1
|
Wang J, Zhao R, Liu Y, Hu T, Li X, He L, Guo Z, Chen C, Shi X. The correlation between Smac, IAPs and mitochondrial apoptosis, muscle tenderness during postmortem aging of Oula Tibetan sheep meat. Food Chem X 2024; 24:101887. [PMID: 39498258 PMCID: PMC11532436 DOI: 10.1016/j.fochx.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Oula Tibetan sheep meat has rich nutritional value but relatively poor tenderness. Recently, apoptosis of muscle cells has gradually become a research hotspot for improving meat tenderness during postmortem aging. Smac can promote the decrease of IAPs expression in tumor cells, thereby inducing mitochondrial apoptosis. However, the relationship between Smac, IAPs and mitochondrial apoptosis, muscle tenderness during postmortem meat aging is still unclear. Thus, the aim of this work was to explore the relationship between Smac, IAPs and mitochondrial apoptosis as well as muscle tenderness during postmortem meat aging. Smac concentration, IAPs concentration, pH value, ATP content, SDH activity, MPTP opening degree, MMP, caspase-3/9 activity, apoptotic rate, MFI and shear force value of Oula Tibetan sheep meat were measured at different aging times and correlation analysis was performed. Correlation analysis revealed that Smac, IAPs were markedly related to mitochondrial apoptosis and muscle tenderness during postmortem aging of Tibetan sheep meat. The results suggest that Smac may regulate IAPs to promote mitochondrial apoptosis and muscle tenderization in Oula Tibetan sheep meat during postmortem aging.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruina Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tieying Hu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolong Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xixiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Hara MA, Ramadan M, Abdelhameid MK, Taher ES, Mohamed KO. Pyroptosis and chemical classification of pyroptotic agents. Mol Divers 2024:10.1007/s11030-024-10987-6. [PMID: 39316325 DOI: 10.1007/s11030-024-10987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Pyroptosis, as a lytic-inflammatory type of programmed cell death, has garnered considerable attention due to its role in cancer chemotherapy and many inflammatory diseases. This review will discuss the biochemical classification of pyroptotic inducers according to their chemical structure, pyroptotic mechanism, and cancer type of these targets. A structure-activity relationship study on pyroptotic inducers is revealed based on the surveyed pyroptotic inducer chemotherapeutics. The shared features in the chemical structures of current pyroptotic inducer agents were displayed, including an essential cyclic head, a vital linker, and a hydrophilic tail that is significant for π-π interactions and hydrogen bonding. The presented structural features will open the way to design new hybridized classes or scaffolds as potent pyroptotic inducers in the future, which may represent a solution to the apoptotic-resistance dilemma along with synergistic chemotherapeutic advantage.
Collapse
Affiliation(s)
- Mohammed A Hara
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt
| | - Mohamed Ramadan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt.
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ehab S Taher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sinai University (Arish Branch), ElArich, Egypt
| |
Collapse
|
3
|
Horn-Ghetko D, Hopf LVM, Tripathi-Giesgen I, Du J, Kostrhon S, Vu DT, Beier V, Steigenberger B, Prabu JR, Stier L, Bruss EM, Mann M, Xiong Y, Schulman BA. Noncanonical assembly, neddylation and chimeric cullin-RING/RBR ubiquitylation by the 1.8 MDa CUL9 E3 ligase complex. Nat Struct Mol Biol 2024; 31:1083-1094. [PMID: 38605244 PMCID: PMC11257990 DOI: 10.1038/s41594-024-01257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
Ubiquitin ligation is typically executed by hallmark E3 catalytic domains. Two such domains, 'cullin-RING' and 'RBR', are individually found in several hundred human E3 ligases, and collaborate with E2 enzymes to catalyze ubiquitylation. However, the vertebrate-specific CUL9 complex with RBX1 (also called ROC1), of interest due to its tumor suppressive interaction with TP53, uniquely encompasses both cullin-RING and RBR domains. Here, cryo-EM, biochemistry and cellular assays elucidate a 1.8-MDa hexameric human CUL9-RBX1 assembly. Within one dimeric subcomplex, an E2-bound RBR domain is activated by neddylation of its own cullin domain and positioning from the adjacent CUL9-RBX1 in trans. Our data show CUL9 as unique among RBX1-bound cullins in dependence on the metazoan-specific UBE2F neddylation enzyme, while the RBR domain protects it from deneddylation. Substrates are recruited to various upstream domains, while ubiquitylation relies on both CUL9's neddylated cullin and RBR domains achieving self-assembled and chimeric cullin-RING/RBR E3 ligase activity.
