensen TH. Genetic Landscape and Mitochondrial Metabolic Dysregulation in Patients Suffering From Severe Long COVID. J Med Virol 2025; 97:e70275. [PMID: 40025839 PMCID: PMC11873671 DOI: 10.1002/jmv.70275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/20/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Long COVID represents a significant global health challenge with an unclear etiology. Alongside accumulating evidence of mitochondrial dysfunction in patients with acute SARS-CoV-2 infection, a symptomatic overlap exists between long COVID and mitochondrial disorders. However, the genetic underpinnings of mitochondrial dysfunction in long COVID have not been previously explored. We employed whole genome sequencing to analyze 13 patients with severe long COVID to identify genetic defects related to mitochondrial function. We performed extracellular bioenergetics flux analysis on peripheral blood mononuclear cells and proteomics to evaluate cellular bioenergetics and compared the results to those of healthy controls. Our investigation identified 10 variants classified as pathogenic or likely pathogenic and 83 variants of unknown significance affecting a wide range of mitochondria-associated biological functions. Bioenergetics flux analysis in peripheral blood mononuclear cells revealed an altered ATP production rate in four long COVID patients compared to healthy controls. This study presents initial evidence of a potential underlying genetic predisposition to mitochondrial dysfunction in long COVID while demonstrating altered cellular energy capacity in a subset of these patients. These findings open avenues for further research into the role of mitochondrial dysfunction and pathology in patients suffering from long COVID and may pave the way for targeted therapeutic strategies aimed at mitigating mitochondrial dysfunction.
Collapse
Grants
- This study was supported by Aarhus County Research Initiative, Undine, Horizon Europe 2021, and Novo Nordisk Fonden. Novo Nordisk Foundation grants (NNF21OC0066984), (NNF21OC0067157), (NNF20OC0064890 (LØ, THM), Horizon Europe 2021 grant (HORIZON-HLTH-2021-857), (DISEASE-04-07), UNDINE grant 101057100 (THM), Danish Innovation Fund (PASCAL-MID (8056-00010B) (THM)), Danish National Research Foundation (DNRF164 (CiViA)), and Aarhus County Research Initiative (JP, RKJO).
Collapse
Affiliation(s)
- Kristoffer Skaalum Hansen
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Sofie Eg Jørgensen
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Cagla Cömert
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical Medicine, Research Unit for Molecular MedicineAarhus UniversityAarhusDenmark
| | - Berit Schiøttz‐Christensen
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Peter Bross
- Department of Clinical Medicine, Research Unit for Molecular MedicineAarhus UniversityAarhusDenmark
| | - Jane Agergaard
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| | - Steffen Leth
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Infectious Diseases & Internal MedicineGødstrup Regional HospitalHerningDenmark
| | - Lars Østergaard
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Johan Palmfeldt
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical Medicine, Research Unit for Molecular MedicineAarhus UniversityAarhusDenmark
| | - Rikke Katrine Jentoft Olsen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical Medicine, Research Unit for Molecular MedicineAarhus UniversityAarhusDenmark
| | - Trine H. Mogensen
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
27
|
Unterberger S, Terrazzini N, Sacre S. Convalescent COVID-19 monocytes exhibit altered steady-state gene expression and reduced TLR2, TLR4 and RIG-I induced cytokine expression. Hum Immunol 2025; 86:111249. [PMID: 39922089 DOI: 10.1016/j.humimm.2025.111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, can induce trained immunity in monocytes. Trained immunity is the result of metabolic and epigenetic reprogramming of progenitor cells leading to an altered inflammatory response to subsequent activation. To investigate the monocyte response 3-6 months post SARS-CoV-2 infection, steady-state gene expression and innate immune receptor stimulation were investigated in monocytes from unvaccinated SARS-CoV-2 naïve individuals and convalescent COVID-19 participants. The differentially expressed genes (DEGs) identified were involved in the regulation of innate immune signalling pathways associated with anti-viral defence. COVID-19 participants who had experienced severe symptoms exhibited a larger number of DEGs than participants that had mild symptoms. Interestingly, genes encoding receptors that recognise SARS-CoV-2 RNA were downregulated. DDX58, encoding retinoic-acid inducible gene I (RIG-I), was downregulated which corresponded with a reduced response to RIG-I activation. Furthermore, toll-like receptor (TLR)1/2 and TLR4 activation also exhibited reduced cytokine secretion from convalescent COVID-19 monocytes. These data suggest that following SARS-CoV-2 infection, monocytes exhibit altered steady-state gene expression and reduced responsiveness to innate immune receptor activation. As both RIG-I and TLRs recognise components of SARS-CoV-2, this may lead to a moderated inflammatory response to SARS-CoV-2 reinfection in the months following the initial infection.
Collapse
Affiliation(s)
- Sarah Unterberger
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Nadia Terrazzini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK.
| |
Collapse
|
28
|
IJspeert H, Edwards ESJ, O'Hehir RE, Dalm VASH, van Zelm MC. Update on inborn errors of immunity. J Allergy Clin Immunol 2025; 155:740-751. [PMID: 39724969 DOI: 10.1016/j.jaci.2024.12.1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Ever since the first description of an inherited immunodeficiency in 1952 in a boy with gammaglobulin deficiency, new insights have progressed rapidly in disorders that are now referred to as inborn errors of immunity. In a field where fundamental molecular biology, genetics, immune signaling, and clinical care are tightly intertwined, 2022-24 saw a multitude of advances. Here we report a selection of research updates with a main focus on (1) diagnosis and screening, (2) new genetic defects, (3) susceptibility to severe coronavirus disease 2019 infection and impact of vaccination, and (4) treatment. Importantly, new pathogenic insights more rapidly affect treatment outcomes, either through an earlier and more precise diagnosis or through implementation of novel, personalized treatment. The field is growing rapidly, so awareness, communication, and collaboration are key to improving treatment outcomes.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Emily S J Edwards
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Jeffrey Modell Center, Melbourne, Australia
| | - Robyn E O'Hehir
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Jeffrey Modell Center, Melbourne, Australia
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Jeffrey Modell Center, Melbourne, Australia.
