1
|
Beltran RS, Kilpatrick AM, Picardi S, Abrahms B, Barrile GM, Oestreich WK, Smith JA, Czapanskiy MF, Favilla AB, Reisinger RR, Kendall-Bar JM, Payne AR, Savoca MS, Palance DG, Andrzejaczek S, Shen DM, Adachi T, Costa DP, Storm NA, Hale CM, Robinson PW. Maximizing biological insights from instruments attached to animals. Trends Ecol Evol 2025; 40:37-46. [PMID: 39472251 DOI: 10.1016/j.tree.2024.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 01/11/2025]
Abstract
Instruments attached to animals ('biologgers') have facilitated extensive discoveries about the patterns, causes, and consequences of animal behavior. Here, we present examples of how biologging can deepen our fundamental understanding of ecosystems and our applied understanding of global change impacts by enabling tests of ecological theory. Applying the iterative process of science to biologging has enabled a diverse set of insights, including social and experiential learning in long-distance migrants, state-dependent risk aversion in foraging predators, and resource abundance driving movement across taxa. Now, biologging is poised to tackle questions and refine ecological theories at increasing levels of complexity by integrating measurements from numerous individuals, merging datasets from multiple species and their environments, and spanning disciplines, including physiology, behavior and demography.
Collapse
Affiliation(s)
- Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA.
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Simona Picardi
- Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844, USA
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, 1410 NE Campus Pkwy, Seattle, WA 98195, USA
| | - Gabriel M Barrile
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
| | - William K Oestreich
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA 95039, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Max F Czapanskiy
- Institute of Marine Sciences, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - Arina B Favilla
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA; National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Ryan R Reisinger
- School of Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Jessica M Kendall-Bar
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | - Allison R Payne
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Matthew S Savoca
- Hopkins Marine Station, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA 93950, USA
| | - Danial G Palance
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Samantha Andrzejaczek
- Hopkins Marine Station, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA 93950, USA
| | - Daphne M Shen
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Taiki Adachi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA; Institute of Marine Sciences, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - Natalie A Storm
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Conner M Hale
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
2
|
Stokes KL, Esteban N, Casale P, Chiaradia A, Kaska Y, Kato A, Luschi P, Ropert-Coudert Y, Stokes HJ, Hays GC. Optimization of swim depth across diverse taxa during horizontal travel. Proc Natl Acad Sci U S A 2024; 121:e2413768121. [PMID: 39680775 DOI: 10.1073/pnas.2413768121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024] Open
Abstract
Semiaquatic taxa, including humans, often swim at the air-water interface where they waste energy generating surface waves. For fully marine animals however, theory predicts the most cost-efficient depth-use pattern for migrating, air-breathing species that do not feed in transit is to travel at around 2 to 3 times the depth of their body diameter, to minimize the vertical distance traveled while avoiding wave drag close to the surface. This has rarely been examined, however, due to depth measurement resolution issues at the surface. Here, we present evidence for the use of this strategy in the wild to the nearest centimeter and document the switch to shallow swimming during naturally occurring long-distance migrations. Using high-resolution depth-accelerometry and video data for little penguins (Eudyptula minor) and loggerhead turtles (Caretta caretta), satellite-relayed data for green turtles (Chelonia mydas), and literature data for further sea turtle, penguin, and whale species, we show that near-surface swimming is likely used broadly across nonforaging diving animals to minimize the cost of transport.
Collapse
Affiliation(s)
- Kimberley L Stokes
- Department of Biosciences, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Nicole Esteban
- Department of Biosciences, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Paolo Casale
- Department of Biology, University of Pisa, Pisa 56216, Italy
| | - André Chiaradia
- Conservation Department, Phillip Island Nature Parks, Cowes, VIC 3925, Australia
| | - Yakup Kaska
- Department of Biology, Pamukkale University, Denizli 20160, Türkiye
| | - Akiko Kato
- Centre d'Études Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Paolo Luschi
- Department of Biology, University of Pisa, Pisa 56216, Italy
| | - Yan Ropert-Coudert
- Centre d'Études Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Holly J Stokes
- Department of Biosciences, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Graeme C Hays
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3280, Australia
| |
Collapse
|
3
|
Costa DP, Holser RR, Keates TR, Adachi T, Beltran RS, Champagne CD, Crocker DE, Favilla AB, Fowler MA, Gallo-Reynoso JP, Goetsch C, Hassrick JL, Hückstädt LA, Kendall-Bar JM, Kienle SS, Kuhn CE, Maresh JL, Maxwell SM, McDonald BI, McHuron EA, Morris PA, Naito Y, Pallin LJ, Peterson SH, Robinson PW, Simmons SE, Takahashi A, Teuschel NM, Tift MS, Tremblay Y, Villegas-Amtmann S, Yoda K. Two decades of three-dimensional movement data from adult female northern elephant seals. Sci Data 2024; 11:1357. [PMID: 39695180 PMCID: PMC11655967 DOI: 10.1038/s41597-024-04084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Northern elephant seals (Mirounga angustirostris) have been integral to the development and progress of biologging technology and movement data analysis, which continue to improve our understanding of this and other species. Adult female elephant seals at Año Nuevo Reserve and other colonies along the west coast of North America were tracked annually from 2004 to 2020, resulting in a total of 653 instrument deployments. This paper outlines the compilation and curation process of these high-resolution diving and location data, now accessible in two Dryad repositories. The code used for data processing alongside the corresponding workflow is available through GitHub and Zenodo. This data set represents 3,844,927 dives and 596,815 locations collected from 475 individual seals with 178 repeat samplings over 17 years. We anticipate that these data will stimulate further analysis and investigation into elephant seal biology and aid in developing new analytical approaches for large marine predators.
