1
|
Xiang ZY, Cao Q, Hu YW, Song SY, Zhou Y, Gao CJ, Shan CX, Liu KK. Entropy-Dominated Triplet Exciton Emission in Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403917. [PMID: 39032004 DOI: 10.1002/smll.202403917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Phosphorescence in carbon dots (CDs) from triplet exciton radiative recombination at room temperature has achieved significant advancement. Confinement and nanoconfinement, serving as valuable techniques, are commonly utilized to brighten triplet exciton in CDs, thereby enhancing their phosphorescence. However, a comprehensive and universally applicable physical description of confinement-enhanced phosphorescence is still lacking, despite efforts to understand its underlying nature. In this study, the dominance of entropy is revealed in triplet exciton emission from CDs through the establishment of a microscopic vibration state model. CDs with varying entropy levels are studied, indicating that in a low entropy system, the multi-energy triplet exciton emission in CDs exhibits enhanced brightness, accompanied by a corresponding increase in their lifetimes. The product of lifetime and intensity in CDs serves as a descriptor for their phosphorescence properties. Moreover, an entropy-dependent information variation system based on the CDs is demonstrated. Specifically, in a low-entropy system, information is retained, whereas the corresponding information is erased in a high-entropy system. This work elucidates the underlying physical nature of confinement-enhanced triplet exciton emission, offering a deeper understanding of achieving ultralong phosphorescence in the future.
Collapse
Affiliation(s)
- Zhi-Yu Xiang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan-Wei Hu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Zhou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Chao-Jun Gao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Key Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| |
Collapse
|
2
|
Sellies L, Eckrich J, Gross L, Donarini A, Repp J. Controlled single-electron transfer enables time-resolved excited-state spectroscopy of individual molecules. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01791-2. [PMID: 39327510 DOI: 10.1038/s41565-024-01791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024]
Abstract
An increasing number of scanning-probe-based spectroscopic techniques provides access to diverse electronic properties of single molecules. Typically, these experiments can only study a subset of all electronic transitions, which obscures the unambiguous assignment of measured quantities to specific quantum transitions. Here we develop a single-molecule spectroscopy that enables the access to many quantum transitions of different types, including radiative, non-radiative and redox, that is, charge-related, transitions. Our method relies on controlled alternating single-charge attachment and detachment. For read-out, the spin states are mapped to charge states, which we can detect by atomic force microscopy. We can determine the relative energies of ground and excited states of an individual molecule and can prepare the molecule in defined excited states. After a proof-of-principle demonstration of the technique on pentacene, we apply it to PTCDA, the scanning-probe luminescence of which has been interpreted controversially. The method may be used to guide, understand and engineer tip-induced chemical reactions as well as phosphorescence and fluorescence of individual molecules.
Collapse
Affiliation(s)
- Lisanne Sellies
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany.
| | - Jakob Eckrich
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany
| | - Leo Gross
- IBM Research Europe-Zurich, Rüschlikon, Switzerland
| | - Andrea Donarini
- Institute of Theoretical Physics, University of Regensburg, Regensburg, Germany
| | - Jascha Repp
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Luo Y, Kong FF, Tian XJ, Yu YJ, Jing SH, Zhang C, Chen G, Zhang Y, Zhang Y, Li XG, Zhang ZY, Dong ZC. Anomalously bright single-molecule upconversion electroluminescence. Nat Commun 2024; 15:1677. [PMID: 38395971 PMCID: PMC10891098 DOI: 10.1038/s41467-024-45450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Efficient upconversion electroluminescence is highly desirable for a broad range of optoelectronic applications, yet to date, it has been reported only for ensemble systems, while the upconversion electroluminescence efficiency remains very low for single-molecule emitters. Here we report on the observation of anomalously bright single-molecule upconversion electroluminescence, with emission efficiencies improved by more than one order of magnitude over previous studies, and even stronger than normal-bias electroluminescence. Intuitively, the improvement is achieved via engineering the energy-level alignments at the molecule-substrate interface so as to activate an efficient spin-triplet mediated upconversion electroluminescence mechanism that only involves pure carrier injection steps. We further validate the intuitive picture with the construction of delicate electroluminescence diagrams for the excitation of single-molecule electroluminescence, allowing to readily identify the prerequisite conditions for producing efficient upconversion electroluminescence. These findings provide deep insights into the microscopic mechanism of single-molecule upconversion electroluminescence and organic electroluminescence in general.
