1
|
Scherer J, Hinczewski M, Nelms B. Ultra-deep sequencing of somatic mutations induced by a maize transposon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634239. [PMID: 39896451 PMCID: PMC11785109 DOI: 10.1101/2025.01.22.634239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cells accumulate mutations throughout development, contributing to cancer, aging, and evolution. Quantitative data on the abundance of de novo mutations within plants or animals are limited, as new mutations are often rare within a tissue and fall below the limits of current sequencing depths and error rates. Here, we show that mutations induced by the maize Mutator (Mu) transposon can be reliably quantified down to a detection limit of 1 part in 12,000. We measured the abundance of millions of de novo Mu insertions across four tissue types. Within a tissue, the distribution of de novo Mu allele frequencies was highly reproducible between plants, showing that, despite the stochastic nature of mutation, repeated statistical patterns of mutation abundance emerge. In contrast, there were significant differences in the allele frequency distribution between tissues. At the extremes, root was dominated by a small number of highly abundant de novo insertions, while endosperm was characterized by thousands of insertions at low allele frequencies. Finally, we used the measured pollen allele frequencies to reinterpret a classic genetic experiment, showing that evidence for late Mu activity in pollen are better explained by cell division statistics. These results provide insight into the complexity of mutation accumulation in multicellular organisms and a system to interrogate the factors that shape mutation abundance.
Collapse
Affiliation(s)
- Justin Scherer
- Department of Genetics, University of Georgia, Athens, GA 30602
- The Plant Center, University of Georgia, Athens, GA 30602
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106
| | - Brad Nelms
- Department of Genetics, University of Georgia, Athens, GA 30602
- The Plant Center, University of Georgia, Athens, GA 30602
- Department of Plant Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
2
|
Xu H, Bierman R, Akey D, Koers C, Comi T, McWhite C, Akey JM. Landscape of human protein-coding somatic mutations across tissues and individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631808. [PMID: 39829890 PMCID: PMC11741334 DOI: 10.1101/2025.01.07.631808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Although somatic mutations are fundamentally important to human biology, disease, and aging, many outstanding questions remain about their rates, spectrum, and determinants in apparently healthy tissues. Here, we performed high-coverage exome sequencing on 265 samples from 14 GTEx donors sampled for a median of 17.5 tissues per donor (spanning 46 total tissues). Using a novel probabilistic method tailored to the unique structure of our data, we identified 8,470 somatic variants. We leverage our compendium of somatic mutations to quantify the burden of deleterious somatic variants among tissues and individuals, identify molecular features such as chromatin accessibility that exhibit significantly elevated somatic mutation rates, provide novel biological insights into mutational mechanisms, and infer developmental trajectories based on patterns of multi-tissue somatic mosaicism. Our data provides a high-resolution portrait of somatic mutations across genes, tissues, and individuals.
Collapse
Affiliation(s)
- Huixin Xu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ. 08540, USA
| | - Rob Bierman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ. 08540, USA
- Princeton Research Computing, Princeton University, Princeton NJ. 08540, USA
| | - Dayna Akey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ. 08540, USA
| | - Cooper Koers
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ. 08540, USA
| | - Troy Comi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ. 08540, USA
- Princeton Research Computing, Princeton University, Princeton NJ. 08540, USA
| | - Claire McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ. 08540, USA
| | - Joshua M. Akey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ. 08540, USA
- Lead Contact
| |
Collapse
|
3
|
Coorens THH, Guillaumet-Adkins A, Kovner R, Linn RL, Roberts VHJ, Sule A, Van Hoose PM. The human and non-human primate developmental GTEx projects. Nature 2025; 637:557-564. [PMID: 39815096 DOI: 10.1038/s41586-024-08244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/17/2024] [Indexed: 01/18/2025]
Abstract
Many human diseases are the result of early developmental defects. As most paediatric diseases and disorders are rare, children are critically underrepresented in research. Functional genomics studies primarily rely on adult tissues and lack critical cell states in specific developmental windows. In parallel, little is known about the conservation of developmental programmes across non-human primate (NHP) species, with implications for human evolution. Here we introduce the developmental Genotype-Tissue Expression (dGTEx) projects, which span humans and NHPs and aim to integrate gene expression, regulation and genetics data across development and species. The dGTEx cohort will consist of 74 tissue sites across 120 human donors from birth to adulthood, and developmentally matched NHP age groups, with additional prenatal and adult animals, with 126 rhesus macaques (Macaca mulatta) and 72 common marmosets (Callithrix jacchus). The data will comprise whole-genome sequencing, extensive bulk, single-cell and spatial gene expression profiles, and chromatin accessibility data across tissues and development. Through community engagement and donor diversity, the human dGTEx study seeks to address disparities in genomic research. Thus, dGTEx will provide a reference human and NHP dataset and tissue bank, enabling research into developmental changes in expression and gene regulation, childhood disorders and the effect of genetic variation on development.