| |
Collapse
|
29
|
Boisson-Dupuis S, Bastard P, Béziat V, Bustamante J, Cobat A, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Boisson B. The monogenic landscape of human infectious diseases. J Allergy Clin Immunol 2025; 155:768-783. [PMID: 39724971 PMCID: PMC11875930 DOI: 10.1016/j.jaci.2024.12.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The spectrum of known monogenic inborn errors of immunity is growing, with certain disorders underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
30
|
Sahli W, Vitte J, Desnues B. Eosinophils and COVID-19: Insights into immune complexity and vaccine safety. Clin Transl Allergy 2025; 15:e70050. [PMID: 40120088 PMCID: PMC11929522 DOI: 10.1002/clt2.70050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND COVID-19 exhibits a variety of symptoms and may lead to multi-organ failure and death. This clinical complexity is exacerbated by significant immune dysregulation affecting nearly all cells of the innate and adaptive immune system. Granulocytes, including eosinophils, are affected by SARS-CoV-2. OBJECTIVES Eosinophil responses remain poorly understood despite early recognition of eosinopenia as a hallmark feature of COVID-19 severity. RESULTS The heterogeneous nature of eosinophil responses categorizes them as dual-function cells with contradictory effects. Eosinophil activation can suppress virus-induced inflammation by releasing type 2 cytokines like IL-13 and granular proteins with antiviral action such as eosinophil-derived neurotoxins and eosinophil cationic protein, and also by acting as antigen-presenting cells. In contrast, eosinophil accumulation in the lungs can induce tissue damage triggered by cytokines or hormones like IFN-γ and leptin. Additionally, they can affect adaptive immune functions by interacting with T cells through direct formation of membrane complexes or soluble mediator action. Individuals with allergic disorders who have elevated levels of eosinophils in tissues and blood, such as asthma, do not appear to be at an increased risk of developing severe COVID-19 following SARS-CoV-2 infection. However, the SARS-CoV-2 vaccine appears to be associated with complications and eosinophilic infiltrate-induced immunopathogenicity, which can be mitigated by corticosteroid, anti-histamines and anti-IL-5 therapy and avoided by modifying adjuvants or excipients. CONCLUSION This review highlights the importance of eosinophils in COVID-19 and contributes to a better understanding of their role during natural infection and vaccination.
Collapse
Affiliation(s)
- Wided Sahli
- Aix Marseille UniversityMEPHIMarseilleFrance
- IHU‐Méditerranée InfectionMarseilleFrance
| | - Joana Vitte
- Laboratory of ImmunologyUniversity Hospital of ReimsReimsFrance
- INSERM UMR‐S 1250 P3CELLUniversity of ReimsReimsFrance
| | - Benoit Desnues
- Aix Marseille UniversityMEPHIMarseilleFrance
- IHU‐Méditerranée InfectionMarseilleFrance
| |
Collapse
|
31
|
Pesenti L, de Oliveira Formiga R, Tamassia N, Gardiman E, Chable de la Héronnière F, Gasperini S, Chicher J, Kuhn L, Hammann P, Le Gall M, Saraceni-Tasso G, Martin C, Hosmalin A, Breckler M, Hervé R, Decker P, Ladjemi MZ, Pène F, Burgel PR, Cassatella MA, Witko-Sarsat V. Neutrophils Display Novel Partners of Cytosolic Proliferating Cell Nuclear Antigen Involved in Interferon Response in COVID-19 Patients. J Innate Immun 2025; 17:154-175. [PMID: 40015257 PMCID: PMC11867639 DOI: 10.1159/000543633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions. INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions.
Collapse
Affiliation(s)
- Lucie Pesenti
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Morgane Le Gall
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Clémence Martin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Magali Breckler
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Roxane Hervé
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Patrice Decker
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Maha Zohra Ladjemi
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Frédéric Pène
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Intensive Medicine and Reanimation, AP-HP, Cochin Hospital, Paris, France
| | - Pierre-Régis Burgel
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | |
Collapse
|
32
|
Bar M, El Anbari M, Rinchai D, Toufiq M, Kizhakayil D, Manjunath HS, Mathew R, Cavattoni I, Forer S, Recla M, Bibawi H, Alater A, Yahia R, Brown C, Miles NL, Vo P, Bedognetti D, Tomei S, Saleh A, Cugno C, Chaussabel D, Deola S. Whole-Blood Longitudinal Molecular Profiling Maps the Road of Graft Versus Host Disease (GVHD). Cancers (Basel) 2025; 17:802. [PMID: 40075650 PMCID: PMC11899482 DOI: 10.3390/cancers17050802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Graft versus host disease (GVHD) and the graft versus tumor (GVT) effect after allogeneic hematopoietic cell transplantation (allo-HCT) result from complex interactions between the donor immune system and the recipient environment. High-temporal longitudinal monitoring might be necessary to identify triggering events of GVHD and GVT and to intercept these events before their occurrence. But it would require an overall considerable amount of blood by venipuncture, which is unfeasible in such a fragile population. Methods: In this study, we implemented a targeted multiplex microfluidics q-PCR-based transcriptional fingerprint assay (TFA) on 50 µL of blood collected by a simple fingerstick to evaluate post-allo-HCT systemic immune perturbations associated with the development of GVHD. Fluctuations of a panel of 264 genes were measured in 31 allo-HCT patients by frequent (weekly or biweekly) analysis of 50 µL serial blood samples. Cross-sectional and longitudinal analyses correlated with detailed clinical annotations were performed. Results: Signatures of neutrophil activation and interferon (IFN) characterized the onset of acute GVHD, while an ongoing cytotoxic response was modulated in chronic mild GVHD and protein-synthesis and B-cell-related signatures characterized late acute/overlap GVHD. An unexpected erythroid signature distinguished patients with acute and mild chronic GVHD. Conclusions: Our micro-invasive approach unveiled the molecular heterogeneity of GVHD and identified hierarchically important biological processes conducive to different forms of GVHD. These findings increase our understanding of GVHD and reveal potentially targetable alterations. This approach might be implemented clinically to intercept GVHD before its occurrence and to modulate therapeutic interventions accordingly.