Collapse
Affiliation(s)
- Daniel P Costa
- Institute of Marine Sciences, University of California Santa Cruz, California, 95064, USA.
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, 95064, USA.
| | - Rachel R Holser
- Institute of Marine Sciences, University of California Santa Cruz, California, 95064, USA.
| | - Theresa R Keates
- Department of Ocean Sciences, University of California Santa Cruz, California, 95064, USA
| | - Taiki Adachi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, 95064, USA
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, 95064, USA
| | - Cory D Champagne
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, 95064, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928, USA
| | - Arina B Favilla
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, 95064, USA
| | - Melinda A Fowler
- Biology Department, Northeastern University, Oakland, CA, 94610, USA
| | | | - Chandra Goetsch
- CSS, Inc., Fairfax, Virginia, 22031, USA
- National Centers for Coastal Ocean Science, NOAA, Silver Spring, Maryland, 20910, USA
| | - Jason L Hassrick
- ICF, Jones and Stokes, Inc., 980 9th Street, Suite 1200, Sacramento, CA, 95814, USA
| | - Luis A Hückstädt
- Institute of Marine Sciences, University of California Santa Cruz, California, 95064, USA
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Jessica M Kendall-Bar
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, 95064, USA
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | | | - Carey E Kuhn
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Jennifer L Maresh
- Department of Biology, West Chester University, 730 S Church St, West Chester, PA, 19383, USA
| | - Sara M Maxwell
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell Campus, Bothell, WA, USA
| | - Birgitte I McDonald
- Moss Landing Marine Labs, San Jose State University, Moss Landing, California, 95039, USA
| | - Elizabeth A McHuron
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA, 98105, USA
| | - Patricia A Morris
- UC Año Nuevo Natural Reserve, University of California, Santa Cruz, California, 95064, USA
| | - Yasuhiko Naito
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
| | - Logan J Pallin
- Department of Ocean Sciences, University of California Santa Cruz, California, 95064, USA
| | - Sarah H Peterson
- Institute of Marine Sciences, University of California Santa Cruz, California, 95064, USA
| | - Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, 95064, USA
| | - Samantha E Simmons
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | | | - Nicole M Teuschel
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, 95064, USA
| | - Michael S Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Yann Tremblay
- Institut de Recherche pour le Developpement, Marseille, France
| | - Stella Villegas-Amtmann
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, 95064, USA
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
4
|
Heckley AM, Harding CD, Page RA, Klein BA, Yovel Y, Diebold CA, Tilley HB. The effect of group size on sleep in a neotropical bat, Artibeus jamaicensis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1097-1110. [PMID: 39051138 PMCID: PMC11579820 DOI: 10.1002/jez.2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Sleep is associated with many costs, but is also important to survival, with a lack of sleep impairing cognitive function and increasing mortality. Sleeping in groups could alleviate sleep-associated costs, or could introduce new costs if social sleeping disrupts sleep. Working with the Jamaican fruit bat (Artibeus jamaicensis), we aimed to: (1) describe sleep architecture, (2) assess how sleeping in groups affects sleep, and (3) quantify total sleep time and identify rapid eye movement (REM) sleep using behavioral indicators that complement physiological evidence of sleep. Twenty-five adult bats were captured in Panama and recorded sleeping in an artificial roost enclosure. Three bats were fitted with an electromyograph and accelerometer and video recorded sleeping alone in controlled laboratory settings. The remaining 22 bats were assigned to differing social configurations (alone, dyad, triad, and tetrad) and video recorded sleeping in an outdoor flight cage. We found that sleep was highly variable among individuals (ranging from 2 h 53 min to 9 h 39 min over a 12-h period). Although we did not detect statistically significant effects and our sample size was limited, preliminary trends suggest that male bats may sleep longer than females, and individuals sleeping in groups may sleep longer than individuals sleeping alone. We also found a high correspondence between total sleep time quantified visually and quantified using actigraphy (with a 2-min immobility threshold) and identified physiological correlates of behaviorally-defined REM. These results serve as a starting point for future work on the ecology and evolution of sleep in bats and other wild mammals.