Collapse
Affiliation(s)
| | | | | | - Rebecca L Linn
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Sciences University, Portland, OR, USA
| | - Amrita Sule
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
4
|
Chai L, Yu Y, Xiong H, Chen X, Zhang W, Ren H, Jiang Y, Zhu Y, Zhang C, Zhu Z, Yuan Q, Wei F. Symmetry and Asymmetry in Mutations and Memory Retention during the Evolutionary Growth of Carbon Nanotubes. J Am Chem Soc 2024. [PMID: 39632084 DOI: 10.1021/jacs.4c10400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Symmetry is a motif featured in almost all areas of science, and understanding the mechanism of symmetry breaking is challenging. Similar to mutations that disrupt symmetry in evolution, defects in materials offer insight into symmetry breaking. Here, we investigate symmetry in intragenerational mutations and symmetry breaking in transgenerational mutations in the evolutionary growth system of carbon nanotubes (CNTs). Mutations caused by pentagon-heptagon (5-7) pairs in different conformations shorten the lifespans of single-walled carbon nanotubes (SWNTs) by acting as time markers during growth. Symmetric distributions are observed for intragenerational mutations from (n, m) to (n + i, m-i) (where i ∈ caslon Z) with different appearance orders of pentagon and heptagon. Such symmetry breaks occur in transgenerational mutations. Intragenerational mutations occur multiple times on a SWNT, oscillating regularly between i and - i until termination occurs. These types and effects are retained in the form of memory to encode SWNTs during subsequent growth, resulting in a length reduction after each mutation. Our results provide a profound understanding of symmetry breaking and memory retention and offer guidance for the controlled synthesis of materials.
Collapse
Affiliation(s)
- Lin Chai
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yaxiong Yu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017000, China
| | - Wenjie Zhang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - He Ren
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yaxin Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yukang Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017000, China
| | - Zhenxing Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qinghong Yuan
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017000, China
| |
Collapse
|
5
|
Li R, Su P, Shi Y, Shi H, Ding S, Su X, Chen P, Wu D. Gene doping detection in the era of genomics. Drug Test Anal 2024; 16:1468-1478. [PMID: 38403949 DOI: 10.1002/dta.3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Recent progress in gene editing has enabled development of gene therapies for many genetic diseases, but also made gene doping an emerging risk in sports and competitions. By delivery of exogenous transgenes into human body, gene doping not only challenges competition fairness but also places health risk on athletes. World Anti-Doping Agency (WADA) has clearly inhibited the use of gene and cell doping in sports, and many techniques have been developed for gene doping detection. In this review, we will summarize the main tools for gene doping detection at present, highlight the main challenges for current tools, and elaborate future utilizations of high-throughput sequencing for unbiased, sensitive, economic and large-scale gene doping detections. Quantitative real-time PCR assays are the widely used detection methods at present, which are useful for detection of known targets but are vulnerable to codon optimization at exon-exon junction sites of the transgenes. High-throughput sequencing has become a powerful tool for various applications in life and health research, and the era of genomics has made it possible for sensitive and large-scale gene doping detections. Non-biased genomic profiling could efficiently detect new doping targets, and low-input genomics amplification and long-read third-generation sequencing also have application potentials for more efficient and straightforward gene doping detection. By closely monitoring scientific advancements in gene editing and sport genetics, high-throughput sequencing could play a more and more important role in gene detection and hopefully contribute to doping-free sports in the future.
