1
|
Guo Y, Shang X, Ma L, Cao Y. RNA-Binding Protein-Mediated Alternative Splicing Regulates Abiotic Stress Responses in Plants. Int J Mol Sci 2024; 25:10548. [PMID: 39408875 PMCID: PMC11477454 DOI: 10.3390/ijms251910548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The alternative splicing of pre-mRNA generates distinct mRNA variants from a pre-mRNA, thereby modulating a gene's function. The splicing of pre-mRNA depends on splice sites and regulatory elements in pre-mRNA, as well as the snRNA and proteins that recognize these sequences. Among these, RNA-binding proteins (RBPs) are the primary regulators of pre-mRNA splicing and play a critical role in the regulation of alternative splicing by recognizing the elements in pre-mRNA. However, little is known about the function of RBPs in stress response in plants. Here, we summarized the RBPs involved in the alternative splicing of pre-mRNA and their recognizing elements in pre-mRNA, and the recent advance in the role of RBP-mediated alternative splicing in response to abiotic stresses in plants. This review proposes that the regulation of pre-mRNA alternative splicing by RBPs is an important way for plants to adapt to abiotic stresses, and the regulation of alternative splicing by RBPs is a promising direction for crop breeding.
Collapse
Affiliation(s)
| | | | | | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (Y.G.); (X.S.); (L.M.)
| |
Collapse
|
2
|
Tian S, Faheem M, Satti HS, Xiao J, Zhang F, Khan TN, Liu C. A homozygous missense variant in YTHDC2 induces azoospermia in two siblings. Mol Genet Genomics 2024; 299:84. [PMID: 39223386 DOI: 10.1007/s00438-024-02168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Male infertility is a complex multifactorial reproductive disorder with highly heterogeneous phenotypic presentations. Azoospermia is a medically non-manageable cause of male infertility affecting ∼1% of men. Precise etiology of azoospermia is not known in approximately three-fourth of the cases. To explore the genetic basis of azoospermia, we performed whole exome sequencing in two non-obstructive azoospermia affected siblings from a consanguineous Pakistani family. Bioinformatic filtering and segregation analysis of whole exome sequencing data resulted in the identification of a rare homozygous missense variant (c.962G>C, p. Arg321Thr) in YTHDC2, segregating with disease in the family. Structural analysis of the missense variant identified in our study and two previously reported functionally characterized missense changes (p. Glu332Gln and p. His327Arg) in mice showed that all these three variants may affect Mg2+ binding ability and helicase activity of YTHDC2. Collectively, our genetic analyses and experimental observations revealed that missense variant of YTHDC2 can induce azoospermia in humans. These findings indicate the important role of YTHDC2 deficiency for azoospermia and will provide important guidance for genetic counseling of male infertility.
Collapse
Affiliation(s)
- Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438, China
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
- National Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Humayoon Shafique Satti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Feng Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438, China
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tahir Naeem Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
- National Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
| | - Chunyu Liu
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
3
|
Zhan X, Lu Y, Shi Y. Molecular basis for the activation of human spliceosome. Nat Commun 2024; 15:6348. [PMID: 39068178 PMCID: PMC11283556 DOI: 10.1038/s41467-024-50785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
The spliceosome executes pre-mRNA splicing through four sequential stages: assembly, activation, catalysis, and disassembly. Activation of the spliceosome, namely remodeling of the pre-catalytic spliceosome (B complex) into the activated spliceosome (Bact complex) and the catalytically activated spliceosome (B* complex), involves major flux of protein components and structural rearrangements. Relying on a splicing inhibitor, we have captured six intermediate states between the B and B* complexes: pre-Bact, Bact-I, Bact-II, Bact-III, Bact-IV, and post-Bact. Their cryo-EM structures, together with an improved structure of the catalytic step I spliceosome (C complex), reveal how the catalytic center matures around the internal stem loop of U6 snRNA, how the branch site approaches 5'-splice site, how the RNA helicase PRP2 rearranges to bind pre-mRNA, and how U2 snRNP undergoes remarkable movement to facilitate activation. We identify a previously unrecognized key role of PRP2 in spliceosome activation. Our study recapitulates a molecular choreography of the human spliceosome during its catalytic activation.