Collapse
Affiliation(s)
- Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Linus V M Hopf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Jiale Du
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Kostrhon
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D Tung Vu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Viola Beier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Luca Stier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Elias M Bruss
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yue Xiong
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Cullgen Inc., San Diego, CA, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany.
| |
Collapse
|
4
|
Aspholm EE, Lidman J, Burmann BM. Structural basis of substrate recognition and allosteric activation of the proapoptotic mitochondrial HtrA2 protease. Nat Commun 2024; 15:4592. [PMID: 38816423 DOI: 10.1038/s41467-024-48997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
The mitochondrial serine protease HtrA2 is a human homolog of the Escherichia coli Deg-proteins exhibiting chaperone and proteolytic roles. HtrA2 is involved in both apoptotic regulation via its ability to degrade inhibitor-of-apoptosis proteins (IAPs), as well as in cellular maintenance as part of the cellular protein quality control machinery, by preventing the possible toxic accumulation of aggregated proteins. In this study, we use advanced solution NMR spectroscopy methods combined with biophysical characterization and biochemical assays to elucidate the crucial role of the substrate recognizing PDZ domain. This domain regulates the protease activity of HtrA2 by triggering an intricate allosteric network involving the regulatory loops of the protease domain. We further show that divalent metal ions can both positively and negatively modulate the activity of HtrA2, leading to a refined model of HtrA2 regulation within the apoptotic pathway.
Collapse
Affiliation(s)
- Emelie E Aspholm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden
| | - Jens Lidman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
5
|
Gottemukkala KV, Chrustowicz J, Sherpa D, Sepic S, Vu DT, Karayel Ö, Papadopoulou EC, Gross A, Schorpp K, von Gronau S, Hadian K, Murray PJ, Mann M, Schulman BA, Alpi AF. Non-canonical substrate recognition by the human WDR26-CTLH E3 ligase regulates prodrug metabolism. Mol Cell 2024; 84:1948-1963.e11. [PMID: 38759627 PMCID: PMC7616709 DOI: 10.1016/j.molcel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
The yeast glucose-induced degradation-deficient (GID) E3 ubiquitin ligase forms a suite of complexes with interchangeable receptors that selectively recruit N-terminal degron motifs of metabolic enzyme substrates. The orthologous higher eukaryotic C-terminal to LisH (CTLH) E3 complex has been proposed to also recognize substrates through an alternative subunit, WDR26, which promotes the formation of supramolecular CTLH E3 assemblies. Here, we discover that human WDR26 binds the metabolic enzyme nicotinamide/nicotinic-acid-mononucleotide-adenylyltransferase 1 (NMNAT1) and mediates its CTLH E3-dependent ubiquitylation independently of canonical GID/CTLH E3-family substrate receptors. The CTLH subunit YPEL5 inhibits NMNAT1 ubiquitylation and cellular turnover by WDR26-CTLH E3, thereby affecting NMNAT1-mediated metabolic activation and cytotoxicity of the prodrug tiazofurin. Cryoelectron microscopy (cryo-EM) structures of NMNAT1- and YPEL5-bound WDR26-CTLH E3 complexes reveal an internal basic degron motif of NMNAT1 essential for targeting by WDR26-CTLH E3 and degron mimicry by YPEL5's N terminus antagonizing substrate binding. Thus, our data provide a mechanistic understanding of how YPEL5-WDR26-CTLH E3 acts as a modulator of NMNAT1-dependent metabolism.