Collapse
Affiliation(s)
- Alexis M. Heckley
- Smithsonian Tropical Research InstituteGamboaPanama
- Department of Biology and Redpath MuseumMcGill UniversityQuebecCanada
| | - Christian D. Harding
- Division of Pulmonary, Critical Care, Sleep Medicine & PhysiologyUniversity of California San DiegoSan DiegoUSA
| | | | - Barrett A. Klein
- Department of BiologyUniversity of Wisconsin—La CrosseWisconsinUSA
| | - Yossi Yovel
- School of Zoology, School of NeuroscienceTel‐Aviv UniversityTel AvivIsrael
| | - Clarice A. Diebold
- Smithsonian Tropical Research InstituteGamboaPanama
- The Department of Physiological & Brain SciencesJohns Hopkins UniversityMarylandUSA
| | - Hannah B. Tilley
- Smithsonian Tropical Research InstituteGamboaPanama
- Division of Ecology and Biodiversity, School of Biological SciencesUniversity of Hong KongHong KongHong Kong
| |
Collapse
|
5
|
Rößler DC, Klein BA. More sleep for behavioral ecologists. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1147-1156. [PMID: 39034483 DOI: 10.1002/jez.2856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
From jellyfish to parrot fish and roundworms to homeotherms, all animals are thought to sleep. Despite its presumed universality, sleep is a poorly understood behavior, varying significantly in its expression across, and even within, animal lineages. There is still no consensus about the origin, architecture, ecology of sleep, or even its defining characters. The field of behavioral ecology has the potential to extend our knowledge of sleep behavior to nontraditional models and in ecologically relevant settings. Here, we highlight current efforts in diversifying the field to generate stronger synergies between historically human-focused sleep research and behavioral ecology. Our primary aim is for behavioral ecology to enhance sleep research by contributing crucial observations as well as by creating novel comparative and evolutionary frameworks. At the same time, sleep research can enhance behavioral ecology by exposing the relevance of sleep to wakeful behaviors. Nikolaas Tinbergen's four levels of analysis have served as a foundation for comprehensively addressing questions in behavior, and we introduce some Tinbergian approaches to examine the interplay between sleep and wake under ecologically meaningful conditions.
Collapse
Affiliation(s)
- Daniela C Rößler
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Barrett A Klein
- Biology Department, University of Wisconsin-La Crosse, La Crosse, USA
| |
Collapse
|
6
|
Chakravarty P, Ashbury AM, Strandburg-Peshkin A, Iffelsberger J, Goldshtein A, Schuppli C, Snell KRS, Charpentier MJE, Núñez CL, Gaggioni G, Geiger N, Rößler DC, Gall G, Yang PP, Fruth B, Harel R, Crofoot MC. The sociality of sleep in animal groups. Trends Ecol Evol 2024; 39:1090-1101. [PMID: 39242333 DOI: 10.1016/j.tree.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024]
Abstract
Group-living animals sleep together, yet most research treats sleep as an individual process. Here, we argue that social interactions during the sleep period contribute in important, but largely overlooked, ways to animal groups' social dynamics, while patterns of social interaction and the structure of social connections within animal groups play important, but poorly understood, roles in shaping sleep behavior. Leveraging field-appropriate methods, such as direct and video-based observation, and increasingly common on-animal motion sensors (e.g., accelerometers), behavioral indicators can be tracked to measure sleep in multiple individuals in a group of animals simultaneously. Sleep proximity networks and sleep timing networks can then be used to investigate the collective dynamics of sleep in wild group-living animals.
Collapse
Affiliation(s)
- Pritish Chakravarty
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | - Alison M Ashbury
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ariana Strandburg-Peshkin
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Josefine Iffelsberger
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aya Goldshtein
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany; Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Caroline Schuppli
- Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Katherine R S Snell
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Migration, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Marie J E Charpentier
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR5554, University of Montpellier/CNRS/IRD/EPHE, Montpellier, France
| | - Chase L Núñez
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Giulia Gaggioni
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR5554, University of Montpellier/CNRS/IRD/EPHE, Montpellier, France; Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Nadja Geiger
- Department of Biology, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Daniela C Rößler
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Gabriella Gall
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Pei-Pei Yang
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; School of Resources and Environmental Engineering, Anhui University, Hefei, China; International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, China
| | - Barbara Fruth
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Department of Migration, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for Research and Conservation/KMDA, Antwerp, Belgium
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Margaret C Crofoot
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
7
|
Lesku JA, Libourel P, Kelly ML, Hemmi JM, Kerr CC, Collin SP, Radford CA. An electrophysiological correlate of sleep in a shark. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1121-1129. [PMID: 38957102 PMCID: PMC11579818 DOI: 10.1002/jez.2846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Sleep is a prominent physiological state observed across the animal kingdom. Yet, for some animals, our ability to identify sleep can be masked by behaviors otherwise associated with being awake, such as for some sharks that must swim continuously to push oxygenated seawater over their gills to breathe. We know that sleep in buccal pumping sharks with clear rest/activity cycles, such as draughtsboard sharks (Cephaloscyllium isabellum, Bonnaterre, 1788), manifests as a behavioral shutdown, postural relaxation, reduced responsiveness, and a lowered metabolic rate. However, these features of sleep do not lend themselves well to animals that swim nonstop. In addition to video and accelerometry recordings, we tried to explore the electrophysiological correlates of sleep in draughtsboard sharks using electroencephalography (EEG), electromyography, and electrooculography, while monitoring brain temperature. The seven channels of EEG activity had a surprising level of (apparent) instability when animals were swimming, but also when sleeping. The amount of stable EEG signals was too low for replication within- and across individuals. Eye movements were not measurable, owing to instability of the reference electrode. Based on an established behavioral characterization of sleep in draughtsboard sharks, we offer the original finding that muscle tone was strongest during active wakefulness, lower in quietly awake sharks, and lowest in sleeping sharks. We also offer several critical suggestions on how to improve techniques for characterizing sleep electrophysiology in future studies on elasmobranchs, particularly for those that swim continuously. Ultimately, these approaches will provide important insights into the evolutionary confluence of behaviors typically associated with wakefulness and sleep.