Collapse
Affiliation(s)
- Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Yigong Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Zhang X, Zhan X, Bian T, Yang F, Li P, Lu Y, Xing Z, Fan R, Zhang QC, Shi Y. Structural insights into branch site proofreading by human spliceosome. Nat Struct Mol Biol 2024; 31:835-845. [PMID: 38196034 DOI: 10.1038/s41594-023-01188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
Selection of the pre-mRNA branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is crucial to prespliceosome (A complex) assembly. The RNA helicase PRP5 proofreads BS selection but the underlying mechanism remains unclear. Here we report the atomic structures of two sequential complexes leading to prespliceosome assembly: human 17S U2 snRNP and a cross-exon pre-A complex. PRP5 is anchored on 17S U2 snRNP mainly through occupation of the RNA path of SF3B1 by an acidic loop of PRP5; the helicase domain of PRP5 associates with U2 snRNA; the BS-interacting stem-loop (BSL) of U2 snRNA is shielded by TAT-SF1, unable to engage the BS. In the pre-A complex, an initial U2-BS duplex is formed; the translocated helicase domain of PRP5 stays with U2 snRNA and the acidic loop still occupies the RNA path. The pre-A conformation is specifically stabilized by the splicing factors SF1, DNAJC8 and SF3A2. Cancer-derived mutations in SF3B1 damage its association with PRP5, compromising BS proofreading. Together, these findings reveal key insights into prespliceosome assembly and BS selection or proofreading by PRP5.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
- Division of Reproduction and Genetics, The First Affiliated Hospital of USTC; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xiechao Zhan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Tong Bian
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Fenghua Yang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Pan Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yichen Lu
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Zhihan Xing
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Rongyan Fan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Qiangfeng Cliff Zhang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Cipakova I, Jurcik M, Selicky T, Lalakova LO, Jakubikova J, Cipak L. Dysfunction of Gpl1-Gih35-Wdr83 Complex in S. pombe Affects the Splicing of DNA Damage Repair Factors Resulting in Increased Sensitivity to DNA Damage. Int J Mol Sci 2024; 25:4192. [PMID: 38673778 PMCID: PMC11049892 DOI: 10.3390/ijms25084192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.
Collapse
Affiliation(s)
- Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (M.J.); (T.S.); (L.O.L.)
| | - Matus Jurcik
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (M.J.); (T.S.); (L.O.L.)
| | - Tomas Selicky
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (M.J.); (T.S.); (L.O.L.)
| | - Laura Olivia Lalakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (M.J.); (T.S.); (L.O.L.)
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia;
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (M.J.); (T.S.); (L.O.L.)
| |
Collapse
|
6
|
Bai R, Yuan M, Zhang P, Luo T, Shi Y, Wan R. Structural basis of U12-type intron engagement by the fully assembled human minor spliceosome. Science 2024; 383:1245-1252. [PMID: 38484052 DOI: 10.1126/science.adn7272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
The minor spliceosome, which is responsible for the splicing of U12-type introns, comprises five small nuclear RNAs (snRNAs), of which only one is shared with the major spliceosome. In this work, we report the 3.3-angstrom cryo-electron microscopy structure of the fully assembled human minor spliceosome pre-B complex. The atomic model includes U11 small nuclear ribonucleoprotein (snRNP), U12 snRNP, and U4atac/U6atac.U5 tri-snRNP. U11 snRNA is recognized by five U11-specific proteins (20K, 25K, 35K, 48K, and 59K) and the heptameric Sm ring. The 3' half of the 5'-splice site forms a duplex with U11 snRNA; the 5' half is recognized by U11-35K, U11-48K, and U11 snRNA. Two proteins, CENATAC and DIM2/TXNL4B, specifically associate with the minor tri-snRNP. A structural analysis uncovered how two conformationally similar tri-snRNPs are differentiated by the minor and major prespliceosomes for assembly.