Collapse
Affiliation(s)
- Yang Luo
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fan-Fang Kong
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Jun Tian
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yun-Jie Yu
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shi-Hao Jing
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gong Chen
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Yang Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Yao Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Xiao-Guang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Zhen-Yu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Zhen-Chao Dong
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| |
Collapse
|
4
|
Ni Y, Zhao J, Zhang W, Tan L, Li Y, Li H, Xu B. Efficient Fresh Lamp Light-Harvesting Films with the Self-Activating Continuous and Recyclable Bactericidal Ability for Ultrapersistent Freshness of Perishable Muscle Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2756-2764. [PMID: 38048174 DOI: 10.1021/acs.jafc.3c07299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
A large quantity of perishable muscle food is being wasted due to harmful bacteria infestation during the sales and circulation each year and facing challenges. In this study, a self-activated bactericidal active film (PLA/g-C3N4@PCN-224) responsive to fresh lamp light was prepared, which showed excellent hydrophobicity, water vapor resistance, and thermal stability. Due to the synergistic effect between light-induced reactive oxygen species and the high specific surface area of g-C3N4@PCN-224, this film still maintains 99.99% bactericidal efficacy against Escherichia coli and Staphylococcus aureus after 10 days of continuous bactericidal activity test. The results of cell and hemolysis experiments indicated that the film was safe and nontoxic and can effectively preserve fresh pork for 7 days. Moreover, the film also exhibited a recyclable and efficient killing activity. A strategy for achieving ultrapersistent freshness of perishable muscle food was provided.
Collapse
Affiliation(s)
- Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Yumeng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Haoran Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China
| |
Collapse
|
5
|
Probing single electron spins with an atomic force microscope for quantum applications. Nature 2023:10.1038/d41586-023-03650-x. [PMID: 38057463 DOI: 10.1038/d41586-023-03650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
|
6
|
Sellies L, Spachtholz R, Bleher S, Eckrich J, Scheuerer P, Repp J. Single-molecule electron spin resonance by means of atomic force microscopy. Nature 2023; 624:64-68. [PMID: 38057570 DOI: 10.1038/s41586-023-06754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Understanding and controlling decoherence in open quantum systems is of fundamental interest in science, whereas achieving long coherence times is critical for quantum information processing1. Although great progress was made for individual systems, and electron spin resonance (ESR) of single spins with nanoscale resolution has been demonstrated2-4, the understanding of decoherence in many complex solid-state quantum systems requires ultimately controlling the environment down to atomic scales, as potentially enabled by scanning probe microscopy with its atomic and molecular characterization and manipulation capabilities. Consequently, the recent implementation of ESR in scanning tunnelling microscopy5-8 represents a milestone towards this goal and was quickly followed by the demonstration of coherent oscillations9,10 and access to nuclear spins11 with real-space atomic resolution. Atomic manipulation even fuelled the ambition to realize the first artificial atomic-scale quantum devices12. However, the current-based sensing inherent to this method limits coherence times12,13. Here we demonstrate pump-probe ESR atomic force microscopy (AFM) detection of electron spin transitions between non-equilibrium triplet states of individual pentacene molecules. Spectra of these transitions exhibit sub-nanoelectronvolt spectral resolution, allowing local discrimination of molecules that only differ in their isotopic configuration. Furthermore, the electron spins can be coherently manipulated over tens of microseconds. We anticipate that single-molecule ESR-AFM can be combined with atomic manipulation and characterization and thereby paves the way to learn about the atomistic origins of decoherence in atomically well-defined quantum elements and for fundamental quantum-sensing experiments.
Collapse
Affiliation(s)
- Lisanne Sellies
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany.
| | - Raffael Spachtholz
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany
| | - Sonja Bleher
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany
| | - Jakob Eckrich
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany
| | - Philipp Scheuerer
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany
| | - Jascha Repp
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Kawai S, Silveira OJ, Kurki L, Yuan Z, Nishiuchi T, Kodama T, Sun K, Custance O, Lado JL, Kubo T, Foster AS. Local probe-induced structural isomerization in a one-dimensional molecular array. Nat Commun 2023; 14:7741. [PMID: 38007486 PMCID: PMC10676401 DOI: 10.1038/s41467-023-43659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Synthesis of one-dimensional molecular arrays with tailored stereoisomers is challenging yet has great potential for application in molecular opto-, electronic- and magnetic-devices, where the local array structure plays a decisive role in the functional properties. Here, we demonstrate the construction and characterization of dehydroazulene isomer and diradical units in three-dimensional organometallic compounds on Ag(111) with a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. Tip-induced voltage pulses firstly result in the formation of a diradical species via successive homolytic fission of two C-Br bonds in the naphthyl groups, which are subsequently transformed into chiral dehydroazulene moieties. The delicate balance of the reaction rates among the diradical and two stereoisomers, arising from an in-line configuration of tip and molecular unit, allows directional azulene-to-azulene and azulene-to-diradical local probe structural isomerization in a controlled manner. Furthermore, our theoretical calculations suggest that the diradical moiety hosts an open-shell singlet with antiferromagnetic coupling between the unpaired electrons, which can undergo an inelastic spin transition of 91 meV to the ferromagnetically coupled triplet state.