Collapse
Affiliation(s)
- John A. Lesku
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Paul‐Antoine Libourel
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
- CRNL, UCBL, CNRS, INSERMBronFrance
| | - Michael L. Kelly
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research OrganisationGeelongVictoriaAustralia
| | - Jan M. Hemmi
- School of Biological SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
- Oceans InstituteThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Caroline C. Kerr
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Shaun P. Collin
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
- Oceans InstituteThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Craig A. Radford
- Institute of Marine Science, Leigh Marine LaboratoryThe University of AucklandAucklandNew Zealand
| |
Collapse
|
8
|
Frouin-Mouy H, Rountree R, Juanes F, Aguzzi J, De Leo FC. Deep-sea cabled video-observatory provides insights into the behavior at depth of sub-adult male northern elephant seals, Mirounga angustirostris. PLoS One 2024; 19:e0308461. [PMID: 39231116 PMCID: PMC11373836 DOI: 10.1371/journal.pone.0308461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
The Ocean Networks Canada (ONC) cabled video-observatory at the Barkley Canyon Node (British Columbia, Canada) was recently the site of a Fish Acoustics and Attraction Experiment (FAAE), from May 21, 2022 to July 16, 2023, combining observations from High-Definition (HD) video, acoustic imaging sonar, and underwater sounds at a depth of 645 m, to examine the effects of light and bait on deep-sea fish and invertebrate behaviors. The unexpected presence of at least eight (six recurrent and two temporary) sub-adult male northern elephant seals (Mirounga angustirostris) was reported in 113 and 210 recordings out of 9737 HD and 2805 sonar videos at the site, respectively. Elephant seals were found at the site during seven distinct periods between June 22, 2022 and May 19, 2023. Ethograms provided insights into the seal's deep-sea resting and foraging strategies, including prey selection. We hypothesized that the ability of elephant seals to perform repeated visits to the same site over long periods (> 10 days) was due to the noise generated by the sonar, suggesting that they learned to use that anthropogenic source as an indicator of food location, also known as the "dinner bell" effect. One interpretation is that elephant seals are attracted to the FAAE site due to the availability of prey and use the infrastructure as a foraging and resting site, but then take advantage of fish disturbance caused by the camera lights to improve foraging success. Our video observations demonstrated that northern elephant seals primarily focused on actively swimming sablefish (Anoplopoma fimbria), ignoring stationary or drifting prey. Moreover, we found that elephant seals appear to produce (voluntary or involuntary) infrasonic sounds in a foraging context. This study highlights the utility of designing marine observatories with spatially and temporally cross-referenced data collection from instruments representing multiple modalities of observation.
Collapse
Affiliation(s)
- Héloïse Frouin-Mouy
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, United States of America
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Rodney Rountree
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- The Fish Listener, Waquoit, Massachusetts, United States of America
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Jacopo Aguzzi
- Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
| | - Fabio C De Leo
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Ocean Networks Canada, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
9
|
Zhao Y, Kirschenhofer T, Harvey M, Rainer G. Mediodorsal thalamus and ventral pallidum contribute to subcortical regulation of the default mode network. Commun Biol 2024; 7:891. [PMID: 39039239 PMCID: PMC11263694 DOI: 10.1038/s42003-024-06531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Humans and other animals readily transition from externally to internally focused attention, and these transitions are accompanied by activation of the default mode network (DMN). The DMN was considered a cortical network, yet recent evidence suggests subcortical structures are also involved. We investigated the role of ventral pallidum (VP) and mediodorsal thalamus (MD) in DMN regulation in tree shrew, a close relative of primates. Electrophysiology and deep learning-based classification of behavioral states revealed gamma oscillations in VP and MD coordinated with gamma in anterior cingulate (AC) cortex during DMN states. Cross-frequency coupling between gamma and delta oscillations was higher during DMN than other behaviors, underscoring the engagement of MD, VP and AC. Our findings highlight the importance of VP and MD in DMN regulation, extend homologies in DMN regulation among mammals, and underline the importance of thalamus and basal forebrain to the regulation of DMN.
Collapse
Affiliation(s)
- Yilei Zhao
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Tobias Kirschenhofer
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Harvey
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gregor Rainer
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
10
|
白 亚, 孙 晓, 文 巧, 吴 江, 邹 剑, 王 海. [Effects of Extreme Environments on Human Sleep]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1034-1043. [PMID: 39170010 PMCID: PMC11334294 DOI: 10.12182/20240760402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 08/23/2024]
Abstract
Recently, with the rapid growth of the global population and the exhaustion of resources, exploration activities in extreme environments such as the polar regions, the outer space, the deep sea, the deep underground and highlands are becoming increasingly more frequent. This in-depth exploration of the external environment and the consequent dramatic changes in lifestyles impact on sleep, a basic life activity of humans, in ways that cannot be overlooked. the basic life activity of human beings. Sleep, a basic life activity and the result of the evolution of organisms to adapt to their environment, is closely associated with sleep homeostasis and endogenous rhythms. However, external environmental changes and lifestyle shifts in extreme environments have had a significant impact on the patterns and the quality of sleep in humans. Furthermore, this impact can lead to many physiological and psychological problems, posing a great threat to human health. In this review, we delved into the specific effects of different extreme natural environments and enclosed environments on sleep, elaborating on how these environments alter the patterns and the quality of sleep in humans. In addition, we summarized the changes in human sleep under extreme environments to help gain a better understanding of the mechanisms by which these specific environments impact human sleep. It is expected that this review will provide a solid theoretical foundation for optimizing long-term survival strategies in extreme environments and help humans adapt to and overcome the challenges posed by extreme environments more effectively.