Collapse
Affiliation(s)
- Merav Bar
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109-1024, USA
| | | | - Darawan Rinchai
- Sidra Medicine, Research Department, Doha P.O. Box 26999, Qatar
| | - Mohammed Toufiq
- Sidra Medicine, Research Department, Doha P.O. Box 26999, Qatar
| | | | | | - Rebecca Mathew
- Sidra Medicine, Research Department, Doha P.O. Box 26999, Qatar
| | - Irene Cavattoni
- General Hospital of Bolzano, Hematology and BMT, 39100 Bolzano, Italy
| | - Sabine Forer
- General Hospital of Bolzano, Hematology and BMT, 39100 Bolzano, Italy
| | - Marco Recla
- General Hospital of Bolzano, Hematology and BMT, 39100 Bolzano, Italy
| | - Hani Bibawi
- Sidra Medicine, Pathology Department, Doha P.O. Box 26999, Qatar
| | - Ahmad Alater
- Sidra Medicine, Research Department, Doha P.O. Box 26999, Qatar
| | - Reem Yahia
- Sidra Medicine, Research Department, Doha P.O. Box 26999, Qatar
| | - Clarisa Brown
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109-1024, USA
| | - Nancy L. Miles
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109-1024, USA
| | - Phuong Vo
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109-1024, USA
| | | | - Sara Tomei
- Sidra Medicine, Research Department, Doha P.O. Box 26999, Qatar
| | - Ayman Saleh
- Sidra Medicine, Hematology-Oncology Division, Doha P.O. Box 26999, Qatar
| | - Chiara Cugno
- Sidra Medicine, Research Department, Doha P.O. Box 26999, Qatar
- Sidra Medicine, Hematology-Oncology Division, Doha P.O. Box 26999, Qatar
| | | | - Sara Deola
- Sidra Medicine, Research Department, Doha P.O. Box 26999, Qatar
| |
Collapse
|
33
|
Cai C, Pham TNQ, Adam D, Brochiero E, Cohen ÉA. Sensing of SARS-CoV-2-infected cells by plasmacytoid dendritic cells is modulated via an interplay between CD54/ICAM-1 and CD11a/LFA-1 α L integrin. J Virol 2025; 99:e0123524. [PMID: 39804090 PMCID: PMC11852802 DOI: 10.1128/jvi.01235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/13/2024] [Indexed: 02/26/2025] Open
Abstract
SARS-CoV-2 infection induces interferon (IFN) response by plasmacytoid dendritic cells (pDCs), but the underlying mechanisms are poorly defined. Here, we show that the bulk of the IFN-I release comes from pDC sensing of infected cells and not cell-free virions. Physical contact (or conjugates) between pDCs and infected cells is mediated through CD54-CD11a engagement, and such conjugate formation is required for efficient IFN-I production. Interestingly, CD11a is inducible on infected epithelial cells when they are co-cultured with PBMCs, thus allowing for potentially bidirectional cross-talks between CD54 and CD11a, which further amplify the sensing. SARS-CoV-2 variants of concern (VOCs) are sensed less efficiently than the Wuhan ancestral strain (LSPQ1), but the mechanisms driving the defect are different among the VOCs. CD11a induction on infected cells is correlated with their ability to form cell conjugates with pDCs. Impaired sensing of the Alpha variant is linked to reduced CD11a induction on infected cells and to fewer conjugates formed with pDCs. Collectively, our findings provide new insights into how SARS-CoV-2-infected cells are sensed by pDCs and reveal that this process is targeted by some VOCs to limit IFN-I production. IMPORTANCE Type I interferons (IFN-I) represent an important component of the host's innate defense against initial SARS-CoV-2 infections. Plasmacytoid dendritic cells (pDCs) produce large quantities of IFN-I upon recognition of viral particles or infected cells. This study shows that pDCs sense infected cells more efficiently than viral particles, leading to a higher production of IFN-I. Physical contact between a pDC and an infected cell is critical to this process; the interaction is mediated via CD11a and ICAM-1 complex and potentially is bidirectional. SARS-CoV-2 variants of concern (VOCs) have evolved to limit the IFN response through different mechanisms. For the Alpha variant, reduced level of CD11a on infected cells is linked to less contact with pDCs and decreased IFN-I release. Overall, our study characterizes some of the early steps involved in pDC-mediated response against SARS-CoV-2 infection and shows that these processes are targeted by VOCs to likely limit IFN-I response and enhance viral spread.
Collapse
Affiliation(s)
- ChenRongRong Cai
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Tram N. Q. Pham
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Damien Adam
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Emmanuelle Brochiero
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
34
|
Lee C, Khan R, Mantsounga CS, Sharma S, Pierce J, Amelotte E, Butler CA, Farinha A, Parry C, Caballero O, Morrison JA, Uppuluri S, Whyte JJ, Kennedy JL, Zhang X, Choudhary G, Olson RM, Morrison AR. IL-1β-driven NF-κB transcription of ACE2 as a Mechanism of Macrophage Infection by SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.24.630260. [PMID: 39763770 PMCID: PMC11703209 DOI: 10.1101/2024.12.24.630260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Coronavirus disease 2019 (COVID-19), caused by infection with the enveloped RNA betacoronavirus, SARS-CoV-2, led to a global pandemic involving over 7 million deaths. Macrophage inflammatory responses impact COVID-19 severity; however, it is unclear whether macrophages are infected by SARS-CoV-2. We sought to identify mechanisms regulating macrophage expression of ACE2, the primary receptor for SARS-CoV-2, and to determine if macrophages are susceptible to productive infection. We developed a humanized ACE2 (hACE2) mouse whereby hACE2 cDNA was cloned into the mouse ACE2 locus under control of the native promoter. We validated the susceptibility of hACE2 mice to SARS-CoV-2 infection relative to wild-type mice and an established K18-hACE2 model of acute fulminating disease. Intranasal exposure to SARS-CoV-2 led to pulmonary consolidations with cellular infiltrate, edema, and hemorrhage, consistent with pneumonia, yet unlike the K18-hACE2 model, hACE2 mice survived and maintained stable weight. Infected hACE2 mice also exhibited a unique plasma chemokine, cytokine, and growth factor inflammatory signature relative to K18-hACE2 mice. Infected hACE2 mice demonstrated evidence of viral replication in infiltrating lung macrophages, and infection of macrophages in vitro revealed a transcriptional profile indicative of altered RNA and ribosomal processing machinery as well as activated cellular antiviral defense. Macrophage IL-1β-driven NF-κB transcription of ACE2 was an important mechanism of dynamic ACE2 upregulation, promoting macrophage susceptibility to infection. Experimental models of COVID-19 that make use of native hACE2 expression will allow for mechanistic insight into factors that can either promote host resilience or increase susceptibility to worsening severity of infection.