Collapse
Affiliation(s)
- Rui Bai
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Meng Yuan
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pu Zhang
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ting Luo
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
7
|
Zhang Z, Kumar V, Dybkov O, Will CL, Urlaub H, Stark H, Lührmann R. Cryo-EM analyses of dimerized spliceosomes provide new insights into the functions of B complex proteins. EMBO J 2024; 43:1065-1088. [PMID: 38383864 PMCID: PMC10943123 DOI: 10.1038/s44318-024-00052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
The B complex is a key intermediate stage of spliceosome assembly. To improve the structural resolution of monomeric, human spliceosomal B (hB) complexes and thereby generate a more comprehensive hB molecular model, we determined the cryo-EM structure of B complex dimers formed in the presence of ATP γ S. The enhanced resolution of these complexes allows a finer molecular dissection of how the 5' splice site (5'ss) is recognized in hB, and new insights into molecular interactions of FBP21, SNU23 and PRP38 with the U6/5'ss helix and with each other. It also reveals that SMU1 and RED are present as a heterotetrameric complex and are located at the interface of the B dimer protomers. We further show that MFAP1 and UBL5 form a 5' exon binding channel in hB, and elucidate the molecular contacts stabilizing the 5' exon at this stage. Our studies thus yield more accurate models of protein and RNA components of hB complexes. They further allow the localization of additional proteins and protein domains (such as SF3B6, BUD31 and TCERG1) whose position was not previously known, thereby uncovering new functions for B-specific and other hB proteins during pre-mRNA splicing.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Vinay Kumar
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Olexandr Dybkov
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Cindy L Will
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| | - Reinhard Lührmann
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
8
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, S Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. RNA (NEW YORK, N.Y.) 2024; 30:149-170. [PMID: 38071476 PMCID: PMC10798247 DOI: 10.1261/rna.079866.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Asako Tan
- Illumina, Inc., Madison, Wisconsin 53719, USA
| | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Melissa S Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
9
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.560965. [PMID: 37873484 PMCID: PMC10592967 DOI: 10.1101/2023.10.05.560965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intron branch point (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during co-transcriptional splicing in Plad-B using single-molecule intron tracking (SMIT) to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | | | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Melissa Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| |
Collapse
|
10
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
11
|
Enders M, Neumann P, Dickmanns A, Ficner R. Structure and function of spliceosomal DEAH-box ATPases. Biol Chem 2023; 404:851-866. [PMID: 37441768 DOI: 10.1515/hsz-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Splicing of precursor mRNAs is a hallmark of eukaryotic cells, performed by a huge macromolecular machine, the spliceosome. Four DEAH-box ATPases are essential components of the spliceosome, which play an important role in the spliceosome activation, the splicing reaction, the release of the spliced mRNA and intron lariat, and the disassembly of the spliceosome. An integrative approach comprising X-ray crystallography, single particle cryo electron microscopy, single molecule FRET, and molecular dynamics simulations provided deep insights into the structure, dynamics and function of the spliceosomal DEAH-box ATPases.
Collapse
Affiliation(s)
- Marieke Enders
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| |
Collapse
|
12
|
Enders M, Ficner R, Adio S. Conformational dynamics of the RNA binding channel regulates loading and translocation of the DEAH-box helicase Prp43. Nucleic Acids Res 2023; 51:6430-6442. [PMID: 37167006 PMCID: PMC10325901 DOI: 10.1093/nar/gkad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/08/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
The DEAH-box helicase Prp43 has essential functions in pre-mRNA splicing and ribosome biogenesis, remodeling structured RNAs. To initiate unwinding, Prp43 must first accommodate a single-stranded RNA segment into its RNA binding channel. This allows translocation of the helicase on the RNA. G-patch (gp) factors activate Prp43 in its cellular context enhancing the intrinsically low ATPase and RNA unwinding activity. It is unclear how the RNA loading process is accomplished by Prp43 and how it is regulated by its substrates, ATP and RNA, and the G-patch partners. We developed single-molecule (sm) FRET reporters on Prp43 from Chaetomium thermophilum to monitor the conformational dynamics of the RNA binding channel in Prp43 in real-time. We show that the channel can alternate between open and closed conformations. Binding of Pfa1(gp) and ATP shifts the distribution of states towards channel opening, facilitating the accommodation of RNA. After completion of the loading process, the channel remains firmly closed during successive cycles of ATP hydrolysis, ensuring stable interaction with the RNA and processive translocation. Without Pfa1(gp), it remains predominantly closed preventing efficient RNA loading. Our data reveal how the ligands of Prp43 regulate the structural dynamics of the RNA binding channel controlling the initial binding of RNA.
Collapse
Affiliation(s)
- Marieke Enders
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg- August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg- August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Sarah Adio
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg- August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| |
Collapse
|
13
|
Agrò SN, Rozza R, Movilla S, Aupič J, Magistrato A. Molecular Dynamics Simulations Elucidate the Molecular Basis of Pre-mRNA Translocation by the Prp2 Spliceosomal Helicase. J Chem Inf Model 2023. [PMID: 37379492 DOI: 10.1021/acs.jcim.3c00585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The spliceosome machinery catalyzes precursor-messenger RNA (pre-mRNA) splicing by undergoing at each splicing cycle assembly, activation, catalysis, and disassembly processes, thanks to the concerted action of specific RNA-dependent ATPases/helicases. Prp2, a member of the DExH-box ATPase/helicase family, harnesses the energy of ATP hydrolysis to translocate a single pre-mRNA strand in the 5' to 3' direction, thus promoting spliceosome remodeling to its catalytic-competent state. Here, we established the functional coupling between ATPase and helicase activities of Prp2. Namely, extensive multi-μs molecular dynamics simulations allowed us to unlock how, after pre-mRNA selection, ATP binding, hydrolysis, and dissociation induce a functional typewriter-like rotation of the Prp2 C-terminal domain. This movement, endorsed by an iterative swing of interactions established between specific Prp2 residues with the nucleobases at 5'- and 3'-ends of pre-mRNA, promotes pre-mRNA translocation. Notably, some of these Prp2 residues are conserved in the DExH-box family, suggesting that the translocation mechanism elucidated here may be applicable to all DExH-box helicases.