Collapse
Affiliation(s)
- Ruihong Li
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, China
| | - Peipei Su
- Innovative Program of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shi
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengqian Ding
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
| | - Xianbin Su
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Williams MJ, Oliphant MUJ, Au V, Liu C, Baril C, O'Flanagan C, Lai D, Beatty S, Van Vliet M, Yiu JC, O'Connor L, Goh WL, Pollaci A, Weiner AC, Grewal D, McPherson A, Norton K, Moore M, Prabhakar V, Agarwal S, Garber JE, Dillon DA, Shah SP, Brugge JS, Aparicio S. Luminal breast epithelial cells of BRCA1 or BRCA2 mutation carriers and noncarriers harbor common breast cancer copy number alterations. Nat Genet 2024; 56:2753-2762. [PMID: 39567747 PMCID: PMC11631757 DOI: 10.1038/s41588-024-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The prevalence and nature of somatic copy number alterations (CNAs) in breast epithelium and their role in tumor initiation and evolution remain poorly understood. Using single-cell DNA sequencing (49,238 cells) of epithelium from BRCA1 and BRCA2 carriers or wild-type individuals, we identified recurrent CNAs (for example, 1q-gain and 7q, 10q, 16q and 22q-loss) that are present in a rare population of cells across almost all samples (n = 28). In BRCA1/BRCA2 carriers, these occur before loss of heterozygosity (LOH) of wild-type alleles. These CNAs, common in malignant tumors, are enriched in luminal cells but absent in basal myoepithelial cells. Allele-specific analysis of prevalent CNAs reveals that they arose by independent mutational events, consistent with convergent evolution. BRCA1/BRCA2 carriers contained a small percentage of cells with extreme aneuploidy, featuring loss of TP53, BRCA1/BRCA2 LOH and multiple breast cancer-associated CNAs. Our findings suggest that CNAs arising in normal luminal breast epithelium are precursors to clonally expanded tumor genomes.
Collapse
Affiliation(s)
- Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael U J Oliphant
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Vinci Au
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Liu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Baril
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ciara O'Flanagan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean Beatty
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Van Vliet
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacky Ch Yiu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren O'Connor
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Walter L Goh
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Alicia Pollaci
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Adam C Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Diljot Grewal
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Klarisa Norton
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - McKenna Moore
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Vikas Prabhakar
- Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA, USA
| | - Shailesh Agarwal
- Department of Surgery, Brigham and Women's Hospital (BWH), Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Deborah A Dillon
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA.
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Torreggiani S, Castellan FS, Aksentijevich I, Beck DB. Somatic mutations in autoinflammatory and autoimmune disease. Nat Rev Rheumatol 2024; 20:683-698. [PMID: 39394526 DOI: 10.1038/s41584-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Somatic mutations (also known as acquired mutations) are emerging as common, age-related processes that occur in all cells throughout the body. Somatic mutations are canonically linked to malignant processes but over the past decade have been increasingly causally connected to benign diseases including rheumatic conditions. Here we outline the contribution of somatic mutations to complex and monogenic immunological diseases with a detailed review of unique aspects associated with such causes. Somatic mutations can cause early- or late-onset rheumatic monogenic diseases but also contribute to the pathogenesis of complex inflammatory and immune-mediated diseases, affect disease progression and define new clinical subtypes. Although even variants with a low variant allele fraction can be pathogenic, clonal dynamics could lead to changes over time in the proportion of mutant cells, with possible phenotypic consequences for the individual. Thus, somatic mutagenesis and clonal expansion have relevant implications in genetic testing and counselling. On the basis of both increased recognition of somatic diseases in clinical practice and improved technical and bioinformatic processes, we hypothesize that there will be an ever-expanding list of somatic mutations in various genes leading to inflammatory conditions, particularly in late-onset disease.