Collapse
Affiliation(s)
- 亚宁 白
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 晓茹 孙
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 巧 文
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 江 吴
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 剑 邹
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 海洋 王
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Huang X, Dong G, Fan H, Zhou W, Huang G, Guan D, Zhang D, Wei F. The genome of African manatee Trichechus senegalensis reveals secondary adaptation to the aquatic environment. iScience 2024; 27:110394. [PMID: 39092175 PMCID: PMC11292518 DOI: 10.1016/j.isci.2024.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Sirenians exhibit unique aquatic adaptations, showcasing both convergent adaptive features shared with cetaceans and unique characteristics such as cold sensitivity and dense bones. Here, we report a chromosome-level genome of the African manatee (Trichechus senegalensis) with high continuity, completeness, and accuracy. We found that genes associated with osteopetrosis have undergone positive selection (CSF1R and LRRK1) or pseudogenized (FAM111A and IGSF23) in the African manatee, potentially contributing to the dense bone formation. The loss of KCNK18 may have increased their sensitivity to cold water temperatures. Moreover, we identified convergent evolutionary signatures in 392 genes among fully aquatic mammals, primarily enriched in skin or skeletal system development and circadian rhythm, which contributed to the transition from terrestrial to fully aquatic lifestyles. The African manatee currently possesses a small effective population size and low genome-wide heterozygosity. Overall, our study provides genetic resources for understanding the evolutionary characteristics and conservation efforts of this species.
Collapse
Affiliation(s)
- Xin Huang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guixin Dong
- Guangdong Chimelong Group, Co., Ltd., Guangzhou 511400, China
| | - Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dengfeng Guan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Delu Zhang
- Chimelong Ocean Kingdom, Zhuhai 519000, China
| | - Fuwen Wei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
12
|
Sharon O, Ben Simon E, Shah VD, Desel T, Walker MP. The new science of sleep: From cells to large-scale societies. PLoS Biol 2024; 22:e3002684. [PMID: 38976664 PMCID: PMC11230563 DOI: 10.1371/journal.pbio.3002684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
In the past 20 years, more remarkable revelations about sleep and its varied functions have arguably been made than in the previous 200. Building on this swell of recent findings, this essay provides a broad sampling of selected research highlights across genetic, molecular, cellular, and physiological systems within the body, networks within the brain, and large-scale social dynamics. Based on this raft of exciting new discoveries, we have come to realize that sleep, in this moment of its evolution, is very much polyfunctional (rather than monofunctional), yet polyfunctional for reasons we had never previously considered. Moreover, these new polyfunctional insights powerfully reaffirm sleep as a critical biological, and thus health-sustaining, requisite. Indeed, perhaps the only thing more impressive than the unanticipated nature of these newly emerging sleep functions is their striking divergence, from operations of molecular mechanisms inside cells to entire group societal dynamics.
Collapse
Affiliation(s)
- Omer Sharon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Eti Ben Simon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Vyoma D. Shah
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Tenzin Desel
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Matthew P. Walker
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
13
|
Lyamin OI, Borshchenko VD, Siegel JM. A 108-h total sleep deprivation did not impair fur seal performance in delayed matching to sample task. J Comp Physiol B 2024; 194:315-333. [PMID: 37596419 PMCID: PMC11296610 DOI: 10.1007/s00360-023-01511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
While the majority of studies have concluded that sleep deprivation causes detrimental effects on various cognitive processes, some studies reported conflicting results. We examined the effects of a 108-h total sleep deprivation (TSD) on working memory in the northern fur seal, an animal with unusual sleep phenomenology and long-range annual migrations. The performance of fur seals was evaluated in a two-choice visual delayed matching to sample (DMTS) task, which is commonly used to evaluate working memory. In baseline conditions, the performance of fur seals in a DMTS task based on the percentage of errors was somewhat comparable with that in nonhuman primates at similar delays. We have determined that a 108-h TSD did not affect fur seals' performance in a visual DMTS task as measured by overall percentage of errors and response latencies. On the contrary, all fur seals improved task performance over the study, including the baseline, TSD and recovery conditions. In addition, TSD did not change the direction and strength of the pattern of behavioral lateralization in fur seals. We conclude that a 108-h TSD did not interfere with working memory in a DMTS test in northern fur seals.
Collapse
Affiliation(s)
- Oleg I Lyamin
- Department of Psychiatry, University of California Los Angeles, Center for Sleep Research, 16111 Plummer St, North Hills, Los Angeles, CA, 91343, USA.