Collapse
Affiliation(s)
- Sefora Naomi Agrò
- National Research Council of Italy (CNR)─Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Riccardo Rozza
- National Research Council of Italy (CNR)─Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Santiago Movilla
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Jana Aupič
- National Research Council of Italy (CNR)─Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)─Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| |
Collapse
|
14
|
Cheng SC. A clue to the catalytic activation of splicing. Nature 2023; 617:680-681. [PMID: 37165217 DOI: 10.1038/d41586-023-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
|
15
|
Schmitzová J, Cretu C, Dienemann C, Urlaub H, Pena V. Structural basis of catalytic activation in human splicing. Nature 2023; 617:842-850. [PMID: 37165190 PMCID: PMC10208982 DOI: 10.1038/s41586-023-06049-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Pre-mRNA splicing follows a pathway driven by ATP-dependent RNA helicases. A crucial event of the splicing pathway is the catalytic activation, which takes place at the transition between the activated Bact and the branching-competent B* spliceosomes. Catalytic activation occurs through an ATP-dependent remodelling mediated by the helicase PRP2 (also known as DHX16)1-3. However, because PRP2 is observed only at the periphery of spliceosomes3-5, its function has remained elusive. Here we show that catalytic activation occurs in two ATP-dependent stages driven by two helicases: PRP2 and Aquarius. The role of Aquarius in splicing has been enigmatic6,7. Here the inactivation of Aquarius leads to the stalling of a spliceosome intermediate-the BAQR complex-found halfway through the catalytic activation process. The cryogenic electron microscopy structure of BAQR reveals how PRP2 and Aquarius remodel Bact and BAQR, respectively. Notably, PRP2 translocates along the intron while it strips away the RES complex, opens the SF3B1 clamp and unfastens the branch helix. Translocation terminates six nucleotides downstream of the branch site through an assembly of PPIL4, SKIP and the amino-terminal domain of PRP2. Finally, Aquarius enables the dissociation of PRP2, plus the SF3A and SF3B complexes, which promotes the relocation of the branch duplex for catalysis. This work elucidates catalytic activation in human splicing, reveals how a DEAH helicase operates and provides a paradigm for how helicases can coordinate their activities.
Collapse
Affiliation(s)
- Jana Schmitzová
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constantin Cretu
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK
- Cluster of Excellence Multiscale Bioimaging (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christian Dienemann
- Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, Bioanalytics, University Medical Center Sciences, Göttingen, Germany
| | - Vladimir Pena
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK.
| |
Collapse
|
16
|
Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA (NEW YORK, N.Y.) 2023; 29:531-550. [PMID: 36737103 PMCID: PMC10158995 DOI: 10.1261/rna.079273.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 05/06/2023]
Abstract
Premessenger RNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex that assembles in a highly regulated process on each intronic substrate. Most studies of splicing and spliceosomes have been carried out in human or S. cerevisiae model systems. There exists, however, a large diversity of spliceosomes, particularly in organisms with reduced genomes, that suggests a means of analyzing the essential elements of spliceosome assembly and regulation. In this review, we characterize changes in spliceosome composition across phyla, describing those that are most frequently observed and highlighting an analysis of the reduced spliceosome of the red alga Cyanidioschyzon merolae We used homology modeling to predict what effect splicing protein loss would have on the spliceosome, based on currently available cryo-EM structures. We observe strongly correlated loss of proteins that function in the same process, for example, in interacting with the U1 snRNP (which is absent in C. merolae), regulation of Brr2, or coupling transcription and splicing. Based on our observations, we predict splicing in C. merolae to be inefficient, inaccurate, and post-transcriptional, consistent with the apparent trend toward its elimination in this lineage. This work highlights the striking flexibility of the splicing pathway and the spliceosome when viewed in the context of eukaryotic diversity.