Collapse
Affiliation(s)
- Cadence Lee
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Rachel Khan
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Chris S. Mantsounga
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Sheila Sharma
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Julia Pierce
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Elizabeth Amelotte
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Celia A. Butler
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Andrew Farinha
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Crystal Parry
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Olivya Caballero
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Jeremi A. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Saketh Uppuluri
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Jeffrey J. Whyte
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri Division of Research, Innovation and Impact, Columbia, Missouri, USA
| | - Joshua L. Kennedy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
- Cardiovascular Research Center, Lifespan Cardiovascular Research Institute, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Rachel M. Olson
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri Division of Research, Innovation and Impact, Columbia, Missouri, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
- Lead contact and corresponding author
| |
Collapse
|
35
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
36
|
Barzaghi F, Visconti C, Pipitone GB, Bondesan S, Molli G, Giannelli S, Sartirana C, Lampasona V, Bazzigaluppi E, Brigatti C, Gervais A, Bastard P, Tassan Din C, Molinari C, Piemonti L, Casanova JL, Carrera P, Casari G, Aiuti A. Severe West Nile Virus and Severe Acute Respiratory Syndrome Coronavirus 2 Infections in a Patient With Thymoma and Anti-Type I Interferon Antibodies. J Infect Dis 2025; 231:e206-e212. [PMID: 38976510 PMCID: PMC11793036 DOI: 10.1093/infdis/jiae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Patients with severe West Nile virus and SARS-CoV-2 infections deserve accurate diagnosis of underlying diseases, determining possible anti-interferon autoantibody production, since they must receive antiviral and immunological therapies to enhance antiviral response. The current study aimed to investigate determinants of severity in a previously healthy patient who experienced 2 life-threatening infections, from West Nile Virus (WNV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). During coronavirus disease 2019 (COVID-19) hospitalization he was diagnosed with a thymoma, retrospectively identified as already present at the time of WNV infection. Heterozygosity for p.Pro554Ser in the TLR3 gene, which increases susceptibility to severe COVID-19, and homozygosity for CCR5 c.554_585del, associated with severe WNV infection, were found. Neutralizing anti-interferon (IFN)-α and anti-IFN-ω autoantibodies were detected, likely induced by the underlying thymoma and increasing susceptibility to both severe COVID-19 pneumonia and West Nile encephalitis.
Collapse
Affiliation(s)
- Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Visconti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Simone Bondesan
- Laboratory of Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Molli
- Laboratory of Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Sartirana
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Bazzigaluppi
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Brigatti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Chiara Tassan Din
- Clinic of Infectious Diseases, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Molinari
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
- Howard Hughes Medical Institute, Paris, France
| | - Paola Carrera
- Laboratory of Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Unit of Genomics for Human Disease Diagnosis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgio Casari
- Vita-Salute San Raffaele University, Milan, Italy
- Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
37
|
Al Qureshah F, Le Pen J, de Weerd NA, Moncada-Velez M, Materna M, Lin DC, Milisavljevic B, Vianna F, Bizien L, Lorenzo L, Lecuit M, Pommier JD, Keles S, Ozcelik T, Pedraza-Sanchez S, de Prost N, El Zein L, Hammoud H, Ng LFP, Halwani R, Saheb Sharif-Askari N, Lau YL, Tam AR, Singh N, Bhattad S, Berkun Y, Chantratita W, Aguilar-López R, Shahrooei M, Abel L, Bastard P, Jouanguy E, Béziat V, Zhang P, Rice CM, Cobat A, Zhang SY, Hertzog PJ, Casanova JL, Zhang Q. A common form of dominant human IFNAR1 deficiency impairs IFN-α and -ω but not IFN-β-dependent immunity. J Exp Med 2025; 222:e20241413. [PMID: 39680367 DOI: 10.1084/jem.20241413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Autosomal recessive deficiency of the IFNAR1 or IFNAR2 chain of the human type I IFN receptor abolishes cellular responses to IFN-α, -β, and -ω, underlies severe viral diseases, and is globally very rare, except for IFNAR1 and IFNAR2 deficiency in Western Polynesia and the Arctic, respectively. We report 11 human IFNAR1 alleles, the products of which impair but do not abolish responses to IFN-α and -ω without affecting responses to IFN-β. Ten of these alleles are rare in all populations studied, but the remaining allele (P335del) is common in Southern China (minor allele frequency ≈2%). Cells heterozygous for these variants display a dominant phenotype in vitro with impaired responses to IFN-α and -ω, but not -β, and viral susceptibility. Negative dominance, rather than haploinsufficiency, accounts for this dominance. Patients heterozygous for these variants are prone to viral diseases, attesting to both the dominance of these variants clinically and the importance of IFN-α and -ω for protective immunity against some viruses.
Collapse
Affiliation(s)
- Fahd Al Qureshah
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology , Riyadh, Saudi Arabia
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Australia
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Daniel C Lin
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Université Paris Cité, Imagine Institute , Paris, France
| | - Baptiste Milisavljevic
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Fernanda Vianna
- Laboratório de Medicina Genômica Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
- National Institute of Population Medical Genetics (INAGEMP) , Porto Alegre, Brazil
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Marc Lecuit
- Université Paris Cité, Imagine Institute , Paris, France
- Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
- Biology of Infection Unit, Institut Pasteur, Inserm U1117, Université Paris Cité, Paris, France
| | - Jean-David Pommier
- Biology of Infection Unit, Institut Pasteur, Inserm U1117, Université Paris Cité, Paris, France
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Bilkent-Ankara, Turkey
| | - Sigifredo Pedraza-Sanchez
- Unit of Biochemistry, National Institute for Medical Sciences and Nutrition Salvador Zubiran (INCMNSZ) , Mexico City, Mexico
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil , Créteil Cedex, France
- INSERM U955, Team "Viruses, Hepatology, Cancer" , Créteil, France
| | - Loubna El Zein
- Biology Department, Lebanese University, Beirut, Lebanon
| | | | - Lisa F P Ng
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research , Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University , Singapore, Singapore
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah , Sharjah, UAE
- Prince Abdullah Bin Khalid Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Yu Lung Lau
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony R Tam
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | | | | | - Yackov Berkun
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Mount Scopus and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Raúl Aguilar-López
- Department of Surgery, Maternal and Child Hospital, Social Security Institute of the State of Mexico and Municipalities (ISSEMYM), Toluca, Mexico
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Dr. Shahrooei's Laboratory , Tehran, Iran
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris , Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Australia
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
- Howard Hughes Medical Institute , New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| |