Collapse
Affiliation(s)
- Sofia Torreggiani
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Epidemiology and Human Genetics, Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Flore S Castellan
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Waldvogel SM, Posey JE, Goodell MA. Human embryonic genetic mosaicism and its effects on development and disease. Nat Rev Genet 2024; 25:698-714. [PMID: 38605218 PMCID: PMC11408116 DOI: 10.1038/s41576-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Nearly every mammalian cell division is accompanied by a mutational event that becomes fixed in a daughter cell. When carried forward to additional cell progeny, a clone of variant cells can emerge. As a result, mammals are complex mosaics of clones that are genetically distinct from one another. Recent high-throughput sequencing studies have revealed that mosaicism is common, clone sizes often increase with age and specific variants can affect tissue function and disease development. Variants that are acquired during early embryogenesis are shared by multiple cell types and can affect numerous tissues. Within tissues, variant clones compete, which can result in their expansion or elimination. Embryonic mosaicism has clinical implications for genetic disease severity and transmission but is likely an under-recognized phenomenon. To better understand its implications for mosaic individuals, it is essential to leverage research tools that can elucidate the mechanisms by which expanded embryonic variants influence development and disease.
Collapse
Affiliation(s)
- Sarah M Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Sran S, Ringland A, Bedrosian TA. Building the brain mosaic: an expanded view. Trends Genet 2024; 40:747-756. [PMID: 38853120 PMCID: PMC11387136 DOI: 10.1016/j.tig.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
The complexity of the brain is closely tied to its nature as a genetic mosaic, wherein each cell is distinguished by a unique constellation of somatic variants that contribute to functional and phenotypic diversity. Postzygotic variation arising during neurogenesis is recognized as a key contributor to brain mosaicism; however, recent advances have broadened our understanding to include sources of neural genomic diversity that develop throughout the entire lifespan, from embryogenesis through aging. Moving beyond the traditional confines of neurodevelopment, in this review, we delve into the complex mechanisms that enable various origins of brain mosaicism.
Collapse
Affiliation(s)
- Sahibjot Sran
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amanda Ringland
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tracy A Bedrosian
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
10
|
Beichman AC, Zhu L, Harris K. The Evolutionary Interplay of Somatic and Germline Mutation Rates. Annu Rev Biomed Data Sci 2024; 7:83-105. [PMID: 38669515 DOI: 10.1146/annurev-biodatasci-102523-104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| | - Luke Zhu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Kelley Harris
- Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
11
|
Graham JH, Schlachetzki JCM, Yang X, Breuss MW. Genomic Mosaicism of the Brain: Origin, Impact, and Utility. Neurosci Bull 2024; 40:759-776. [PMID: 37898991 PMCID: PMC11178748 DOI: 10.1007/s12264-023-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/16/2023] [Indexed: 10/31/2023] Open
Abstract
Genomic mosaicism describes the phenomenon where some but not all cells within a tissue harbor unique genetic mutations. Traditionally, research focused on the impact of genomic mosaicism on clinical phenotype-motivated by its involvement in cancers and overgrowth syndromes. More recently, we increasingly shifted towards the plethora of neutral mosaic variants that can act as recorders of cellular lineage and environmental exposures. Here, we summarize the current state of the field of genomic mosaicism research with a special emphasis on our current understanding of this phenomenon in brain development and homeostasis. Although the field of genomic mosaicism has a rich history, technological advances in the last decade have changed our approaches and greatly improved our knowledge. We will provide current definitions and an overview of contemporary detection approaches for genomic mosaicism. Finally, we will discuss the impact and utility of genomic mosaicism.