Collapse
Affiliation(s)
- Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan.
| | | | - Lauri Kurki
- Department of Applied Physics, Aalto University, Helsinki, Finland
| | - Zhangyu Yuan
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Takuya Kodama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Kewei Sun
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Oscar Custance
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Jose L Lado
- Department of Applied Physics, Aalto University, Helsinki, Finland
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan.
- Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
| | - Adam S Foster
- Department of Applied Physics, Aalto University, Helsinki, Finland.
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma- machi, Kanazawa, Japan.
| |
Collapse
|
8
|
Liang K, Bi L, Zhu Q, Zhou H, Li S. Ultrafast Dynamics Revealed with Time-Resolved Scanning Tunneling Microscopy: A Review. ACS APPLIED OPTICAL MATERIALS 2023; 1:924-938. [PMID: 37260467 PMCID: PMC10227725 DOI: 10.1021/acsaom.2c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/02/2023]
Abstract
A scanning tunneling microscope (STM) capable of performing pump-probe spectroscopy integrates unmatched atomic-scale resolution with high temporal resolution. In recent years, the union of electronic, terahertz, or visible/near-infrared pulses with STM has contributed to our understanding of the atomic-scale processes that happen between milliseconds and attoseconds. This time-resolved STM (TR-STM) technique is evolving into an unparalleled approach for exploring the ultrafast nuclear, electronic, or spin dynamics of molecules, low-dimensional structures, and material surfaces. Here, we review the recent advancements in TR-STM; survey its application in measuring the dynamics of three distinct systems, nucleus, electron, and spin; and report the studies on these transient processes in a series of materials. Besides the discussion on state-of-the-art techniques, we also highlight several emerging research topics about the ultrafast processes in nanoscale objects where we anticipate that the TR-STM can help broaden our knowledge.
Collapse
Affiliation(s)
- Kangkai Liang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Hao Zhou
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
9
|
Jiang S, Neuman T, Bretel R, Boeglin A, Scheurer F, Le Moal E, Schull G. Many-Body Description of STM-Induced Fluorescence of Charged Molecules. PHYSICAL REVIEW LETTERS 2023; 130:126202. [PMID: 37027885 DOI: 10.1103/physrevlett.130.126202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
A scanning tunneling microscope is used to study the fluorescence of a model charged molecule (quinacridone) adsorbed on a sodium chloride (NaCl)-covered metallic sample. Fluorescence from the neutral and positively charged species is reported and imaged using hyperresolved fluorescence microscopy. A many-body model is established based on a detailed analysis of voltage, current, and spatial dependences of the fluorescence and electron transport features. This model reveals that quinacridone adopts a palette of charge states, transient or not, depending on the voltage used and the nature of the underlying substrate. This model has a universal character and clarifies the transport and fluorescence mechanisms of molecules adsorbed on thin insulators.