Collapse
Affiliation(s)
- Karthik V Gottemukkala
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; TUM School of Natural Sciences, Technical University, Munich 85748, Germany
| | - Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Sara Sepic
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; TUM School of Natural Sciences, Technical University, Munich 85748, Germany
| | - Duc Tung Vu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry,Martinsried 82152, Germany
| | - Özge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry,Martinsried 82152, Germany
| | - Eleftheria C Papadopoulou
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; TUM School of Natural Sciences, Technical University, Munich 85748, Germany
| | - Annette Gross
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Immunoregulation, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Kenji Schorpp
- Research Unit-Signaling and Translation, Cell Signaling and Chemical Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Kamyar Hadian
- Research Unit-Signaling and Translation, Cell Signaling and Chemical Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Peter J Murray
- Immunoregulation, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry,Martinsried 82152, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; TUM School of Natural Sciences, Technical University, Munich 85748, Germany
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
6
|
Wang W, Liang L, Dai Z, Zuo P, Yu S, Lu Y, Ding D, Chen H, Shan H, Jin Y, Mao Y, Yin Y. A conserved N-terminal motif of CUL3 contributes to assembly and E3 ligase activity of CRL3 KLHL22. Nat Commun 2024; 15:3789. [PMID: 38710693 PMCID: PMC11074293 DOI: 10.1038/s41467-024-48045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
The CUL3-RING E3 ubiquitin ligases (CRL3s) play an essential role in response to extracellular nutrition and stress stimuli. The ubiquitin ligase function of CRL3s is activated through dimerization. However, how and why such a dimeric assembly is required for its ligase activity remains elusive. Here, we report the cryo-EM structure of the dimeric CRL3KLHL22 complex and reveal a conserved N-terminal motif in CUL3 that contributes to the dimerization assembly and the E3 ligase activity of CRL3KLHL22. We show that deletion of the CUL3 N-terminal motif impairs dimeric assembly and the E3 ligase activity of both CRL3KLHL22 and several other CRL3s. In addition, we found that the dynamics of dimeric assembly of CRL3KLHL22 generates a variable ubiquitination zone, potentially facilitating substrate recognition and ubiquitination. These findings demonstrate that a CUL3 N-terminal motif participates in the assembly process and provide insights into the assembly and activation of CRL3s.
Collapse
Affiliation(s)
- Weize Wang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Ling Liang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Zonglin Dai
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Peng Zuo
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Shang Yu
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yishuo Lu
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Dian Ding
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Hongyi Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Youdong Mao
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Center for Quantitative Biology, National Biomedical Imaging Center, School of Physics, Peking University, 100871, Beijing, China
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
7
|
Sheng X, Xia Z, Yang H, Hu R. The ubiquitin codes in cellular stress responses. Protein Cell 2024; 15:157-190. [PMID: 37470788 PMCID: PMC10903993 DOI: 10.1093/procel/pwad045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanting Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ronggui Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
8
|
Zhong K, Wang X, Zhang H, Chen N, Mai Y, Dai S, Yang L, Chen D, Zhong W. BIRC6 Modulates the Protein Stability of Axin to Regulate the Growth, Stemness, and Resistance of Renal Cancer Cells via the β-Catenin Pathway. ACS OMEGA 2024; 9:7782-7792. [PMID: 38405482 PMCID: PMC10882609 DOI: 10.1021/acsomega.3c07265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
