1
|
Solomon AP, O'Quinn EC, Liu J, Gussev IM, Guo X, Neuefeind J, Trautmann C, Ewing RC, Baldinozzi G, Lang MK. Atomic-scale structure of ZrO 2: Formation of metastable polymorphs. SCIENCE ADVANCES 2025; 11:eadq5943. [PMID: 39742476 DOI: 10.1126/sciadv.adq5943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Metastable phases can exist within local minima in the potential energy landscape when they are kinetically "trapped" by various processing routes, such as thermal treatment, grain size reduction, chemical doping, interfacial stress, or irradiation. Despite the importance of metastable materials for many technological applications, little is known about the underlying structural mechanisms of the stabilization process and atomic-scale nature of the resulting defective metastable phase. Investigating ion-irradiated and nanocrystalline zirconia with neutron total scattering experiments, we show that metastable tetragonal ZrO2 consists of an underlying structure of ferroelastic, orthorhombic nanoscale domains stabilized by a network of domain walls. The apparent long-range tetragonal structure that can be recovered to ambient conditions is only the configurational ensemble average of the underlying orthorhombic domains. This structural heterogeneity with a distinct short-range order is more broadly applicable to other nonequilibrium materials and provides insight into the synthesis and recovery of functional metastable phases with unique physical and chemical properties.
Collapse
Affiliation(s)
- Alexandre P Solomon
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric C O'Quinn
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Juejing Liu
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Igor M Gussev
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA
- SPMS, CNRS CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Xiaofeng Guo
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Joerg Neuefeind
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | - Rodney C Ewing
- Department of Earth & Planetary Sciences, Stanford University, Stanford, CA 94305, USA
| | - Gianguido Baldinozzi
- SPMS, CNRS CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Maik K Lang
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Luo H, Xuan H, Wang D, Du Z, Li Z, Bu K, Guo S, Mao Y, Lan F, Liu F, Yin Y, Tian W, Hu Q, Liu G, Liu H, Zeng Q, Ding Y, Fu Y, Li Q, Jin S, Yang W, Mao HK, Lü X. Pressure aging: An effective process to liberate the power of high-pressure materials research. Proc Natl Acad Sci U S A 2024; 121:e2416835121. [PMID: 39665755 DOI: 10.1073/pnas.2416835121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
High pressure can create extreme conditions that enable the formation of novel materials and the discovery of new phenomena. However, the ability to preserve the desirable characteristics of materials obtained under high pressure has remained an elusive challenge, as the pressure-induced changes are typically reversible, except for the pressure-induced chemical reactions such as polymerization of hydrocarbons. Here, we propose the concept of "pressure aging" (PA) that enables the permanent locking-in of high-pressure structures and their associated enhanced properties in functional materials. Specifically, through the application of PA at 3.3 GPa for 24 h, the two-dimensional ferroelectric CuInP2S6 exhibits a permanent change in Cu configuration after the pressure is fully released. This leads to a 2.5-fold enhancement in remanent polarization and an increase in Tc from 317 K to 583 K. In contrast, the samples underwent a compression-decompression cycle but without PA showed only reversible changes in their characteristics. We elucidate the relaxation dynamics during PA using the Kohlrausch-Williams-Watts function, providing valuable insights into the temporal evolution of both structural and property changes. Furthermore, the broad applicability of PA strategy has been validated across different materials, underscoring its versatility. Notably, the pressures involved are industrially attainable, and the sample sizes are scalable. Consequently, the implementation of this impactful PA approach introduces a groundbreaking unique dimension to high-pressure research, with significant potential across various scientific domains.