Collapse
Affiliation(s)
- Song Jiang
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Tomáš Neuman
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Rémi Bretel
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Alex Boeglin
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Fabrice Scheurer
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Eric Le Moal
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Guillaume Schull
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| |
Collapse
|
10
|
Sumaiya SA, Liu J, Baykara MZ. True Atomic-Resolution Surface Imaging and Manipulation under Ambient Conditions via Conductive Atomic Force Microscopy. ACS NANO 2022; 16:20086-20093. [PMID: 36282597 DOI: 10.1021/acsnano.2c08321] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A great number of chemical and mechanical phenomena, ranging from catalysis to friction, are dictated by the atomic-scale structure and properties of material surfaces. Yet, the principal tools utilized to characterize surfaces at the atomic level rely on strict environmental conditions such as ultrahigh vacuum and low temperature. Results obtained under such well-controlled, pristine conditions bear little relevance to the great majority of processes and applications that often occur under ambient conditions. Here, we report true atomic-resolution surface imaging via conductive atomic force microscopy (C-AFM) under ambient conditions, performed at high scanning speeds. Our approach delivers atomic-resolution maps on a variety of material surfaces that comprise defects including single atomic vacancies. We hypothesize that atomic resolution can be enabled by either a confined, electrically conductive pathway or an individual, atomically sharp asperity at the tip-sample contact. Using our method, we report the capability of in situ charge state manipulation of defects on MoS2 and the observation of an exotic electronic effect: room-temperature charge ordering in a thin transition metal carbide (TMC) crystal (i.e., an MXene), α-Mo2C. Our findings demonstrate that C-AFM can be utilized as a powerful tool for atomic-resolution imaging and manipulation of surface structure and electronics under ambient conditions, with wide-ranging applicability.
Collapse
Affiliation(s)
- Saima A Sumaiya
- Department of Mechanical Engineering, University of California Merced, Merced, California95343United States
| | | | - Mehmet Z Baykara
- Department of Mechanical Engineering, University of California Merced, Merced, California95343United States
| |
Collapse
|
11
|
Abstract
![]()
With the rapid development of optoelectronic fields,
electrochromic
(EC) materials and devices have received remarkable attention and
have shown attractive potential for use in emerging wearable and portable
electronics, electronic papers/billboards, see-through displays, and
other new-generation displays, due to the advantages of low power
consumption, easy viewing, flexibility, stretchability, etc. Despite
continuous progress in related fields, determining how to make electrochromics
truly meet the requirements of mature displays (e.g., ideal overall
performance) has been a long-term problem. Therefore, the commercialization
of relevant high-quality products is still in its infancy. In this
review, we will focus on the progress in emerging EC materials and
devices for potential displays, including two mainstream EC display
prototypes (segmented displays and pixel displays) and their commercial
applications. Among these topics, the related materials/devices, EC
performance, construction approaches, and processing techniques are
comprehensively disscussed and reviewed. We also outline the current
barriers with possible solutions and discuss the future of this field.
Collapse
Affiliation(s)
- Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ai-Bo Jia
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
12
|
Cheng B, Wu D, Bian K, Tian Y, Guo C, Liu K, Jiang Y. A qPlus-based scanning probe microscope compatible with optical measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:043701. [PMID: 35489886 DOI: 10.1063/5.0082369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high numerical apertures (N.A. = 0.38) driven by compact nano-positioners are directly integrated on the scanner head without degrading its mechanical and thermal stability. The electric noise floor of the background current is 5 fA/Hz1/2, and the maximum vibrational noise of the tip height is below 200 fm/Hz1/2. The drift of the tip-sample spacing is smaller than 0.1 pm/min. Such a rigid scanner head yields small background noise (oscillation amplitude of ∼2 pm without excitation) and high quality factor (Q factor up to 140 000) for the qPlus sensor. Atomic-resolution imaging and inelastic electron tunneling spectroscopy are obtained under the scanning tunneling microscope mode on the Au(111) surface. The hydrogen-bonding structure of two-dimensional (2D) ice on the Au(111) surface is clearly resolved under the atomic force microscope (AFM) mode with a CO-terminated tip. Finally, the electroluminescence spectrum from a plasmonic AFM tip is demonstrated, which paves the way for future photon-assisted SPM experiments.
Collapse
Affiliation(s)
- Bowei Cheng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Da Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Ke Bian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Chaoyu Guo
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Kaihui Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Doležal J, Canola S, Hapala P, de Campos Ferreira RC, Merino P, Švec M. Real Space Visualization of Entangled Excitonic States in Charged Molecular Assemblies. ACS NANO 2022; 16:1082-1088. [PMID: 34919384 DOI: 10.1021/acsnano.1c08816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Entanglement of excitons holds great promise for the future of quantum computing, which would use individual molecular dyes as building blocks of their circuitry. Studying entangled excitonic eigenstates emerging in coupled molecular assemblies in the near-field with submolecular resolution has the potential to bring insight into the photophysics of these fascinating quantum phenomena. In contrast to far-field spectroscopies, near-field spectroscopic mapping permits direct identification of the individual eigenmodes, type of exciton coupling, including excited states otherwise inaccessible in the far field (dark states). Here we combine tip-enhanced spectromicroscopy with atomic force microscopy to inspect delocalized single-exciton states of charged molecular assemblies engineered from individual perylenetetracarboxylic dianhydride (PTCDA) molecules. Hyperspectral mapping of the eigenstates and comparison with calculated many-body optical transitions reveals a second low-lying excited state of the anion monomers and its role in the exciton entanglement within the assemblies. We demonstrate control over the exciton coupling by switching the assembly charge states. Our results reveal the possibility of tailoring excitonic properties of organic dye aggregates for advanced functionalities and establish the methodology to address them individually at the nanoscale.