The mechanism underlying the development of renal cell carcinoma (RCC) remains unclear, and effective prevention and therapeutic measures are lacking. BIRC6, a protein inhibitor of apoptosis, has attracted great interest. Our data indicated that overexpression of BIRC6 elevated cell growth, colony formation, migration, and invasion of cultured RCC cells, while siRNA knockdown of BIRC6 suppressed these processes. Additionally, BIRC6 was highly expressed in RCC clinical samples along with a downregulated level of Axin. Immunoprecipitation assays found that BIRC6 interacted with Axin and the two proteins colocalized within the cytoplasm of RCC cells. Overexpression of BIRC6 promoted the ubiquitination modification of Axin, while genetic knockdown of BIRC6 suppressed it. Furthermore, overexpression of BIRC6 significantly promoted the turnover of Axin, suggesting BIRC6's inhibitory effect on Axin protein stability. BIRC6 was also upregulated in cancer stem-like cells of RCC and increased the drug resistance of RCC cells against sunitinib. Western blotting assays showed that the overexpression of BIRC6 upregulated CXCR4 protein expression and activated the β-catenin pathway. Two cell lines were then constructed with BIRC6 overexpressed by lentiviruses. Pharmacological administration of a Wnt/β-catenin inhibitor, XAV-939, or genetic knockdown of β-catenin inhibited cell growth, tumor sphere formation, colony formation, migration, and invasion of BIRC6-overexpressed cells. In vivo administration of XAV-939 markedly suppressed the tumorigenesis of BIRC6-overexpressed RCC cells in nude mice. In conclusion, we propose that BIRC6 activates the β-catenin signaling pathway via mediating the ubiquitination and degradation of Axin, promoting the growth, stemness, and drug resistance of RCC cells. This project aims to elucidate the role of BIRC6 as a potential therapeutic target and provide new insights into the clinical treatment of RCC.
Collapse
Affiliation(s)
- Kaihua Zhong
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China
| | - Xiaohong Wang
- Department of Nephrology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510500, China
| | - Heyuan Zhang
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China
| | - Nanhui Chen
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China
| | - Yang Mai
- Department of Urology, Guangzhou Twelfth People's Hospital, Guangzhou 510630, China
| | - Sipin Dai
- Department of Urology, Guangzhou Twelfth People's Hospital, Guangzhou 510630, China
| | - Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Dong Chen
- Sun Yat-sen Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Weifeng Zhong
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China
- Department of Urology, Guangzhou Twelfth People's Hospital, Guangzhou 510630, China
| |
Collapse
|
9
|
Düring J, Wolter M, Toplak JJ, Torres C, Dybkov O, Fokkens TJ, Bohnsack KE, Urlaub H, Steinchen W, Dienemann C, Lorenz S. Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1. Nat Struct Mol Biol 2024; 31:364-377. [PMID: 38332367 PMCID: PMC10873202 DOI: 10.1038/s41594-023-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/07/2023] [Indexed: 02/10/2024]
Abstract
Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1-RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.
Collapse
Affiliation(s)
- Jonas Düring
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Madita Wolter
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Julia J Toplak
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Camilo Torres
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thornton J Fokkens
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- 'Bioanalytics', Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells', University of Göttingen, Göttingen, Germany
| | - Wieland Steinchen
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja Lorenz
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
10
|
Liu SS, Jiang TX, Bu F, Zhao JL, Wang GF, Yang GH, Kong JY, Qie YF, Wen P, Fan LB, Li NN, Gao N, Qiu XB. Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy. Nat Commun 2024; 15:891. [PMID: 38291026 PMCID: PMC10827748 DOI: 10.1038/s41467-024-45222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Procaspase 9 is the initiator caspase for apoptosis, but how its levels and activities are maintained remains unclear. The gigantic Inhibitor-of-Apoptosis Protein BIRC6/BRUCE/Apollon inhibits both apoptosis and autophagy by promoting ubiquitylation of proapoptotic factors and the key autophagic protein LC3, respectively. Here we show that BIRC6 forms an anti-parallel U-shaped dimer with multiple previously unannotated domains, including a ubiquitin-like domain, and the proapoptotic factor Smac/DIABLO binds BIRC6 in the central cavity. Notably, Smac outcompetes the effector caspase 3 and the pro-apoptotic protease HtrA2, but not procaspase 9, for binding BIRC6 in cells. BIRC6 also binds LC3 through its LC3-interacting region, probably following dimer disruption of this BIRC6 region. Mutation at LC3 ubiquitylation site promotes autophagy and autophagic degradation of BIRC6. Moreover, induction of autophagy promotes autophagic degradation of BIRC6 and caspase 9, but not of other effector caspases. These results are important to understand how the balance between apoptosis and autophagy is regulated under pathophysiological conditions.