Collapse
Affiliation(s)
- Hui Luo
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Hongli Xuan
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Dong Wang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Ziwan Du
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhongyang Li
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Fujun Lan
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Fuyang Liu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Gang Liu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Shanghai Key Laboratory MFree, Institute for Shanghai Advanced Research in Physical Sciences, Shanghai 201203, China
| | - Haozhe Liu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Qiaoshi Zeng
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Shanghai Key Laboratory MFree, Institute for Shanghai Advanced Research in Physical Sciences, Shanghai 201203, China
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Shanghai Key Laboratory MFree, Institute for Shanghai Advanced Research in Physical Sciences, Shanghai 201203, China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| |
Collapse
|
3
|
Banerjee P, Prakapenka VB, Chariton S, Shevchenko EV. Compressibility Studies of Copper Selenides Obtained by Cation Exchange Reaction Revealing the New CsCl Phase. NANO LETTERS 2024; 24:6981-6989. [PMID: 38814739 DOI: 10.1021/acs.nanolett.4c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
In this study, we conducted a high-pressure investigation of Cu2-xSe nanostructures with pyramid- and plate-like morphologies, created through cation exchange from zinc-blende CdSe nanocrystals and wurtzite CdSe nanoplatelets respectively. Using a diamond anvil cell setup at the APS synchrotron, we observed the phase transitions in the Cu2-xSe nanostructures up to 40 GPa, identifying a novel CsCl-type lattice with Pm3̅m symmetry above 4 GPa. This CsCl-type structure, previously unreported in copper selenides, was partially retained after decompression. Our results indicate that the initial crystalline structure of CdSe does not affect the stability of Cu2-xSe nanostructures formed via cation exchange. Both morphologies of Cu2-xSe sintered under compression, potentially contributing to the stabilization of the high-pressure phase through interfacial defects. These findings are significant for discovering new phases with potential applications in future technologies.
Collapse
Affiliation(s)
- Progna Banerjee
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Stella Chariton
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Elena V Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
4
|
Nagaoka Y, Schneider J, Jin N, Cai T, Liu Y, Wang Z, Li R, Kim KS, Chen O. Dynamic Transformation of High-Architectural Nanocrystal Superlattices upon Solvent Molecule Exposure. J Am Chem Soc 2024; 146:13093-13104. [PMID: 38690763 DOI: 10.1021/jacs.3c14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The cluster-based body-centered-cubic superlattice (cBCC SL) represents one of the most complicated structures among reported nanocrystal assemblies, comprised of 72 truncated tetrahedral quantum dots per unit cell. Our previous report revealed that truncated tetrahedral quantum dots within cBCC SLs possessed highly controlled translational and orientational order owing to an unusual energetic landscape based on the balancing of entropic and enthalpic contributions during the assembly process. However, the cBCC SL's structural transformability and mechanical properties, uniquely originating from such complicated nanostructures, have yet to be investigated. Herein, we report that cBCC SLs can undergo dynamic transformation to face-centered-cubic SLs in response to post-assembly molecular exposure. We monitored the dynamic transformation process using in situ synchrotron-based small-angle X-ray scattering, revealing a dynamic transformation involving multiple steps underpinned by interactions between incoming molecules and TTQDs' surface ligands. Furthermore, our mechanistic study demonstrated that the precise configuration of TTQDs' ligand molecules in cBCC SLs was key to their high structural transformability and unique jelly-like soft mechanical properties. While ligand molecular configurations in nanocrystal SLs are often considered minor features, our findings emphasize their significance in controlling weak van der Waals interactions between nanocrystals within assembled SLs, leading to previously unremarked superstructural transformability and unique mechanical properties. Our findings promote a facile route toward further creation of soft materials, nanorobotics, and out-of-equilibrium assemblies based on nanocrystal building blocks.