Collapse
|
38
|
Tajti G, Gebetsberger L, Pamlitschka G, Aigner-Radakovics K, Leitner J, Steinberger P, Stockinger H, Ohradanova-Repic A. Cyclophilin-CD147 interaction enables SARS-CoV-2 infection of human monocytes and their activation via Toll-like receptors 7 and 8. Front Immunol 2025; 16:1460089. [PMID: 39963132 PMCID: PMC11830813 DOI: 10.3389/fimmu.2025.1460089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Monocytes and macrophages, as important constituents of the innate immune system, are equipped with multiple Toll-like-receptors (TLRs) to recognize invading pathogens, such as SARS-CoV-2, and mount an antiviral response. Nevertheless, their uncontrolled activation can lead to hyperinflammation seen in severe COVID-19. Surprisingly, we observed that recombinant SARS-CoV-2 Spike (S) and Nucleocapsid (N) proteins triggered only a weak proinflammatory response in human peripheral blood monocytes. By employing THP-1 and Jurkat NF-κB::eGFP reporter cell lines expressing specific TLRs, various TLR ligands and blocking antibodies, we determined that surface TLRs, including TLR2/1, TLR2/6 and TLR4 do not play a major role in SARS-CoV-2 sensing. However, monocytes are potently activated by the replication-competent SARS-CoV-2, and the response correlates with the viral uptake that is observed only in monocytes, but not in lymphocytes. We show that monocyte activation involves two distinct steps. Firstly, SARS-CoV-2 infects monocytes in a process independent of the S protein and the prime SARS-CoV-2 receptor angiotensin-converting enzyme 2. Instead, the alternative SARS-CoV-2 receptor CD147, which is highly expressed on monocytes, recognizes its well-known interaction partners cyclophilins A and B that are incorporated into SARS-CoV-2 virions. Secondly, upon viral uptake via the cyclophilin-CD147 interaction, that can be inhibited by specific CD147 blocking antibodies or competition with recombinant human cyclophilin A and B, SARS-CoV-2 RNA is recognized by TLR7/8 in endosomes, leading to upregulation of tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6, comprising the core hyperinflammatory signature. Taken together, our data reveal a novel mechanism how human monocytes sense SARS-CoV-2 and suggest that targeting the cyclophilin-CD147 axis might be beneficial to alleviate overt myeloid-driven inflammation triggered by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Gabor Tajti
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Laura Gebetsberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Gregor Pamlitschka
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Katharina Aigner-Radakovics
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Judith Leitner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Peter Steinberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
39
|
Erskine F, Spensley K, Prendecki M, Santos E, Anand A, Altmann D, Willicombe M. The Effect of HLA Polymorphism on Immune Response to SARS-CoV-2 Vaccination Within an Infection-Naïve, Vulnerable Population With End-Stage Renal Disease. HLA 2025; 105:e70076. [PMID: 39991976 PMCID: PMC11848999 DOI: 10.1111/tan.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/24/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
HLA genes exhibit a high degree of polymorphism, contributing to genetic variability known to influence immune responses to infection. Here we investigate associations between HLA polymorphism and serological and T-lymphocyte responses to the BNT162b2 and ChAdOx1 SARS-CoV-2 vaccines within a population receiving maintenance haemodialysis (HD) for End-Stage Renal Disease (ESRD). Our primary objective was to identify HLA alleles associated with diminished serological and T-cellular responsiveness to vaccination. As a secondary objective, the associations between HLA type and COVID-19 disease outcomes were investigated using an independent ESRD cohort (n = 327). This aimed to determine if the alleles associated with poor vaccine response were also linked to unfavourable infection outcomes. In the main study, serum from 225 SARS-CoV-2 infection-naïve patients was HLA-typed using high-resolution Next Generation Sequencing, and serological titres were analysed for the presence of SARS-CoV-2 spike glycoprotein-specific antibodies after two doses of vaccination. A subset of patients (n = 33) was also tested for a T-lymphocyte response. Overall, 89% (n = 200) of patients seroconverted, but only 18% (n = 6) of the cellular response subgroup had a positive T-lymphocyte response. The HLA class II alleles DPB1*104:01, DRB1*04:03 and DRB1*14:04 and HLA class I alleles B*08:01 and B*18:01 were found to significantly correlate with seronegativity, and DQB1*06:01 correlated with serological responsiveness. We were unable to analyse the effect of HLA on disease outcome and T-lymphocyte response due to sample size limitations. Our results suggest pathways for further research and begin to elucidate the relationship between HLA polymorphism and immune responses in the vulnerable ESRD population.
Collapse
Affiliation(s)
- Fiona Erskine
- Imperial College London Department of Surgery and CancerLondonUK
| | - Katrina Spensley
- Imperial College London Department of Surgery and CancerLondonUK
| | - Maria Prendecki
- Imperial College London Department of Surgery and CancerLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| | | | | | - Danny Altmann
- Imperial College London Department of Surgery and CancerLondonUK
| | - Michelle Willicombe
- Imperial College London Department of Surgery and CancerLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
40
|
Canny SP, Stanaway IB, Holton SE, Mitchem M, O’Rourke AR, Pribitzer S, Baxter SK, Wurfel MM, Malhotra U, Buckner JH, Bhatraju PK, Morrell ED, Speake C, Mikacenic C, Hamerman JA. Proteomic Analyses in COVID-19-Associated Secondary Hemophagocytic Lymphohistiocytosis. Crit Care Explor 2025; 7:e1203. [PMID: 39888602 PMCID: PMC11789895 DOI: 10.1097/cce.0000000000001203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
CONTEXT COVID-19 has been associated with features of a cytokine storm syndrome with some patients sharing features with the hyperinflammatory disorder, secondary hemophagocytic lymphohistiocytosis (sHLH). HYPOTHESIS We hypothesized that proteins associated with sHLH from other causes will be associated with COVID-sHLH and that subjects with fatal COVID-sHLH would have defects in immune-related pathways. METHODS AND MODELS We identified two cohorts of adult patients presenting with COVID-19 at two tertiary care hospitals in Seattle, Washington in 2020 and 2021. In this observational study, we assessed clinical laboratory values and plasma proteomics. Subjects identified as having sHLH (ferritin > 1000 plus cytopenias in two or more lineages [WBC < 5000 odds ratio [OR] ANC (absolute neutrophil count) < 1000, hemoglobin < 9 or hematocrit < 27, platelets < 100,000], and elevated transaminases [either AST (aspartate aminotransferase) or ALT (alanine aminotransferase) > 30] OR subjects with a ferritin > 3000) were compared with those with COVID-19 without sHLH. We identified 264 patients with COVID-19 of whom 24 met our sHLH definition. Eight patients who died of COVID-sHLH underwent genomic sequencing to identify variants in immune-related genes. RESULTS Nine percent of enrolled COVID-19 subjects met our defined criteria for sHLH (n = 24/264). Using broad serum proteomic approaches (O-link and SomaScan), we identified three proteins increased in subjects with COVID-19-associated sHLH (soluble PD-L1 [sPD-L1], tumor necrosis factor-R1, and interleukin [IL]-18BP, p < 0.05 for O-link and false discovery rate < 0.05 for SomaScan), supporting a role for proteins previously associated with other forms of sHLH (IL-18BP and soluble tumor necrosis factor receptor 1). We also identified candidate proteins and pathways associated with COVID-sHLH, including sPD-L1 and the syntaxin pathway. We detected pathogenic variants in DOCK8 and TMPRSS15 in deceased individuals with COVID-sHLH, further suggesting that alterations in immune-related processes may contribute to hyperinflammation and fatal outcomes in COVID-19. INTERPRETATIONS AND CONCLUSIONS Proteins increased in COVID-19-associated sHLH, such as sPD-L1, and pathways, such as the syntaxin pathway, suggest important roles for the immune response in driving sHLH in the context of COVID-19.