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia.
| | - Vasilisa D Borshchenko
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St Petersburg, Russia
| | - Jerome M Siegel
- Department of Psychiatry, University of California Los Angeles, Center for Sleep Research, 16111 Plummer St, North Hills, Los Angeles, CA, 91343, USA
| |
Collapse
|
14
|
Beltran RS, Lozano RR, Morris PA, Robinson PW, Holser RR, Keates TR, Favilla AB, Kilpatrick AM, Costa DP. Individual variation in life-history timing: synchronous presence, asynchronous events and phenological compensation in a wild mammal. Proc Biol Sci 2024; 291:20232335. [PMID: 38628129 PMCID: PMC11021928 DOI: 10.1098/rspb.2023.2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Many animals and plants have species-typical annual cycles, but individuals vary in their timing of life-history events. Individual variation in fur replacement (moult) timing is poorly understood in mammals due to the challenge of repeated observations and longitudinal sampling. We examined factors that influence variation in moult duration and timing among elephant seals (Mirounga angustirostris). We quantified the onset and progression of fur loss in 1178 individuals. We found that an exceptionally rapid visible moult (7 days, the shortest of any mammals or birds), and a wide range of moult start dates (spanning 6-10× the event duration) facilitated high asynchrony across individuals (only 20% of individuals in the population moulting at the same time). Some of the variation was due to reproductive state, as reproductively mature females that skipped a breeding season moulted a week earlier than reproductive females. Moreover, individual variation in timing and duration within age-sex categories far outweighed (76-80%) variation among age-sex categories. Individuals arriving at the end of the moult season spent 50% less time on the beach, which allowed them to catch up in their annual cycles and reduce population-level variance during breeding. These findings underscore the importance of individual variation in annual cycles.
Collapse
Affiliation(s)
- Roxanne S. Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Raquel R. Lozano
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Patricia A. Morris
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Patrick W. Robinson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Rachel R. Holser
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Theresa R. Keates
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Arina B. Favilla
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Daniel P. Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
15
|
McInnes JD, Lester KM, Dill LM, Mathieson CR, West-Stap PJ, Marcos SL, Trites AW. Foraging behaviour and ecology of transient killer whales within a deep submarine canyon system. PLoS One 2024; 19:e0299291. [PMID: 38507673 PMCID: PMC10954312 DOI: 10.1371/journal.pone.0299291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
Transient killer whales have been documented hunting marine mammals across a variety of habitats. However, relatively little has been reported about their predatory behaviours near deep submarine canyons and oceanic environments. We used a long-term database of sightings and encounters with these predators in and around the Monterey Submarine Canyon, California to describe foraging behaviour, diet, seasonal occurrence, and habitat use patterns. Transient killer whales belonging to the outer coast subpopulation were observed within the study area 261 times from 2006-2021. Occurrences, behaviours, and group sizes all varied seasonally, with more encounters occurring in the spring as grey whales migrated northward from their breeding and calving lagoons in Mexico (March-May). Groups of killer whales foraged exclusively in open water, with individuals within the groups following the contours of the submarine canyon as they searched for prey. Focal follows revealed that killer whales spent 51% of their time searching for prey (26% of their time along the shelf-break and upper slope of the canyon, and 25% in open water). The remainder of their time was spent pursuing prey (10%), feeding (23%), travelling (9%), socializing (6%), and resting (1%). Prey species during 87 observed predation events included California sea lions, grey whale calves, northern elephant seals, minke whales, common dolphins, Pacific white-sided dolphins, Dall's porpoise, harbour porpoise, harbour seals, and sea birds. The calculated kill rates (based on 270 hours of observing 50 predation events) were 0.26 California sea lions per killer whale over 24 hours, 0.11 grey whale calves, and 0.15 for all remaining prey species combined. These behavioural observations provide insights into predator-prey interactions among apex predators over submarine canyons and deep pelagic environments.
Collapse
Affiliation(s)
- Josh D. McInnes
- Institute for the Oceans and Fisheries, Marine Mammal Research Unit, University of British Columbia, Vancouver, Canada
- Pacific WildLife Foundation, Port Moody, BC, Canada
- Oceanic Ecology Research Group, Monterey Bay, California, United States of America
| | - Kevin M. Lester
- Oceanic Ecology Research Group, Monterey Bay, California, United States of America
| | - Lawrence M. Dill
- Department of Biological Sciences, Evolutionary and Behavioural Ecology Research Group, Simon Fraser University, Burnaby, Canada
| | - Chelsea R. Mathieson
- Oceanic Ecology Research Group, Monterey Bay, California, United States of America
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, Canada
| | | | | | - Andrew W. Trites
- Institute for the Oceans and Fisheries, Marine Mammal Research Unit, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Lyamin OI, Siegel JM. Sleep: Giving it up to get it on. Curr Biol 2024; 34:R213-R216. [PMID: 38471454 DOI: 10.1016/j.cub.2024.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
A new study presents evidence of sex-related sleep reduction in males of two marsupial mice species but not in females. The growing experimental data suggest that seasonal sleep reduction, linked to migrations and reproductive periods, is common among animals.