Collapse
Affiliation(s)
- Yasutaka Nagaoka
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jeremy Schneider
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Tong Cai
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kyung-Suk Kim
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
5
|
Jiang S, Chen X, Huang X, Li C, Wang Z, Zhao B, Zhang L, Zhou G, Fang J. Randomly Layered Superstructure of In 2O 3 Truncated Nano-Octahedra and Its High-Pressure Behavior. J Am Chem Soc 2024; 146:8598-8606. [PMID: 38465613 DOI: 10.1021/jacs.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
This study outlines the preparation and characterization of a unique superlattice composed of indium oxide (In2O3) vertex-truncated nano-octahedra, along with an exploration of its response to high-pressure conditions. Transmission electron microscopy and scanning transmission electron microscopy were employed to determine the average circumradius (15.2 nm) of these vertex-truncated building blocks and their planar superstructure. The resilience and response of the superlattice to pressure variations, peaking at 18.01 GPa, were examined using synchrotron-based wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) techniques. The WAXS data revealed no phase transitions, reinforcing the stability of the 2D superlattice composed of random layers in alignment with a p31m planar symmetry as discerned by SAXS. Notably, the SAXS data also unveiled a pressure-induced, irreversible translation of octahedra and ligand interaction occurring within the random layer. Through our examination of these pressure-sensitive behaviors, we identified a distinctive translation model inherent to octahedra and observed modulation of the superlattice cell parameter induced by pressure. This research signifies a noteworthy advancement in deciphering the intricate behaviors of 2D superlattices under a high pressure.
Collapse
Affiliation(s)
- Shaojie Jiang
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Xiaobo Chen
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Xin Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Bo Zhao
- College of Arts & Sciences Microscopy, Texas Tech University, Lubbock, Texas 79409, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guangwen Zhou
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
6
|
Chen L, Wang B, Zhang W, Zheng S, Chen Z, Zhang M, Dong C, Pan F, Li S. Crystal Structure Assignment for Unknown Compounds from X-ray Diffraction Patterns with Deep Learning. J Am Chem Soc 2024; 146:8098-8109. [PMID: 38477574 DOI: 10.1021/jacs.3c11852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Determining the structures of previously unseen compounds from experimental characterizations is a crucial part of materials science. It requires a step of searching for the structure type that conforms to the lattice of the unknown compound, which enables the pattern matching process for characterization data, such as X-ray diffraction (XRD) patterns. However, this procedure typically places a high demand on domain expertise, thus creating an obstacle for computer-driven automation. Here, we address this challenge by leveraging a deep-learning model composed of a union of convolutional residual neural networks. The accuracy of the model is demonstrated on a dataset of over 60,000 different compounds for 100 structure types, and additional categories can be integrated without the need to retrain the existing networks. We also unravel the operation of the deep-learning black box and highlight the way in which the resemblance between the unknown compound and a structure type is quantified based on both local and global characteristics in XRD patterns. This computational tool opens new avenues for automating structure analysis on materials unearthed in high-throughput experimentation.
Collapse
Affiliation(s)
- Litao Chen
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Bingxu Wang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Wentao Zhang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Zhefeng Chen
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Mingzheng Zhang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Cheng Dong
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| |
Collapse
|
7
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
8
|
Mao Y, Guo S, Huang X, Bu K, Li Z, Nguyen PQH, Liu G, Hu Q, Zhang D, Fu Y, Yang W, Lü X. Pressure-Modulated Anomalous Organic-Inorganic Interactions Enhance Structural Distortion and Second-Harmonic Generation in MHyPbBr 3 Perovskite. J Am Chem Soc 2023; 145:23842-23848. [PMID: 37859342 DOI: 10.1021/jacs.3c09375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Organic-inorganic halide perovskites possess unique electronic configurations and high structural tunability, rendering them promising for photovoltaic and optoelectronic applications. Despite significant progress in optimizing the structural characteristics of the organic cations and inorganic framework, the role of organic-inorganic interactions in determining the structural and optical properties has long been underappreciated and remains unclear. Here, by employing pressure tuning, we realize continuous regulation of organic-inorganic interactions in a lead halide perovskite, MHyPbBr3 (MHy+ = methylhydrazinium, CH3NH2NH2+). Compression enhances the organic-inorganic interactions by strengthening the Pb-N coordinate bonding and N-H···Br hydrogen bonding, which results in a higher structural distortion in the inorganic framework. Consequently, the second-harmonic-generation (SHG) intensity experiences an 18-fold increase at 1.5 GPa, and the order-disorder phase transition temperature of MHyPbBr3 increases from 408 K under ambient pressure to 454 K at the industrially achievable level of 0.5 GPa. Further compression triggers a sudden non-centrosymmetric to centrosymmetric phase transition, accompanied by an anomalous bandgap increase by 0.44 eV, which stands as the largest boost in all known halide perovskites. Our findings shed light on the intricate correlations among organic-inorganic interactions, octahedral distortion, and SHG properties and, more broadly, provide valuable insights into structural design and property optimization through cation engineering of halide perovskites.
