1
|
Rappaport AR, Bekerman E, Boucher GR, Sung J, Carr B, Corzo CA, Larson H, Kachura MA, Scallan CD, Geleziunas R, SenGupta D, Jooss K. Differential shaping of T cell responses elicited by heterologous ChAd68/self-amplifying mRNA SIV vaccine in macaques in combination with αCTLA4, αPD-1, or FLT3R agonist. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae052. [PMID: 40073084 DOI: 10.1093/jimmun/vkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/03/2024] [Indexed: 03/14/2025]
Abstract
While therapeutic vaccines are a promising strategy for inducing human immunodeficiency virus (HIV) control, HIV vaccines tested to date have offered limited benefit to people living with HIV. The barriers to success may include the use of vaccine platforms and/or immunogens that drive weak or suboptimal immune responses, immune escape and/or immune dysfunction associated with chronic infection despite effective antiretroviral therapy. Combining vaccines with immune modulators in a safe manner may address some of the challenges and thus increase the efficacy of therapeutic HIV vaccines. We evaluated the immunogenicity of a ChAd68/samRNA-based simian immunodeficiency virus (SIV) vaccine regimen alone and in combination with a series of immune modulators in a preclinical rhesus macaque (M. mulatta) model. The vaccine was co-delivered with the checkpoint inhibitors αPD-1 or αCTLA-4, or with a FLT3 receptor agonist (FLT3Ra) shown to differentiate and expand dendritic cells and improve T cell priming. We demonstrate that the magnitude, breadth and functionality of SIV-specific vaccine-elicited CD8+ T cell responses were enhanced by combination with either αPD-1, αCTLA-4, or FLT3Ra. Combination with FLT3Ra also expanded polyfunctional CD4+ T cell responses. Our data demonstrate enhanced and distinct shaping of vaccine-elicited immune responses by immune modulators with implications for developing a functional HIV cure.
Collapse
Affiliation(s)
| | | | | | - Janette Sung
- Gilead Sciences, Inc, Foster City, CA, United States
| | - Brian Carr
- Gilead Sciences, Inc, Foster City, CA, United States
| | | | | | | | | | | | - Devi SenGupta
- Gilead Sciences, Inc, Foster City, CA, United States
| | - Karin Jooss
- Gritstone Bio, Inc, Emeryville, CA, United States
| |
Collapse
|
2
|
Ding Y, Yan J, Huang L, Yu J, Wu Y, Shen C, Fang A. Large-scale screening of HIV-1 T-cell epitopes restricted by 12 prevalent HLA-A allotypes in Northeast Asia and universal detection of HIV-1-specific CD8 + T cells. Front Microbiol 2025; 16:1529721. [PMID: 40008047 PMCID: PMC11850406 DOI: 10.3389/fmicb.2025.1529721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background Although the immune response of host T cells to human immunodeficiency virus (HIV) significantly influences the progression of the infection, the development of T-cell-based vaccines and therapies, as well as the clinical evaluation of specific T-cell functions, is currently markedly hindered by the absence of broad-spectrum, functionally validated HIV T-cell epitopes that account for the polymorphisms of the human leukocyte antigen (HLA) within an indicated geographic population. This study aimed to identify T-cell epitopes derived from the GP160, GAG, and POL proteins of the HIV-1 strain, specifically linked to 12 prevalent HLA-A allotypes, that collectively represent approximately 91% of the total gene frequency in Northeast Asian populations. Methods A total of 134 epitopes were predicted in silico and selected as potential candidates for further validation. Subsequently, peripheral blood mononuclear cells (PBMCs) were collected from 96 individuals with HIV-1 and cocultured ex vivo with each epitope candidate peptide, followed by the detection of activated CD8+ T cells. Peripheral blood mononuclear cells (PBMCs) were collected from 96 individuals with HIV-1 and cocultured ex vivo with each candidate peptide epitope, followed by the detection of activated CD8+ T cells. A total of 69 epitopes were validated as real-world HIV T-cell epitopes presented by 12 dominant HLA-A allotypes. Furthermore, the HLA-A cross-restriction for each epitope candidate was identified through peptide competitive binding assays using 12 transfected HMy2.CIR cell lines. Results A total of 45 epitopes demonstrated high affinity, while 31 epitopes displayed intermediate affinity. A broad-spectrum CD8+ T-cell epitope library containing 141 validated epitope peptides was used to universally detect HIV-1-specific CD8+ T cells via peptide-PBMC ex vivo coculture and intracellular IFN-γ staining. In 52 people with HIV-1, the number of reactive HIV-1 specific CD8+ T cells was significantly higher in the CD4+ T-cell-high patient group compared to the CD4+ T-cell-low patient group, and it correlated with the CD4+ T-cell-low patient group (<200/μL). Conclusion This study provides a broad-spectrum CD8+ T-cell epitope library aimed at developing a T-cell-directed HIV vaccine that offers high population coverage in Northeast Asia. In addition, it establishes a universal detection method for the clinical assessment of HIV-1-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- Yan Ding