Collapse
Affiliation(s)
- Oleg I Lyamin
- Department of Psychiatry, University of California Los Angeles, Center for Sleep Research, North Hills, CA 91343, USA; A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia.
| | - Jerome M Siegel
- Department of Psychiatry, University of California Los Angeles, Center for Sleep Research, North Hills, CA 91343, USA
| |
Collapse
|
17
|
Bódizs R, Schneider B, Ujma PP, Horváth CG, Dresler M, Rosenblum Y. Fundamentals of sleep regulation: Model and benchmark values for fractal and oscillatory neurodynamics. Prog Neurobiol 2024; 234:102589. [PMID: 38458483 DOI: 10.1016/j.pneurobio.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Homeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instantaneous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, age-related differences and brain topography characteristics. These effects are well captured and reflected in the spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a suitable standardization and reference measure. Here we propose an index of sleep homeostasis based on the spectral exponent, reflecting the level of membrane hyperpolarization and/or network bistability in the central nervous system in humans. In addition, we advance the idea that the U-shaped overnight deceleration of oscillatory slow and fast sleep spindle frequencies marks the biological night, providing somnologists with an EEG-index of circadian sleep regulation. Evidence supporting this assertion comes from studies based on sleep replacement, forced desynchrony protocols and high-resolution analyses of sleep spindles. Finally, ultradian sleep regulatory mechanisms are indicated by the recurrent, abrupt shifts in dominant oscillatory frequencies, with spindle ranges signifying non-rapid eye movement and non-spindle oscillations - rapid eye movement phases of the sleep cycles. Reconsidering the indicators of fundamental sleep regulatory processes in the framework of the new Fractal and Oscillatory Adjustment Model (FOAM) offers an appealing opportunity to bridge the gap between the two-process model of sleep regulation and clinical somnology.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
| | - Bence Schneider
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Csenge G Horváth
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yevgenia Rosenblum
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Zaid E, Rainsford FW, Johnsson RD, Valcu M, Vyssotski AL, Meerlo P, Lesku JA. Semelparous marsupials reduce sleep for sex. Curr Biol 2024; 34:606-614.e3. [PMID: 38278151 DOI: 10.1016/j.cub.2023.12.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/16/2023] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Sleep is a prominent, seemingly universal animal behavior. Although sleep maintains optimal waking performance, the biological drive to sleep may be incompatible with the life history of some species. In a multi-year study on semelparous marsupials in Australia, we provide the first direct evidence of ecological sleep restriction in a terrestrial mammal. Dusky (Antechinus swainsonii) and agile (A. agilis) antechinus have an unusual reproductive strategy characterized by the synchronous death of all males at the end of their only breeding season. Using accelerometry, electrophysiology, and metabolomics, we show that males, but not females, increase their activity during the breeding season by reducing sleep. In a trade-off between the neurophysiological requirements for sleep and evolutionary necessity for reproduction, strong sexual selection might drive males to sacrifice sleep to increase access to fertile females and ultimately maximize their fitness.
Collapse
Affiliation(s)
- Erika Zaid
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Frederick W Rainsford
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robin D Johnsson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia; Department of Psychology, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Mihai Valcu
- Department of Ornithology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology (ETH), 8057 Zurich, Switzerland
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
19
|
Thoré ESJ, Aulsebrook AE, Brand JA, Almeida RA, Brodin T, Bertram MG. Time is of the essence: The importance of considering biological rhythms in an increasingly polluted world. PLoS Biol 2024; 22:e3002478. [PMID: 38289905 PMCID: PMC10826942 DOI: 10.1371/journal.pbio.3002478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Biological rhythms have a crucial role in shaping the biology and ecology of organisms. Light pollution is known to disrupt these rhythms, and evidence is emerging that chemical pollutants can cause similar disruption. Conversely, biological rhythms can influence the effects and toxicity of chemicals. Thus, by drawing insights from the extensive study of biological rhythms in biomedical and light pollution research, we can greatly improve our understanding of chemical pollution. This Essay advocates for the integration of biological rhythmicity into chemical pollution research to gain a more comprehensive understanding of how chemical pollutants affect wildlife and ecosystems. Despite historical barriers, recent experimental and technological advancements now facilitate the integration of biological rhythms into ecotoxicology, offering unprecedented, high-resolution data across spatiotemporal scales. Recognizing the importance of biological rhythms will be essential for understanding, predicting, and mitigating the complex ecological repercussions of chemical pollution.
Collapse
Affiliation(s)
- Eli S. J. Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- TRANSfarm—Science, Engineering, & Technology Group, KU Leuven, Lovenjoel, Belgium
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Anne E. Aulsebrook
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Jack A. Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Rafaela A. Almeida
- Laboratory of Aquatic Ecology, Evolution, and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Michael G. Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
20
|
Harding CD, Vyazovskiy VV. Penguins snatch seconds-long microsleeps. Science 2023; 382:994-995. [PMID: 38033078 DOI: 10.1126/science.adl2398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Chinstrap penguins fall asleep thousands of times per day in the wild.
Collapse
Affiliation(s)
- Christian D Harding
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Kendall-Bar J. Lessons from sleep in the deep. Science 2023; 382:780. [PMID: 37972170 DOI: 10.1126/science.adl4885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Records of seal sleep at sea reveal extreme sleep duration flexibility.