Collapse
Affiliation(s)
- Susan P. Canny
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Ian B. Stanaway
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, WA
| | - Sarah E. Holton
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Mallorie Mitchem
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | | | - Stephan Pribitzer
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA
| | - Sarah K. Baxter
- Department of Pediatrics, University of Washington, Seattle, WA
- Sonoma Biotherapeutics, Seattle, WA
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Uma Malhotra
- Department of Infectious Disease, Virginia Mason Medical Center, Seattle, WA
- Department of Medicine, Section of Infectious Diseases, University of Washington, Seattle, WA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| | - Pavan K. Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Eric D. Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Jessica A. Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
41
|
Walsh JML, Miao VN, Owings AH, Tang Y, Bromley JD, Kazer SW, Kimler K, Asare C, Ziegler CGK, Ibrahim S, Jivanjee T, George M, Navia AW, Drake RS, Parker A, Billingsley BC, Dotherow P, Tarugu S, Kota SK, Laird H, Wichman TG, Davis YT, Dhaliwal NS, Pride Y, Guo Y, Senitko M, Harvey J, Bates JT, Diamond G, Garrett MR, Robinson DA, Frame IJ, Lyons JJ, Robinson TO, Shalek AK, Horwitz BH, Glover SC, Ordovas-Montanes J. Variants and vaccines impact nasal immunity over three waves of SARS-CoV-2. Nat Immunol 2025; 26:294-307. [PMID: 39833605 DOI: 10.1038/s41590-024-02052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025]
Abstract
Viral variant and host vaccination status impact infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet how these factors shift cellular responses in the human nasal mucosa remains uncharacterized. We performed single-cell RNA sequencing (scRNA-seq) on nasopharyngeal swabs from vaccinated and unvaccinated adults with acute Delta and Omicron SARS-CoV-2 infections and integrated with data from acute infections with ancestral SARS-CoV-2. Patients with Delta and Omicron exhibited greater similarity in nasal cell composition driven by myeloid, T cell and SARS-CoV-2hi cell subsets, which was distinct from that of ancestral cases. Delta-infected samples had a marked increase in viral RNA, and a subset of PER2+EGR1+GDF15+ epithelial cells was enriched in SARS-CoV-2 RNA+ cells in all variants. Prior vaccination was associated with increased frequency and activation of nasal macrophages. Expression of interferon-stimulated genes negatively correlated with coronavirus disease 2019 (COVID-19) severity in patients with ancestral and Delta but not Omicron variants. Our study defines nasal cell responses and signatures of disease severity across SARS-CoV-2 variants and vaccination.
Collapse
Affiliation(s)
- Jaclyn M L Walsh
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vincent N Miao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School and MIT, Boston, MA, USA
| | - Anna H Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ying Tang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Joshua D Bromley
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel W Kazer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Kyle Kimler
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Chelsea Asare
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carly G K Ziegler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School and MIT, Boston, MA, USA
- Harvard Graduate Program in Biophysics, Cambridge, MA, USA
| | - Samira Ibrahim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tasneem Jivanjee
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Micayla George
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew W Navia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Riley S Drake
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Parker
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Paul Dotherow
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Spurthi Tarugu
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sai K Kota
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hannah Laird
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - T Grant Wichman
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yesenia T Davis
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Neha S Dhaliwal
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yilianys Pride
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yanglin Guo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michal Senitko
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jessie Harvey
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - John T Bates
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Michael R Garrett
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - D Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - I J Frame
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jonathan J Lyons
- Division of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Tanya O Robinson
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alex K Shalek
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School and MIT, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Sarah C Glover
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University, New Orleans, LA, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA.
- Program in Immunology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
42
|
Benamar M, Lai PS, Huang CY, Chen Q, Oktelik FB, Contini P, Wang M, Okin D, Crestani E, Fong J, Fion TMC, Gokbak MN, Harb H, Phipatanakul W, Marri L, Vassallo C, Guastalla A, Kim M, Sui HY, Berra L, Goldberg MB, Angelini C, De Palma R, Chatila TA. Notch4 regulatory T cells and SARS-CoV-2 viremia shape COVID19 survival outcome. Allergy 2025; 80:557-569. [PMID: 39361431 PMCID: PMC11805648 DOI: 10.1111/all.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/05/2024] [Accepted: 09/07/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Immune dysregulation and SARS-CoV-2 plasma viremia have been implicated in fatal COVID-19 disease. However, how these two factors interact to shape disease outcomes is unclear. METHODS We carried out viral and immunological phenotyping on a prospective cohort of 280 patients with COVID-19 presenting to acute care hospitals in Boston, Massachusetts and Genoa, Italy between June 1, 2020 and February 8, 2022. Disease severity, mortality, plasma viremia, and immune dysregulation were assessed. A mouse model of lethal H1N1 influenza infection was used to analyze the therapeutic potential of Notch4 and pyroptosis inhibition in disease outcome. RESULTS Stratifying patients based on %Notch4+ Treg cells and/or the presence of plasma viremia identified four subgroups with different clinical trajectories and immune phenotypes. Patients with both high %Notch4+ Treg cells and viremia suffered the most disease severity and 90-day mortality compared to the other groups even after adjusting for baseline comorbidities. Increased Notch4 and plasma viremia impacted different arms of the immune response in SARS-CoV-2 infection. Increased Notch4 was associated with decreased Treg cell amphiregulin expression and suppressive function whereas plasma viremia was associated with increased monocyte cell pyroptosis. Combinatorial therapies using Notch4 blockade and pyroptosis inhibition induced stepwise protection against mortality in a mouse model of lethal H1N1 influenza infection. CONCLUSIONS The clinical trajectory and survival outcome in hospitalized patients with COVID-19 is predicated on two cardinal factors in disease pathogenesis: viremia and Notch4+ Treg cells. Intervention strategies aimed at resetting the immune dysregulation in COVID-19 by antagonizing Notch4 and pyroptosis may be effective in severe cases of viral lung infection.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Peggy S. Lai
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Chen
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Fatma Betul Oktelik
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Paola Contini
- Department of Internal Medicine, Unit of Clinical Immunology and Translational Medicine, University of Genova, Italy
- Clinical Immunology Division, IRCCS-San Martino Hospital-Genova
| | - Muyun Wang
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Okin
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Crestani
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Fong