Collapse
Affiliation(s)
- Corbin S Black
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada H3A 0C7
| | - Thomas A Whelan
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Erin L Garside
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Andrew M MacMillan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Naomi M Fast
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Stephen D Rader
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| |
Collapse
|
17
|
Dwyer ZW, Pleiss JA. The problem of selection bias in studies of pre-mRNA splicing. Nat Commun 2023; 14:1966. [PMID: 37031238 PMCID: PMC10082818 DOI: 10.1038/s41467-023-37650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Affiliation(s)
- Zachary W Dwyer
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
18
|
Becker RA, Hub JS. Continuous millisecond conformational cycle of a DEAH box helicase reveals control of domain motions by atomic-scale transitions. Commun Biol 2023; 6:379. [PMID: 37029280 PMCID: PMC10082070 DOI: 10.1038/s42003-023-04751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Helicases are motor enzymes found in every living organism and viruses, where they maintain the stability of the genome and control against false recombination. The DEAH-box helicase Prp43 plays a crucial role in pre-mRNA splicing in unicellular organisms by translocating single-stranded RNA. The molecular mechanisms and conformational transitions of helicases are not understood at the atomic level. We present a complete conformational cycle of RNA translocation by Prp43 in atomic detail based on molecular dynamics simulations. To enable the sampling of such complex transition on the millisecond timescale, we combined two enhanced sampling techniques, namely simulated tempering and adaptive sampling guided by crystallographic data. During RNA translocation, the center-of-mass motions of the RecA-like domains followed the established inchworm model, whereas the domains crawled along the RNA in a caterpillar-like movement, suggesting an inchworm/caterpillar model. However, this crawling required a complex sequence of atomic-scale transitions involving the release of an arginine finger from the ATP pocket, stepping of the hook-loop and hook-turn motifs along the RNA backbone, and several others. These findings highlight that large-scale domain dynamics may be controlled by complex sequences of atomic-scale transitions.
Collapse
Affiliation(s)
- Robert A Becker
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
19
|
Movilla S, Roca M, Moliner V, Magistrato A. Molecular Basis of RNA-Driven ATP Hydrolysis in DExH-Box Helicases. J Am Chem Soc 2023; 145:6691-6701. [PMID: 36926902 DOI: 10.1021/jacs.2c11980] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The spliceosome machinery catalyzes precursor messenger (pre-m)RNA splicing. In each cycle, the spliceosome experiences massive compositional and conformational remodeling fueled by the concerted action of specific RNA-dependent ATPases/helicases. Intriguingly, these enzymes are allosterically activated to perform ATP hydrolysis and trigger helicase activity only upon pre-mRNA binding. Yet, the molecular mechanism underlying the RNA-driven regulation of their ATPase function remains elusive. Here, we focus on the Prp2 ATPase/helicase which contributes to reshaping the spliceosome into its catalytic competent state. By performing classical and quantum-classical molecular dynamics simulations, we unprecedentedly unlock the molecular terms governing the Prp2 ATPase/helicase function. Namely, we dissect the molecular mechanism of ATP hydrolysis, and we disclose that RNA binding allosterically triggers the formation of a set of interactions linking the RNA binding tunnel to the catalytic site. This activates the Prp2's ATPase function by optimally placing the nucleophilic water and the general base of the enzymatic process to perform ATP hydrolysis. The key structural motifs, mechanically coupling RNA gripping and the ATPase/helicase functions, are conserved across all DExH-box helicases. This mechanism could thus be broadly applicable to all DExH-box helicase family.
Collapse
Affiliation(s)
- Santiago Movilla
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Maite Roca
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Alessandra Magistrato
- Department National Research Council of Italy (CNR), Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| |
Collapse
|
20
|
Zheng L, Liu N, Gao X, Zhu W, Liu K, Wu C, Yan R, Zhang J, Gao X, Yao Y, Deng B, Xu J, Lu Y, Liu Z, Li M, Wei X, Wang HW, Peng H. Uniform thin ice on ultraflat graphene for high-resolution cryo-EM. Nat Methods 2023; 20:123-130. [PMID: 36522503 PMCID: PMC9834055 DOI: 10.1038/s41592-022-01693-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/20/2022] [Indexed: 12/23/2022]
Abstract
Cryo-electron microscopy (cryo-EM) visualizes the atomic structure of macromolecules that are embedded in vitrified thin ice at their close-to-native state. However, the homogeneity of ice thickness, a key factor to ensure high image quality, is poorly controlled during specimen preparation and has become one of the main challenges for high-resolution cryo-EM. Here we found that the uniformity of thin ice relies on the surface flatness of the supporting film, and developed a method to use ultraflat graphene (UFG) as the support for cryo-EM specimen preparation to achieve better control of vitreous ice thickness. We show that the uniform thin ice on UFG improves the image quality of vitrified specimens. Using such a method we successfully determined the three-dimensional structures of hemoglobin (64 kDa), α-fetoprotein (67 kDa) with no symmetry, and streptavidin (52 kDa) at a resolution of 3.5 Å, 2.6 Å and 2.2 Å, respectively. Furthermore, our results demonstrate the potential of UFG for the fields of cryo-electron tomography and structure-based drug discovery.
Collapse
Affiliation(s)
- Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Xiaoyin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wenqing Zhu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Cang Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rui Yan
- Beijing Graphene Institute (BGI), Beijing, China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yating Yao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bing Deng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ye Lu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhongmin Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, China.