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jialai Yan
- School of Medical Technology, Anhui Medical College, Hefei, Anhui, China
| | - Ling Huang
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinhong Yu
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Anning Fang
- School of Basic Medicine, Anhui Medical College, Hefei, Anhui, China
| |
Collapse
|
3
|
Tang X, Zhang W, Zhang Z. Developing T Cell Epitope-Based Vaccines Against Infection: Challenging but Worthwhile. Vaccines (Basel) 2025; 13:135. [PMID: 40006681 PMCID: PMC11861332 DOI: 10.3390/vaccines13020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
T cell epitope-based vaccines are designed to elicit long-lived pathogen-specific memory T cells that can quickly activate protective effector functions in response to subsequent infections. These vaccines have the potential to provide sustained protection against mutated variants, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which are increasingly capable of evading neutralizing antibodies. Recent advancements in epitope discovery, T cell receptor analysis, and bioinformatics have enabled the precise selection of epitopes and the sophisticated design of epitope-based vaccines. This review outlines the development process for T cell epitope-based vaccines. We summarize the current progress in T cell epitope discovery technologies, highlighting the advantages and disadvantages of each method. We also examine advancements in the design and optimization of epitope-based vaccines, particularly through bioinformatics tools. Additionally, we discuss the challenges of validating the accurate processing and presentation of individual epitopes and establishing suitable rodent models to evaluate vaccine immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Xian Tang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
| | - Wei Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
- Guangdong Key Laboratory for Anti-Infection Drug Quality Evaluation, Shenzhen 518112, China
| |
Collapse
|
4
|
Mandal S, Ghosh JS, Lohani SC, Zhao M, Cheng Y, Burrack R, Luo M, Li Q. A long-term stable cold-chain-friendly HIV mRNA vaccine encoding multi-epitope viral protease cleavage site immunogens inducing immunogen-specific protective T cell immunity. Emerg Microbes Infect 2024; 13:2377606. [PMID: 38979723 PMCID: PMC11259082 DOI: 10.1080/22221751.2024.2377606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The lack of success in clinical trials for HIV vaccines highlights the need to explore novel strategies for vaccine development. Research on highly exposed seronegative (HESN) HIV-resistant Kenyan female sex workers revealed naturally protective immunity is correlated with a focused immune response mediated by virus-specific CD8 T cells. Further studies indicated that the immune response is unconventionally focused on highly conserved sequences around HIV viral protease cleavage sites (VPCS). Thus, taking an unconventional approach to HIV vaccine development, we designed lipid nanoparticles loaded with mRNA that encodes multi-epitopes of VPCS (MEVPCS-mRNA LNP), a strategic design to boost antigen presentation by dendritic cells, promoting effective cellular immunity. Furthermore, we developed a novel cold-chain compatible mRNA LNP formulation, ensuring long-term stability and compatibility with cold-chain storage/transport, widening accessibility of mRNA LNP vaccine in low-income countries. The in-vivo mouse study demonstrated that the vaccinated group generated VPCS-specific CD8 memory T cells, both systemically and at mucosal sites of viral entry. The MEVPCS-mRNA LNP vaccine-induced CD8 T cell immunity closely resembled that of the HESN group and displayed a polyfunctional profile. Notably, it induced minimal to no activation of CD4 T cells. This proof-of-concept study underscores the potential of the MEVPCS-mRNA LNP vaccine in eliciting CD8 T cell memory specific to the highly conserved multiple VPCS, consequently having a broad coverage in human populations and limiting viral escape mutation. The MEVPCS-mRNA LNP vaccine holds promise as a candidate for an effective prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Subhra Mandal
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jayadri Sekhar Ghosh
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Saroj Chandra Lohani
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Miaoyun Zhao