Collapse
Affiliation(s)
- Shuo-Shuo Liu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Tian-Xia Jiang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Fan Bu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Ji-Lan Zhao
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Guang-Fei Wang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Guo-Heng Yang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Jie-Yan Kong
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Yun-Fan Qie
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Pei Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- College of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Li-Bin Fan
- College of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ning-Ning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Xiao-Bo Qiu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
11
|
Pandey R, Bisht P, Wal P, Murti K, Ravichandiran V, Kumar N. SMAC Mimetics for the Treatment of Lung Carcinoma: Present Development and Future Prospects. Mini Rev Med Chem 2024; 24:1334-1352. [PMID: 38275029 DOI: 10.2174/0113895575269644231120104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades. OBJECTIVE This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer. METHOD Articles were analysed using search engines and databases namely Pubmed and Scopus. RESULT Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation. CONCLUSION SMAC mimetics acts in a restorative way in the prevention of lung cancer.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| |
Collapse
|
12
|
Pereira GP, Jiménez-García B, Pellarin R, Launay G, Wu S, Martin J, Souza PCT. Rational Prediction of PROTAC-Compatible Protein-Protein Interfaces by Molecular Docking. J Chem Inf Model 2023; 63:6823-6833. [PMID: 37877240 DOI: 10.1021/acs.jcim.3c01154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional ligands that mediate the interaction between a protein target and an E3 ligase, resulting in a ternary complex, whose interaction with the ubiquitination machinery leads to target degradation. This technology is emerging as an exciting new avenue for therapeutic development, with several PROTACs currently undergoing clinical trials targeting cancer. Here, we describe a general and computationally efficient methodology combining restraint-based docking, energy-based rescoring, and a filter based on the minimal solvent-accessible surface distance to produce PROTAC-compatible PPIs suitable for when there is no a priori known PROTAC ligand. In a benchmark employing a manually curated data set of 13 ternary complex crystals, we achieved an accuracy of 92% when starting from bound structures and 77% when starting from unbound structures, respectively. Our method only requires that the ligand-bound structures of the monomeric forms of the E3 ligase and target proteins be given to run, making it general, accurate, and highly efficient, with the ability to impact early-stage PROTAC-based drug design campaigns where no structural information about the ternary complex structure is available.
Collapse
Affiliation(s)
- Gilberto P Pereira
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, 69007 Lyon, France
- Laboratory of Biology and Modeling of the Cell, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5239 and Inserm U1293, 46 Allée d'Italie, 69007 Lyon, France
| | | | - Riccardo Pellarin
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, 69007 Lyon, France
- Laboratory of Biology and Modeling of the Cell, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5239 and Inserm U1293, 46 Allée d'Italie, 69007 Lyon, France
| | - Guillaume Launay
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, 69007 Lyon, France
- Laboratory of Biology and Modeling of the Cell, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5239 and Inserm U1293, 46 Allée d'Italie, 69007 Lyon, France
| | - Sangwook Wu
- PharmCADD, Busan 48792, Republic of Korea
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Juliette Martin
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, 69007 Lyon, France
- Laboratory of Biology and Modeling of the Cell, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5239 and Inserm U1293, 46 Allée d'Italie, 69007 Lyon, France
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, 69007 Lyon, France
- Laboratory of Biology and Modeling of the Cell, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5239 and Inserm U1293, 46 Allée d'Italie, 69007 Lyon, France
| |
Collapse
|
13
|
Mace PD, Day CL. A massive machine regulates cell death. Science 2023; 379:1093-1094. [PMID: 36927032 DOI: 10.1126/science.adg9605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Structural analysis reveals how the decision to induce apoptotic cell death is regulated.
Collapse
Affiliation(s)
- Peter D Mace
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Catherine L Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|