- Peking University Nanchang Innovation Institute, Nanchang, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
21
|
Selicky T, Jurcik M, Mikolaskova B, Pitelova A, Mayerova N, Kretova M, Osadska M, Jurcik J, Holic R, Kohutova L, Bellova J, Benko Z, Gregan J, Bagelova Polakova S, Barath P, Cipak L, Cipakova I. Defining the Functional Interactome of Spliceosome-Associated G-Patch Protein Gpl1 in the Fission Yeast Schizosaccharomyces pombe. Int J Mol Sci 2022; 23:12800. [PMID: 36361590 PMCID: PMC9658070 DOI: 10.3390/ijms232112800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/31/2023] Open
Abstract
Pre-mRNA splicing plays a fundamental role in securing protein diversity by generating multiple transcript isoforms from a single gene. Recently, it has been shown that specific G-patch domain-containing proteins are critical cofactors involved in the regulation of splicing processes. In this study, using the knock-out strategy, affinity purification and the yeast-two-hybrid assay, we demonstrated that the spliceosome-associated G-patch protein Gpl1 of the fission yeast S. pombe mediates interactions between putative RNA helicase Gih35 (SPAC20H4.09) and WD repeat protein Wdr83, and ensures their binding to the spliceosome. Furthermore, RT-qPCR analysis of the splicing efficiency of deletion mutants indicated that the absence of any of the components of the Gpl1-Gih35-Wdr83 complex leads to defective splicing of fet5 and pwi1, the reference genes whose unspliced isoforms harboring premature stop codons are targeted for degradation by the nonsense-mediated decay (NMD) pathway. Together, our results shed more light on the functional interactome of G-patch protein Gpl1 and revealed that the Gpl1-Gih35-Wdr83 complex plays an important role in the regulation of pre-mRNA splicing in S. pombe.
Collapse
Affiliation(s)
- Tomas Selicky
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Matus Jurcik
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Barbora Mikolaskova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Alexandra Pitelova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Nina Mayerova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Miroslava Kretova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Michaela Osadska
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Jurcik
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Roman Holic
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Lenka Kohutova
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Jana Bellova
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Zsigmond Benko
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, H4032 Debrecen, Hungary
| | - Juraj Gregan
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, 3430 Tulln an der Donau, Austria
| | - Silvia Bagelova Polakova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Barath
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
- Medirex Group Academy, Novozamocka 67, 949 05 Nitra, Slovakia
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
22
|
Cabezas-Fuster A, Micol-Ponce R, Fontcuberta-Cervera S, Ponce M. Missplicing suppressor alleles of Arabidopsis PRE-MRNA PROCESSING FACTOR 8 increase splicing fidelity by reducing the use of novel splice sites. Nucleic Acids Res 2022; 50:5513-5527. [PMID: 35639749 PMCID: PMC9177961 DOI: 10.1093/nar/gkac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient splicing requires a balance between high-fidelity splice-site (SS) selection and speed. In Saccharomyces cerevisiae, Pre-mRNA processing factor 8 (Prp8) helps to balance precise SS selection and rapid, efficient intron excision and exon joining. argonaute1-52 (ago1-52) and incurvata13 (icu13) are hypomorphic alleles of the Arabidopsis thaliana genes ARGONAUTE1 (AGO1) and AUXIN RESISTANT6 (AXR6) that harbor point mutations creating a novel 3'SS and 5'SS, respectively. The spliceosome recognizes these novel SSs, as well as the intact genuine SSs, producing a mixture of wild-type and aberrant mature mRNAs. Here, we characterized five novel mutant alleles of PRP8 (one of the two Arabidopsis co-orthologs of yeast Prp8), naming these alleles morphology of ago1-52 suppressed5 (mas5). In the mas5-1 background, the spliceosome preferentially recognizes the intact genuine 3'SS of ago1-52 and 5'SS of icu13. Since point mutations that damage genuine SSs make the spliceosome prone to recognizing cryptic SSs, we also tested alleles of four genes carrying damaged genuine SSs, finding that mas5-1 did not suppress their missplicing. The mas5-1 and mas5-3 mutations represent a novel class of missplicing suppressors that increase splicing fidelity by hampering the use of novel SSs, but do not alter general pre-mRNA splicing.
Collapse
Affiliation(s)
- Adrián Cabezas-Fuster
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
23
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
24
|
Cai J, Chen H, Xie S, Hu Z, Bai Y. Research Progress of Totipotent Stem Cells. Stem Cells Dev 2022; 31:335-345. [PMID: 35502477 DOI: 10.1089/scd.2022.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Totipotent stem cells (TSCs), can develop into complete organisms, used in biological fields such as regenerative medicine, mammalian breeding, and conservation. However, cells from early-stage embryos cultured are hard to self-renew and maintain developmental totipotency, which becomes a key factor limiting the research of TSCs. Fortunately, a break-through in the study of induced pluripotent stem cells returning to their totipotent state has been made, resulting in the establishment of multiple TSCs and igniting a new wave of stem cell research. Furthermore, the blastocyst-like structures can be generated by the established TSCs, which lays a foundation for synthetic embryos in vitro. In this review, we summarize the totipotent stage of the early embryos, the establishment and cultivation of TSCs, and the developmental ability exploration of TSCs to promote further research of TSCs.