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yilun Cheng
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rachel Burrack
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
5
|
Göpfrich K, Platten M, Frischknecht F, Fackler OT. Bottom-up synthetic immunology. NATURE NANOTECHNOLOGY 2024; 19:1587-1596. [PMID: 39187581 DOI: 10.1038/s41565-024-01744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/02/2024] [Indexed: 08/28/2024]
Abstract
Infectious diseases and cancer evade immune surveillance using similar mechanisms. Targeting immune mechanisms using common strategies thus represents a promising avenue to improve prevention and treatment. Synthetic immunology can provide such strategies by applying engineering principles from synthetic biology to immunology. Synthetic biologists engineer cells by top-down genetic manipulation or bottom-up assembly from nanoscale building blocks. Recent successes in treating advanced tumours and diseases using genetically engineered immune cells highlight the power of the top-down synthetic immunology approach. However, genetic immune engineering is mostly limited to ex vivo applications and is subject to complex counter-regulation inherent to immune functions. Bottom-up synthetic biology can harness the rich nanotechnology toolbox to engineer molecular and cellular systems from scratch and equip them with desired functions. These are beginning to be tailored to perform targeted immune functions and should hence allow intervention strategies by rational design. In this Perspective we conceptualize bottom-up synthetic immunology as a new frontier field that uses nanotechnology for crucial innovations in therapy and the prevention of infectious diseases and cancer.
Collapse
Affiliation(s)
- Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany.
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, Department of Infectious Diseases, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Oliver T Fackler
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
- Integrative Virology, Center of Integrative Infectious Disease Research, Department of Infectious Diseases, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Akitsu A, Kobayashi E, Feng Y, Stephens HM, Brazin KN, Masi DJ, Kirkpatrick EH, Mallis RJ, Duke-Cohan JS, Booker MA, Cinella V, Feng WW, Holliday EL, Lee JJ, Zienkiewicz KJ, Tolstorukov MY, Hwang W, Lang MJ, Reinherz EL. Parsing digital or analog TCR performance through piconewton forces. SCIENCE ADVANCES 2024; 10:eado4313. [PMID: 39141734 PMCID: PMC11323890 DOI: 10.1126/sciadv.ado4313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
αβ T cell receptors (TCRs) principally recognize aberrant peptides bound to major histocompatibility complex molecules (pMHCs) on unhealthy cells, amplifying specificity and sensitivity through physical load placed on the TCR-pMHC bond during immunosurveillance. To understand this mechanobiology, TCRs stimulated by abundantly and sparsely arrayed epitopes (NP366-374/Db and PA224-233/Db, respectively) following in vivo influenza A virus infection were studied with optical tweezers. While certain NP repertoire CD8 T lymphocytes require many ligands for activation, others are digital, needing just few. Conversely, all PA TCRs perform digitally, exhibiting pronounced bond lifetime increases through sustained, energizing volleys of structural transitioning. Optimal digital performance is superior in vivo, correlating with ERK phosphorylation, CD3 loss, and activation marker up-regulation in vitro. Given neoantigen array paucity, digital TCRs are likely critical for immunotherapies.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Influenza A virus/immunology
- Humans
- Lymphocyte Activation/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Optical Tweezers
Collapse
Affiliation(s)
- Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eiji Kobayashi
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Yinnian Feng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Hannah M. Stephens
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Kristine N. Brazin
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J. Masi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Evan H. Kirkpatrick
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Robert J. Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan S. Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A. Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Vincenzo Cinella
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - William W. Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth L. Holliday
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Jonathan J. Lee
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Katarzyna J. Zienkiewicz