Collapse
Affiliation(s)
- Jiří Doležal
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Praha 2 CZ12116, Czech Republic
| | - Sofia Canola
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
| | - Prokop Hapala
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
| | | | - Pablo Merino
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, E28049 Madrid, Spain
- Instituto de Física Fundamental, CSIC, Serrano 121, E28006 Madrid, Spain
| | - Martin Švec
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, CZ78371 Olomouc, Czech Republic
| |
Collapse
|
14
|
Han Y, Meng Z, Wu Y, Zhang S, Wu S. Structural Colored Fabrics with Brilliant Colors, Low Angle Dependence, and High Color Fastness Based on the Mie Scattering of Cu 2O Spheres. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57796-57802. [PMID: 34797637 DOI: 10.1021/acsami.1c17288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Compared with conventional textile coloring with dyes and pigments, structural colored fabrics have attracted broad attention due to the advantages of eco-friendliness, brilliant colors, and anti-fading properties. The most investigated structural color on fabrics is originated from a band gap of multilayered photonic crystals or amorphous photonic structures. However, limited by the nature of the color generation mechanism and a multilayered structure, it is challenging to achieve structural colored fabrics with brilliant noniridescent colors and high fastness. Here, we propose an alternative strategy for coloring a fabric based on the scattering of Cu2O single-crystal spheres. The disordered Cu2O thin layers (<0.6 μm) on the surface of fabrics were prepared by a spraying method, which can generate vivid noniridescent structural color due to the strong Mie scattering of Cu2O single-crystal spheres. Importantly, the great mechanical stability of the structural color was realized by firmly binding Cu2O spheres to the fabric using a commercial binder. The structural color can be tuned by changing the diameter of Cu2O spheres. Furthermore, complex patterns can be easily obtained by spray coating Cu2O spheres with different particle sizes using a mask. According to color fastness test standards, the dry rubbing, wet rubbing, and light fastness of the structural color on fabric can reach level 5, level 4, and level 6, respectively, which is sufficient to resist rubbing, photobleaching, washing, rinsing, kneading, stretching, and other external mechanical forces. This coloring method may carve a practical avenue in textile coloring and has potentials in other practical applications of structural color.
Collapse
Affiliation(s)
- Yaqun Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Zhipeng Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Yue Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
15
|
Peng J, Sokolov S, Hernangómez-Pérez D, Evers F, Gross L, Lupton JM, Repp J. Atomically resolved single-molecule triplet quenching. Science 2021; 373:452-456. [PMID: 34437120 DOI: 10.1126/science.abh1155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/25/2021] [Indexed: 01/14/2023]
Abstract
The nonequilibrium triplet state of molecules plays an important role in photocatalysis, organic photovoltaics, and photodynamic therapy. We report the direct measurement of the triplet lifetime of an individual pentacene molecule on an insulating surface with atomic resolution by introducing an electronic pump-probe method in atomic force microscopy. Strong quenching of the triplet lifetime is observed if oxygen molecules are coadsorbed in close proximity. By means of single-molecule manipulation techniques, different arrangements with oxygen molecules were created and characterized with atomic precision, allowing for the direct correlation of molecular arrangements with the lifetime of the quenched triplet. Such electrical addressing of long-lived triplets of single molecules, combined with atomic-scale manipulation, offers previously unexplored routes to control and study local spin-spin interactions.
Collapse
Affiliation(s)
- Jinbo Peng
- Institute for Experimental and Applied Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, 93040 Regensburg, Germany.
| | - Sophia Sokolov
- Institute for Experimental and Applied Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, 93040 Regensburg, Germany
| | - Daniel Hernangómez-Pérez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ferdinand Evers
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Leo Gross
- IBM Research-Zurich, 8803 Rüschlikon, Switzerland
| | - John M Lupton
- Institute for Experimental and Applied Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, 93040 Regensburg, Germany
| | - Jascha Repp
- Institute for Experimental and Applied Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
16
|
Affiliation(s)
- Linfei Li
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|