Collapse
Affiliation(s)
- Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Xu Huang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Zhongyang Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Phuong Q H Nguyen
- Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Gang Liu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| |
Collapse
|
9
|
Meng L, Vu TV, Criscenti LJ, Ho TA, Qin Y, Fan H. Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles. Chem Rev 2023; 123:10206-10257. [PMID: 37523660 DOI: 10.1021/acs.chemrev.3c00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.
Collapse
Affiliation(s)
- Lingyao Meng
- Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Tuan V Vu
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Louise J Criscenti
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tuan A Ho
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yang Qin
- Department of Chemical & Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Mansfield, Connecticut 06269, United States
| | - Hongyou Fan
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
10
|
Huang X, Suit E, Zhu J, Ge B, Gerdes F, Klinke C, Wang Z. Diffusion-Mediated Nucleation and Growth of fcc and bcc Nanocrystal Superlattices with Designable Assembly of Freestanding 3D Supercrystals. J Am Chem Soc 2023; 145:4500-4507. [PMID: 36787491 DOI: 10.1021/jacs.2c11120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Diffusion-mediated assembly of octahedral PbS nanocrystals (NCs) in a confined antisolvent environment displays a primary burst nucleation and Ostwald ripening growth of rhombic bcc supercrystals, followed by a secondary seed-based nucleation and oriented attachment growth of triangle fcc supercrystals. As the diffusion proceeds from ethanol across a sharp interface into NC-suspended toluene, a burst nucleation of supercrystal seeds occurs, and such supercrystals are quickly developed into rhombic grains that have a bcc structure. At a critical size of 10 μm, an Ostwald ripening event appears to guide the supercrystal growth. Upon grain growth above 30 μm, the fcc supercrystals start a nucleation at two symmetrical tips of individual rhombic crystals. Such fcc supercrystals are developed with a triangle shape, and two triangles are combined with one bcc rhombus in-between to form a butterfly-like bowtie stacking structure. The fcc triangle wings grow larger at a reduction of bcc rhombus cores. As the bcc cores gradually fade, such butterfly-like bowtie crystals aggregate and undergo an oriented attachment process, leading to the formation of freestanding 3D triangle crystals that have a single fcc lattice. Analysis of experimental observations and defined diffusion parameters reveals that fast solvent diffusion and high-NC concentration promote the growth of rhombic bcc supercrystals, while slow solvent diffusion and low-NC concentration accelerate the development of triangle fcc supercrystals. Upon succeeding in designable growth of 3D fcc supercrystals, this study provides designing principles for controlled fabrication of supercrystals with desired superlattices for additional engineering and applications.
Collapse
Affiliation(s)
- Xin Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth Suit
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Jinlong Zhu
- Department of Physics, South University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Binghui Ge
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Frauke Gerdes
- Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Christian Klinke
- Institute of Physics, University of Rostock, 18059 Rostock, Germany.,Department of Chemistry, Swansea University─Singleton Park, Swansea SA2 8PP, U.K
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Mao WL, Lin Y. Making the most of metastability. Science 2022; 377:814-815. [PMID: 35981027 DOI: 10.1126/science.add5433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Researchers seek to preserve materials that are formed at high pressure.
Collapse
Affiliation(s)
- Wendy L Mao
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Yu Lin
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|