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsz Man Chan Fion
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Merve Nida Gokbak
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hani Harb
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Institute for Medical Microbiology and Virology, Technical University Dresden, Germany
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Marri
- Department of Internal Medicine, Unit of Clinical Immunology and Translational Medicine, University of Genova, Italy
- Clinical Immunology Division, IRCCS-San Martino Hospital-Genova
| | - Chiara Vassallo
- Clinical Immunology Division, IRCCS-San Martino Hospital-Genova
| | | | - Minsik Kim
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hui-Yu Sui
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcia B. Goldberg
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Raffaele De Palma
- Department of Internal Medicine, Unit of Clinical Immunology and Translational Medicine, University of Genova, Italy
- CNR-Institute of Biomolecular Chemistry (IBC), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Yu C, Wang W, Zhang Q, Jin Z. Autoimmune hepatitis under the COVID-19 veil: an analysis of the nature of potential associations. Front Immunol 2025; 16:1510770. [PMID: 39958350 PMCID: PMC11825795 DOI: 10.3389/fimmu.2025.1510770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
In recent years, the novel coronavirus infectious disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has led to over 670 million infections and nearly 7 million deaths worldwide. The global pandemic of COVID-19 has precipitated a significant public health crisis. The prevalence of liver function abnormalities associated with SARS-CoV-2 is as high as 53% among healthy individuals or patients with autoimmune hepatitis (AIH) and shows a positive correlation with disease severity; moreover, specific adaptive immune responses can influence the trajectory and outcomes of COVID-19. For instance, SARS-CoV-2 may impact autoimmunity through mechanisms such as excessive stimulation of immune responses and molecular mimicry, particularly in genetically predisposed individuals. Currently, the overall mutational trend of SARS-CoV-2 indicates heightened infectivity and immune evasion capabilities. Consequently, vaccination remains crucial for universal protection against this disease. Nevertheless, alongside the widespread implementation of vaccination programs globally, an increasing number of cases have been documented where COVID-19 vaccination appears to trigger new-onset autoimmune hepatitis; yet definitive evidence is still pending elucidation regarding causality. In this review, we analyse the clinical-immunological characteristics, risks associated with severe disease progression, and prognosis for AIH patients infected with SARS-CoV-2; discuss the detrimental effects exerted by SARS-CoV-2 on hepatic function; summarise the mechanisms and attributes leading to new-onset AIH; as well as provide insights into how vaccination may interfere with autoimmunity processes. We continue to underscore the significance of vaccination while aiming to enhance awareness concerning potential risks associated with it-this could facilitate better management strategies for autoimmune diseases along with appropriate adjustments in vaccination protocols. Although the precise triggering mechanism linking COVID-19-related events to AIH remains unclear, existing evidence suggests that this relationship is far from coincidental.
Collapse
Affiliation(s)
| | | | | | - Zhenjing Jin
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
44
|
Malaspina P, Jodice C, Ciminelli BM, Biancolella M, Colona VL, Latini A, Leonardis F, Rogliani P, Novelli A, Novelli G, Novelletto A. Genetic diversity of the immunoglobulin heavy chain locus in cohorts of patients affected with SARS-CoV-2. Hum Genomics 2025; 19:7. [PMID: 39885568 PMCID: PMC11780896 DOI: 10.1186/s40246-025-00719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The Immunoglobulin Heavy Chain (IGH) genomic region is responsible for the production of circulating antibodies and warrants careful investigation for its association with COVID-19 characteristics. Multiple allelic variants within and across different IGH gene segments form a limited set of haplotypes. Previous studies have shown associations between some of these haplotypes and clinical outcomes of COVID-19. We typed 445 individuals of European ancestry, stratified for gender, age, and clinical status for 4 SNPs, two of which result in amino acid substitutions in IGHA2 and IGHG4, respectively. We analyzed associations at the single-locus level and for 4-loci haplotypes, inferred by phasing, after stratifying the overall cohort by gender, age, and disease severity. RESULTS Only weak evidence of significant differences between subgroups was obtained at the level of a single SNP. However, when the haplotypic data were analyzed for the young and old subgroups separately, uneven partitioning was observed regarding the occurrence of severe cases and Resistors. We then examined the cross-tabulation of disease severity in males and females, based on the presence of each haplotype in the genotype. Two haplotypes were underrepresented in young severe cases compared to old severe ones. The same two haplotypes were overrepresented among young Resistors. These findings provide stronger support for, the weak associations observed at the single locus level. CONCLUSIONS Two haplotypes seem to act as protective factors specifically in young individuals, counteracting the general increase in vulnerability with age. This observation aligns with stronger genetic effects seen in young patients for other susceptibility genes. Our findings complement previous research identifying specific genetic variants that influence COVID-19 susceptibility and severity, emphasizing the complex interplay between host genetics and viral infection outcomes. Our results are consistent with a potential causative role of IGH regulatory regions (e.g. HS1.2), which are flanked by the SNP set here analyzed.
Collapse
Affiliation(s)
- Patrizia Malaspina
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| | - Carla Jodice
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Bianca Maria Ciminelli
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Michela Biancolella
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Vito Luigi Colona
- Research Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | | | | | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
- Tor Vergata University Hospital, Rome, Italy
| | - Andrea Novelletto
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| |
Collapse
|
45
|
Denz PJ, Papa JL, McFadden MI, Rao PR, Roettger J, Forero A, Yount JS. Accelerated Adaptation of SARS-CoV-2 Variants in Mice Lacking IFITM3 Preserves Distinct Tropism and Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635150. [PMID: 39975176 PMCID: PMC11838348 DOI: 10.1101/2025.01.27.635150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Here we investigated whether interferon induced transmembrane protein 3 (IFITM3), a key antiviral protein deficient in certain human populations, affects interspecies adaptation of SARS-CoV-2. We found that SARS-CoV-2 Beta and Omicron variants passaged through IFITM3-deficient versus wild type mice exhibit enhanced replication and pathogenesis in this new host species. Enhancements associated with amino acid substitutions in the viral genome, suggesting that IFITM3 limits accumulation of adaptive mutations. Mouse-adapted viruses enabled comparative studies of variants in mice. Beta caused lung dysfunction and altered cilia-associated gene programs, consistent with broad viral antigen distribution in lungs. Omicron, which shows low pathogenicity and upper respiratory tract preference in humans, replicated to high nasal titers while showing restrained spatial distribution in lungs and diminished lung inflammatory responses compared to Beta. Our findings demonstrate that IFITM3 deficiency accelerates coronavirus adaptation and reveal that intrinsic SARS-CoV-2 variant traits shape tropism, immunity, and pathogenesis across hosts. HIGHLIGHTS IFITM3 is a critical barrier to SARS-CoV-2 adaptation in new host speciesMouse-adapted SARS-CoV-2 strains enable comparative pathologyOmicron favors nose and large airways, leading to mild lung pathologyBeta exhibits broad lung replication, driving severe inflammation and dysfunction.