Collapse
Affiliation(s)
- Jianfeng Cai
- Foshan University School of Life Science and Engineering, 118208, Foshan, China, 528000;
| | - Huifang Chen
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Shiting Xie
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Zhichao Hu
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Yinshan Bai
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| |
Collapse
|
25
|
Karbstein K. Attacking a DEAD problem: The role of DEAD-box ATPases in ribosome assembly and beyond. Methods Enzymol 2022; 673:19-38. [PMID: 35965007 PMCID: PMC10154911 DOI: 10.1016/bs.mie.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DEAD-box proteins are a subfamily of ATPases with similarity to RecA-type helicases that are involved in all aspects of RNA Biology. Despite their potential to regulate these processes via their RNA-dependent ATPase activity, their roles remain poorly characterized. Here I describe a roadmap to study these proteins in the context of ribosome assembly, the process that utilizes more than half of all DEAD-box proteins encoded in the yeast genome.
Collapse
Affiliation(s)
- Katrin Karbstein
- Department of Integrative Structural and Computational Biology, Scripps Florida, Jupiter, FL, United States; HHMI Faculty Scholar, Chevy Chase, MD, United States; The Skaggs Graduate School of Chemical and Biological Sciences, Scripps Florida, Jupiter, FL, United States.
| |
Collapse
|
26
|
Zheng L, Liu N, Liu Y, Li N, Zhang J, Wang C, Zhu W, Chen Y, Ying D, Xu J, Yang Z, Gao X, Tang J, Wang X, Liang Z, Zou R, Li Y, Gao P, Wei X, Wang HW, Peng H. Atomically Thin Bilayer Janus Membranes for Cryo-electron Microscopy. ACS NANO 2021; 15:16562-16571. [PMID: 34569229 DOI: 10.1021/acsnano.1c06233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cryo-electron microscopy (cryo-EM) has emerged as a vital tool to reveal the native structure of beam-sensitive biomolecules and materials. Yet high-resolution cryo-EM analysis is still limited by the poorly controlled specimen preparation and urgently demands a robust supporting film material to prepare desirable samples. Here, we developed a bilayer Janus graphene membrane with the top-layer graphene being functionalized to interact with target molecules on the surface, while the bottom layer being kept intact to reinforce its mechanical steadiness. The ultraclean and atomically thin bilayer Janus membrane prepared by our protocol on one hand generates almost no extra noise and on the other hand reduces the specimen motion during cryo-EM imaging, thus allowing the atomic-resolution characterization of surface functional groups. Using such Janus membranes in cryo-EM specimen preparation, we were able to directly image the lithium dendrite and reconstruct macromolecules at near-atomic resolution. Our results demonstrate the bilayer Janus design as a promising supporting material for high-resolution cryo-EM and EM imaging.
Collapse
Affiliation(s)
- Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Ning Li
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chongzhen Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles California 90095, United States
| | - Wenqing Zhu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Yanan Chen
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dongchen Ying
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zi Yang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jilin Tang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaoge Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles California 90095, United States
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing 100084, China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
27
|
Urabe VK, Stevers M, Ghosh AK, Jurica MS. U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors. PLoS One 2021; 16:e0258551. [PMID: 34648557 PMCID: PMC8516221 DOI: 10.1371/journal.pone.0258551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
U2 snRNP is an essential component of the spliceosome. It is responsible for branch point recognition in the spliceosome A-complex via base-pairing of U2 snRNA with an intron to form the branch helix. Small molecule inhibitors target the SF3B component of the U2 snRNP and interfere with A-complex formation during spliceosome assembly. We previously found that the first SF3B inhibited-complex is less stable than A-complex and hypothesized that SF3B inhibitors interfere with U2 snRNA secondary structure changes required to form the branch helix. Using RNA chemical modifiers, we probed U2 snRNA structure in A-complex and SF3B inhibited splicing complexes. The reactivity pattern for U2 snRNA in the SF3B inhibited-complex is indistinguishable from that of A-complex, suggesting that they have the same secondary structure conformation, including the branch helix. This observation suggests SF3B inhibited-complex instability does not stem from an alternate RNA conformation and instead points to the inhibitors interfering with protein component interactions that normally stabilize U2 snRNP’s association with an intron. In addition, we probed U2 snRNA in the free U2 snRNP in the presence of SF3B inhibitor and again saw no differences. However, increased protection of nucleotides upstream of Stem I in the absence of SF3A and SF3B proteins suggests a change of secondary structure at the very 5′ end of U2 snRNA. Chemical probing of synthetic U2 snRNA in the absence of proteins results in similar protections and predicts a previously uncharacterized extension of Stem I. Because this stem must be disrupted for SF3A and SF3B proteins to stably join the snRNP, the structure has the potential to influence snRNP assembly and recycling after spliceosome disassembly.