Collapse
Affiliation(s)
- Jared H Graham
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, 92123, CA, USA
| | - Martin W Breuss
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA.
| |
Collapse
|
12
|
Williams MJ, Oliphant MU, Au V, Liu C, Baril C, O'Flanagan C, Lai D, Beatty S, Van Vliet M, Yiu JC, O'Connor L, Goh WL, Pollaci A, Weiner AC, Grewal D, McPherson A, Moore M, Prabhakar V, Agarwal S, Garber JE, Dillon D, Shah SP, Brugge J, Aparicio S. Luminal breast epithelial cells from wildtype and BRCA mutation carriers harbor copy number alterations commonly associated with breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591587. [PMID: 38746396 PMCID: PMC11092623 DOI: 10.1101/2024.05.01.591587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cancer-associated mutations have been documented in normal tissues, but the prevalence and nature of somatic copy number alterations and their role in tumor initiation and evolution is not well understood. Here, using single cell DNA sequencing, we describe the landscape of CNAs in >42,000 breast epithelial cells from women with normal or high risk of developing breast cancer. Accumulation of individual cells with one or two of a specific subset of CNAs (e.g. 1q gain and 16q, 22q, 7q, and 10q loss) is detectable in almost all breast tissues and, in those from BRCA1 or BRCA2 mutations carriers, occurs prior to loss of heterozygosity (LOH) of the wildtype alleles. These CNAs, which are among the most common associated with ductal carcinoma in situ (DCIS) and malignant breast tumors, are enriched almost exclusively in luminal cells not basal myoepithelial cells. Allele-specific analysis of the enriched CNAs reveals that each allele was independently altered, demonstrating convergent evolution of these CNAs in an individual breast. Tissues from BRCA1 or BRCA2 mutation carriers contain a small percentage of cells with extreme aneuploidy, featuring loss of TP53 , LOH of BRCA1 or BRCA2 , and multiple breast cancer-associated CNAs in addition to one or more of the common CNAs in 1q, 10q or 16q. Notably, cells with intermediate levels of CNAs are not detected, arguing against a stepwise gradual accumulation of CNAs. Overall, our findings demonstrate that chromosomal alterations in normal breast epithelium partially mirror those of established cancer genomes and are chromosome- and cell lineage-specific.
Collapse
|
13
|
Sun Y, Huang ZL, Chen WX, Zhang YF, Lei HT, Huang QJ, Lun ZR, Qu LH, Zheng LL. GateView: A Multi-Omics Platform for Gene Feature Analysis of Virus Receptors within Human Normal Tissues and Tumors. Biomolecules 2024; 14:516. [PMID: 38785923 PMCID: PMC11118183 DOI: 10.3390/biom14050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Viruses are obligate intracellular parasites that rely on cell surface receptor molecules to complete the first step of invading host cells. The experimental method for virus receptor screening is time-consuming, and receptor molecules have been identified for less than half of known viruses. This study collected known human viruses and their receptor molecules. Through bioinformatics analysis, common characteristics of virus receptor molecules (including sequence, expression, mutation, etc.) were obtained to study why these membrane proteins are more likely to become virus receptors. An in-depth analysis of the cataloged virus receptors revealed several noteworthy findings. Compared to other membrane proteins, human virus receptors generally exhibited higher expression levels and lower sequence conservation. These receptors were found in multiple tissues, with certain tissues and cell types displaying significantly higher expression levels. While most receptor molecules showed noticeable age-related variations in expression across different tissues, only a limited number of them exhibited gender-related differences in specific tissues. Interestingly, in contrast to normal tissues, virus receptors showed significant dysregulation in various types of tumors, particularly those associated with dsRNA and retrovirus receptors. Finally, GateView, a multi-omics platform, was established to analyze the gene features of virus receptors in human normal tissues and tumors. Serving as a valuable resource, it enables the exploration of common patterns among virus receptors and the investigation of virus tropism across different tissues, population preferences, virus pathogenicity, and oncolytic virus mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.S.); (Z.-L.H.); (W.-X.C.); (Y.-F.Z.); (H.-T.L.); (Q.-J.H.); (Z.-R.L.)
| | - Ling-Ling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.S.); (Z.-L.H.); (W.-X.C.); (Y.-F.Z.); (H.-T.L.); (Q.-J.H.); (Z.-R.L.)