Collapse
Affiliation(s)
- Jessica Kendall-Bar
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
22
|
Storrie L, Loseto LL, Sutherland EL, MacPhee SA, O'Corry-Crowe G, Hussey NE. Do beluga whales truly migrate? Testing a key trait of the classical migration syndrome. MOVEMENT ECOLOGY 2023; 11:53. [PMID: 37649126 PMCID: PMC10469428 DOI: 10.1186/s40462-023-00416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/05/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Migration enables organisms to access resources in separate regions that have predictable but asynchronous spatiotemporal variability in habitat quality. The classical migration syndrome is defined by key traits including directionally persistent long-distance movements during which maintenance activities are suppressed. But recently, seasonal round-trip movements have frequently been considered to constitute migration irrespective of the traits required to meet this movement type, conflating common outcomes with common traits required for a mechanistic understanding of long-distance movements. We aimed to test whether a cetacean ceases foraging during so-called migratory movements, conforming to a trait that defines classical migration. METHODS We used location and dive data collected by satellite tags deployed on beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea population, which undertake long-distance directed movements between summer and winter areas. To identify phases of directionally persistent travel, behavioural states (area-restricted search, ARS; or Transit) were decoded using a hidden-Markov model, based on step length and turning angle. Established dive profiles were then used as a proxy for foraging, to test the hypothesis that belugas cease foraging during these long-distance transiting movements, i.e., they suppress maintenance activities. RESULTS Belugas principally made directed horizontal movements when moving between summer and winter residency areas, remaining in a Transit state for an average of 75.4% (range = 58.5-87.2%) of the time. All individuals, however, exhibited persistent foraging during Transit movements (75.8% of hours decoded as the Transit state had ≥ 1 foraging dive). These data indicate that belugas actively search for and/or respond to resources during these long-distance movements that are typically called a migration. CONCLUSIONS The long-distance movements of belugas do not conform to the traits defining the classical migration syndrome, but instead have characteristics of both migratory and nomadic behaviour, which may prove adaptive in the face of unpredictable environmental change. Such patterns are likely present in other cetaceans that have been labeled as migratory. Examination of not only horizontal movement state, but also the vertical behaviour of aquatic animals during directed movements is essential for identifying whether a species exhibits traits of the classical migration syndrome or another long-distance movement strategy, enabling improved ecological inference.
Collapse
Affiliation(s)
- Luke Storrie
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada.
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada.
| | - Lisa L Loseto
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Emma L Sutherland
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Shannon A MacPhee
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Greg O'Corry-Crowe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
23
|
Rattenborg NC. Diverse sleep strategies at sea. Science 2023; 381:486-487. [PMID: 37535738 DOI: 10.1126/science.adh9193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Findings in marine mammals and birds provide opportunities to explore sleep's functions.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
24
|
Libourel PA, Lesku JA. Sleep: Hemispheres fight for dominance. Curr Biol 2023; 33:R729-R732. [PMID: 37433277 DOI: 10.1016/j.cub.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
A new study shows that bearded dragons have a peculiar way to coordinate sleep state changes between brain hemispheres. The hemisphere that acts first imposes its activity on the other during their REM sleep-like state.
Collapse
Affiliation(s)
- Paul-Antoine Libourel
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, SLEEP Team, F-69500, Bron, France.
| | - John A Lesku
- Sleep Ecophysiology Group, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia.
| |
Collapse
|
25
|
Nollet M, Franks NP, Wisden W. Understanding Sleep Regulation in Normal and Pathological Conditions, and Why It Matters. J Huntingtons Dis 2023; 12:105-119. [PMID: 37302038 PMCID: PMC10473105 DOI: 10.3233/jhd-230564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Sleep occupies a peculiar place in our lives and in science, being both eminently familiar and profoundly enigmatic. Historically, philosophers, scientists and artists questioned the meaning and purpose of sleep. If Shakespeare's verses from MacBeth depicting "Sleep that soothes away all our worries" and "relieves the weary laborer and heals hurt minds" perfectly epitomize the alleviating benefits of sleep, it is only during the last two decades that the growing understanding of the sophisticated sleep regulatory mechanisms allows us to glimpse putative biological functions of sleep. Sleep control brings into play various brain-wide processes occurring at the molecular, cellular, circuit, and system levels, some of them overlapping with a number of disease-signaling pathways. Pathogenic processes, including mood disorders (e.g., major depression) and neurodegenerative illnesses such Huntington's or Alzheimer's diseases, can therefore affect sleep-modulating networks which disrupt the sleep-wake architecture, whereas sleep disturbances may also trigger various brain disorders. In this review, we describe the mechanisms underlying sleep regulation and the main hypotheses drawn about its functions. Comprehending sleep physiological orchestration and functions could ultimately help deliver better treatments for people living with neurodegenerative diseases.
Collapse
Affiliation(s)
- Mathieu Nollet
- UK Dementia Research Institute and Department of Life Sciences, Imperial College London, London, UK
| | - Nicholas P. Franks
- UK Dementia Research Institute and Department of Life Sciences, Imperial College London, London, UK
| | - William Wisden
- UK Dementia Research Institute and Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|