Collapse
Affiliation(s)
- Veronica K. Urabe
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Meredith Stevers
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Melissa S. Jurica
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
A comprehensive transcriptomic landscape of cholangiocarcinoma based on bioinformatics analysis from large cohort of patients. Sci Rep 2021; 11:13713. [PMID: 34211100 PMCID: PMC8249535 DOI: 10.1038/s41598-021-93250-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a group of malignancies emerging in the biliary tree and is associated with a poor patient prognosis. Although the anatomical location is the only worldwide accepted classification basis, it still has bias. The current study integrates the whole-genome expression data from several big cohorts in the literature, to screen and provide a comprehensive bioinformatic analysis, in order to better classify molecular subtypes and explore an underlying cluster mechanism related to anatomy and geographical regions. Differentially expressed protein-coding genes (DEGs) were identified for CCA as well as subtypes. Biological function enrichment analysis-Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis-was applied and identified different DEGs enriched signaling pathways in CCA subtypes. A co-expression network was presented by Weighted gene co-expression network analysis package and modules related to specific phenotypes were identified. Combined with DEGs, hub genes in the given module were demonstrated through protein-protein interaction network analysis. Finally, DEGs which significantly related to patient overall survival and disease-free survival time were selected, including ARHGAP21, SCP2, UBIAD1, TJP2, RAP1A and HDAC9.
Collapse
|
29
|
Goenka A, Tiek D, Song X, Huang T, Hu B, Cheng SY. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells 2021; 10:cells10030484. [PMID: 33668200 PMCID: PMC7995978 DOI: 10.3390/cells10030484] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain cancer. Standard care using chemo- and radio-therapy modestly increases the overall survival of patients; however, recurrence is inevitable, due to treatment resistance and lack of response to targeted therapies. GBM therapy resistance has been attributed to several extrinsic and intrinsic factors which affect the dynamics of tumor evolution and physiology thus creating clinical challenges. Tumor-intrinsic factors such as tumor heterogeneity, hypermutation, altered metabolomics and oncologically activated alternative splicing pathways change the tumor landscape to facilitate therapy failure and tumor progression. Moreover, tumor-extrinsic factors such as hypoxia and an immune-suppressive tumor microenvironment (TME) are the chief causes of immunotherapy failure in GBM. Amid the success of immunotherapy in other cancers, GBM has occurred as a model of resistance, thus focusing current efforts on not only alleviating the immunotolerance but also evading the escape mechanisms of tumor cells to therapy, caused by inter- and intra-tumoral heterogeneity. Here we review the various mechanisms of therapy resistance in GBM, caused by the continuously evolving tumor dynamics as well as the complex TME, which cumulatively contribute to GBM malignancy and therapy failure; in an attempt to understand and identify effective therapies for recurrent GBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Shi-Yuan Cheng
- Correspondence: ; Tel.: +1-312-503-3043; Fax: +1-312-503-5603
| |
Collapse
|
30
|
Bai R, Wan R, Wang L, Xu K, Zhang Q, Lei J, Shi Y. Structure of the activated human minor spliceosome. Science 2021; 371:science.abg0879. [PMID: 33509932 DOI: 10.1126/science.abg0879] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
The minor spliceosome mediates splicing of the rare but essential U12-type precursor messenger RNA. Here, we report the atomic features of the activated human minor spliceosome determined by cryo-electron microscopy at 2.9-angstrom resolution. The 5' splice site and branch point sequence of the U12-type intron are recognized by the U6atac and U12 small nuclear RNAs (snRNAs), respectively. Five newly identified proteins stabilize the conformation of the catalytic center: The zinc finger protein SCNM1 functionally mimics the SF3a complex of the major spliceosome, the RBM48-ARMC7 complex binds the γ-monomethyl phosphate cap at the 5' end of U6atac snRNA, the U-box protein PPIL2 coordinates loop I of U5 snRNA and stabilizes U5 small nuclear ribonucleoprotein (snRNP), and CRIPT stabilizes U12 snRNP. Our study provides a framework for the mechanistic understanding of the function of the human minor spliceosome.
Collapse
Affiliation(s)
- Rui Bai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Ruixue Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Lin Wang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kui Xu
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Zhang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|