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Michael Y. Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wonmuk Hwang
- Departments of Biomedical Engineering, Materials Science and Engineering, Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
| | - Matthew J. Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ellis L. Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Vemparala B, Chowdhury S, Guedj J, Dixit NM. Modelling HIV-1 control and remission. NPJ Syst Biol Appl 2024; 10:84. [PMID: 39117718 PMCID: PMC11310323 DOI: 10.1038/s41540-024-00407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Remarkable advances are being made in developing interventions for eliciting long-term remission of HIV-1 infection. The success of these interventions will obviate the need for lifelong antiretroviral therapy, the current standard-of-care, and benefit the millions living today with HIV-1. Mathematical modelling has made significant contributions to these efforts. It has helped elucidate the possible mechanistic origins of natural and post-treatment control, deduced potential pathways of the loss of such control, quantified the effects of interventions, and developed frameworks for their rational optimization. Yet, several important questions remain, posing challenges to the translation of these promising interventions. Here, we survey the recent advances in the mathematical modelling of HIV-1 control and remission, highlight their contributions, and discuss potential avenues for future developments.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Shreya Chowdhury
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jérémie Guedj
- Université Paris Cité, IAME, INSERM, F-75018, Paris, France
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
8
|
Collins DR, Olatotse MJ, Racenet ZJ, Arshad U, Çakan E, Gaiha GD, Clayton KL, Walker BD. Expanded Antigen-Specific Elimination Assay to Measure Human CD8 + T Cell Cytolytic Potential. Curr Protoc 2024; 4:e1109. [PMID: 39023416 PMCID: PMC11295945 DOI: 10.1002/cpz1.1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Durable cellular immunity against pathogens is dependent upon a coordinated recall response to antigen by memory CD8+ T cells, involving their proliferation and the generation of secondary cytotoxic effector cells. Conventional assays measuring ex vivo cytotoxicity fail to capture this secondary cytolytic potential, especially in settings where cells have not been recently exposed to their cognate antigen in vivo. Here we describe the expanded antigen-specific elimination assay (EASEA), a flow cytometric endpoint assay to measure the capacity of human CD8+ T cells to expand in vitro upon antigen re-exposure and generate secondary effector cells capable of selectively eliminating autologous antigen-pulsed target cells across a range of effector-to-target ratios. Unlike alternative assays, EASEA avoids the hazards of radioactive labeling and viral infection and can be used to study responses to individual or pooled antigens of interest. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Expanded antigen-specific elimination assay.
Collapse
Affiliation(s)
- David R. Collins
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | - Umar Arshad
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
| | - Elif Çakan
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
| | - Gaurav D. Gaiha
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Kiera L. Clayton
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
9
|
Maciel M, Amara RR, Bar KJ, Crotty S, Deeks SG, Duplessis C, Gaiha G, McElrath MJ, McMichael A, Palin A, Rutishauser R, Shapiro S, Smiley ST, D'Souza MP. Exploring synergies between B- and T-cell vaccine approaches to optimize immune responses against HIV-workshop report. NPJ Vaccines 2024; 9:39. [PMID: 38383616 PMCID: PMC10881492 DOI: 10.1038/s41541-024-00818-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Milton Maciel
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rama R Amara
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Christopher Duplessis
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gaurav Gaiha
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Amy Palin
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rachel Rutishauser
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Stuart Shapiro
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Stephen T Smiley
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - M Patricia D'Souza
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
10
|
Flemming A. Why have T cell-inducing vaccines for HIV failed so far? Nat Rev Immunol 2024; 24:89. [PMID: 38200271 DOI: 10.1038/s41577-024-00989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
|