| |
Collapse
|
14
|
Chatsirisupachai K, de Magalhães JP. Somatic mutations in human ageing: New insights from DNA sequencing and inherited mutations. Ageing Res Rev 2024; 96:102268. [PMID: 38490496 DOI: 10.1016/j.arr.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The accumulation of somatic mutations is a driver of cancer and has long been associated with ageing. Due to limitations in quantifying mutation burden with age in non-cancerous tissues, the impact of somatic mutations in other ageing phenotypes is unclear. Recent advances in DNA sequencing technologies have allowed the large-scale quantification of somatic mutations in ageing tissues. These studies have revealed a gradual accumulation of mutations in normal tissues with age as well as a substantial clonal expansion driven mostly by cancer-related mutations. Nevertheless, it is difficult to envision how the burden and stochastic nature of age-related somatic mutations identified so far can explain most ageing phenotypes that develop gradually. Studies across species have also found that longer-lived species have lower somatic mutation rates, though these could be due to selective pressures acting on other phenotypes such as perhaps cancer. Recent studies in patients with higher somatic mutation burden and no signs of accelerated ageing further question the role of somatic mutations in ageing. Overall, with a few exceptions like cancer, recent DNA sequencing studies and inherited mutations do not support the idea that somatic mutations accumulating with age drive ageing phenotypes, and the phenotypic role, if any, of somatic mutations in ageing remains unclear.
Collapse
Affiliation(s)
- Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham, UK.
| |
Collapse
|
15
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
16
|
Li S, Vazquez JM, Sudmant PH. The evolution of aging and lifespan. Trends Genet 2023; 39:830-843. [PMID: 37714733 PMCID: PMC11147682 DOI: 10.1016/j.tig.2023.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Aging is a nearly inescapable trait among organisms yet lifespan varies tremendously across different species and spans several orders of magnitude in vertebrates alone. This vast phenotypic diversity is driven by distinct evolutionary trajectories and tradeoffs that are reflected in patterns of diversification and constraint in organismal genomes. Age-specific impacts of selection also shape allele frequencies in populations, thus impacting disease susceptibility and environment-specific mortality risk. Further, the mutational processes that spawn this genetic diversity in both germline and somatic cells are strongly influenced by age and life history. We discuss recent advances in our understanding of the evolution of aging and lifespan at organismal, population, and cellular scales, and highlight outstanding questions that remain unanswered.
Collapse
Affiliation(s)
- Stacy Li
- Department of Integrative Biology, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA. USA
| | - Juan Manuel Vazquez
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA. USA.
| |
Collapse
|
17
|
Gao T, Kastriti ME, Ljungström V, Heinzel A, Tischler AS, Oberbauer R, Loh PR, Adameyko I, Park PJ, Kharchenko PV. A pan-tissue survey of mosaic chromosomal alterations in 948 individuals. Nat Genet 2023; 55:1901-1911. [PMID: 37904053 PMCID: PMC10838621 DOI: 10.1038/s41588-023-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
Genetic mutations accumulate in an organism's body throughout its lifetime. While somatic single-nucleotide variants have been well characterized in the human body, the patterns and consequences of large chromosomal alterations in normal tissues remain largely unknown. Here, we present a pan-tissue survey of mosaic chromosomal alterations (mCAs) in 948 healthy individuals from the Genotype-Tissue Expression project, augmenting RNA-based allelic imbalance estimation with haplotype phasing. We found that approximately a quarter of the individuals carry a clonally-expanded mCA in at least one tissue, with incidence strongly correlated with age. The prevalence and genome-wide patterns of mCAs vary considerably across tissue types, suggesting tissue-specific mutagenic exposure and selection pressures. The mCA landscapes in normal adrenal and pituitary glands resemble those in tumors arising from these tissues, whereas the same is not true for the esophagus and skin. Together, our findings show a widespread age-dependent emergence of mCAs across normal human tissues with intricate connections to tumorigenesis.
Collapse
Affiliation(s)
- Teng Gao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Maria Eleni Kastriti
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Viktor Ljungström
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Andreas Heinzel
- Department of Nephrology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Rainer Oberbauer
- Department of Nephrology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA.
| |
Collapse
|