Collapse
|
46
|
Lee JS, Dittmar M, Miller J, Li M, Ayyanathan K, Ferretti M, Hulahan J, Whig K, Etwebi Z, Griesman T, Schultz DC, Cherry S. Pressure to evade cell-autonomous innate sensing reveals interplay between mitophagy, IFN signaling, and SARS-CoV-2 evolution. Cell Rep 2025; 44:115115. [PMID: 39708319 DOI: 10.1016/j.celrep.2024.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/07/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
SARS-CoV-2 emerged, and continues to evolve, to efficiently infect humans worldwide. SARS-CoV-2 evades early innate recognition, interferon signaling occurring only in bystander cells. How the virus continues to evolve in the face of innate responses has important consequences, but the pathways involved are incompletely understood. Here, we find that autophagy genes regulate innate immune signaling, impacting the basal set point of interferons and, thus, permissivity to infection. Mechanistically, autophagy (mitophagy) genes negatively regulate MAVS, and this low basal level of MAVS is efficiently antagonized by SARS-CoV-2 ORF9b, blocking interferon activation in infected cells. However, loss of autophagy increased MAVS and overcomes ORF9b-mediated antagonism. This has driven the evolution of SARS-CoV-2 to express more ORF9b, allowing SARS-CoV-2 to replicate under conditions of increased MAVS signaling. Altogether, we find a critical role of mitophagy in the regulation of innate immunity and uncover an evolutionary trajectory of SARS-CoV-2 ORF9b to overcome host defenses.
Collapse
Affiliation(s)
- Jae Seung Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Dittmar
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minghua Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kasirajan Ayyanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Hulahan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kanupriya Whig
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zienab Etwebi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor Griesman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Ando M, Kubota K, Kadowaki S, Kawamoto M, Kawamoto N, Okamoto H, Nagaya S, Miwa Y, Ohnishi H. Atypical hemolytic uremic syndrome with a C3 variant following COVID-19: a case report. Front Pediatr 2025; 13:1507727. [PMID: 39917338 PMCID: PMC11799235 DOI: 10.3389/fped.2025.1507727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury, and is caused by overactivation of the alternative complement pathway. A 13-year-old Japanese boy with an unremarkable medical history developed symptoms of TMA following coronavirus disease 2019 (COVID-19) infection with mild respiratory symptoms. He was eventually diagnosed with aHUS with a gain-of-function C3 variant. He improved with supportive therapy and plasma exchange, and did not require anti-C5 antibody therapy. In the literature, more than 20 cases of de novo or relapsed aHUS have been described following COVID-19. It has been shown that the complement lectin pathway can be activated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike and N proteins, and the alternative pathway can be activated by the SARS-CoV-2 spike protein. The current case highlights the possibility that COVID-19, even when respiratory symptoms are not severe, can trigger aHUS.
Collapse
Affiliation(s)
- Masato Ando
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kazuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
| | - Saori Kadowaki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Minako Kawamoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Norio Kawamoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Haruka Okamoto
- Gifu University Advanced Critical Care Center, Gifu, Japan
| | | | - Yuki Miwa
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
| |
Collapse
|
48
|
Kholaiq H, Abdelmoumen Y, Moundir A, El Kettani A, Ailal F, Benhsaien I, Adnane F, Drissi Bourhanbour A, Amenzoui N, El Bakkouri J, Bousfiha AA. Human genetic and immunological determinants of SARS-CoV-2 infection and multisystem inflammatory syndrome in children. Clin Exp Immunol 2025; 219:uxae062. [PMID: 39028583 PMCID: PMC11771195 DOI: 10.1093/cei/uxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces pneumonia and acute respiratory failure in coronavirus disease 2019 (COVID-19) patients with inborn errors of immunity to type I interferon (IFN-I). The impact of SARS-CoV-2 infection varies widely, ranging from mild respiratory symptoms to life-threatening illness and organ failure, with a higher incidence in men than in women. Approximately 3-5% of critical COVID-19 patients under 60 and a smaller percentage of elderly patients exhibit genetic defects in IFN-I production, including X-chromosome-linked TLR7 and autosomal TLR3 deficiencies. Around 15-20% of cases over 70 years old, and a smaller percentage of younger patients, present with preexisting autoantibodies neutralizing type I interferons. Additionally, innate errors affecting the control of the response to type I interferon have been associated with pediatric multisystem inflammatory syndrome (MIS-C). Several studies have described rare errors of immunity, such as XIAP deficiency, CYBB, SOCS1, OAS1/2, and RNASEL, as underlying factors in MIS-C susceptibility. However, further investigations in expanded patient cohorts are needed to validate these findings and pave the way for new genetic approaches to MIS-C. This review aims to present recent evidence from the scientific literature on genetic and immunological abnormalities predisposing individuals to critical SARS-CoV-2 infection through IFN-I. We will also discuss multisystem inflammatory syndrome in children (MIS-C). Understanding the immunological mechanisms and pathogenesis of severe COVID-19 may inform personalized patient care and population protection strategies against future serious viral infections.
Collapse
Affiliation(s)
- Halima Kholaiq
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Yousra Abdelmoumen
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abderrahmane Moundir
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Assiya El Kettani
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Laboratory of Bacteriology, Virology and Hospital Hygiene, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Fatima Adnane
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Asmaa Drissi Bourhanbour
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Naima Amenzoui
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
49
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
50
|
Laffranchi M, Paraboschi EM, Bianchetto-Aguilera F, Tamassia N, Gasperini S, Gardiman E, Piserà A, Del Prete A, Invernizzi P, Gismondi A, Mantovani A, Cassatella MA, Asselta R, Sozzani S. Neutrophils restricted contribution of CCRL2 genetic variants to COVID-19 severity. Heliyon 2025; 11:e41267. [PMID: 39811276 PMCID: PMC11731188 DOI: 10.1016/j.heliyon.2024.e41267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/12/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025] Open
Abstract
The 3p21.31 locus is the most robust genomic region associated with COVID-19 severity. This locus contains a main chemokine receptor (CKR) cluster. We tested expression quantitative trait loci (eQTL) targeting the 3p21.31 CKR cluster linked to COVID-19 hospitalization in Europeans from the COVID-19 HGI meta-analysis. Among these, CCRL2, a key regulator of neutrophil trafficking, was targeted by neutrophil-restricted eQTLs. We confirmed these eQTLs in an Italian COVID-19 cohort. Haplotype analysis revealed a link between an increased CCRL2 expression and COVID-19 severity and hospitalization. By the exposure of neutrophils to a TLR8 ligand, reflecting a viral infection, we revealed specific chromatin domains within the 3p21.31 locus exclusive to neutrophils. In addition, the identified variants mapped within these regions altered the binding motif of neutrophils-expressed transcription factors. These results support that CCRL2 eQTL variants contribute to the risk of severe COVID-19 by selectively affecting neutrophil functions.
Collapse
Affiliation(s)
- Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, 37134, Verona, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, 37134, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, 37134, Verona, Italy
| | - Arianna Piserà
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo Dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, 37134, Verona, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|