1
|
Jin X, Chen Z, Yu D, Jiang Q, Chen Z, Yan B, Qin J, Liu Y, Wang J. TPepPro: a deep learning model for predicting peptide-protein interactions. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 41:btae708. [PMID: 39585721 DOI: 10.1093/bioinformatics/btae708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/23/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
MOTIVATION Peptides and their derivatives hold potential as therapeutic agents. The rising interest in developing peptide drugs is evidenced by increasing approval rates by the FDA of USA. To identify the most potential peptides, study on peptide-protein interactions (PepPIs) presents a very important approach but poses considerable technical challenges. In experimental aspects, the transient nature of PepPIs and the high flexibility of peptides contribute to elevated costs and inefficiency. Traditional docking and molecular dynamics simulation methods require substantial computational resources, and the predictive accuracy of their results remain unsatisfactory. RESULTS To address this gap, we proposed TPepPro, a Transformer-based model for PepPI prediction. We trained TPepPro on a dataset of 19,187 pairs of peptide-protein complexes with both sequential and structural features. TPepPro utilizes a strategy that combines local protein sequence feature extraction with global protein structure feature extraction. Moreover, TPepPro optimizes the architecture of structural featuring neural network in BN-ReLU arrangement, which notably reduced the amount of computing resources required for PepPIs prediction. According to comparison analysis, the accuracy reached 0.855 in TPepPro, achieving an 8.1% improvement compared to the second-best model TAGPPI. TPepPro achieved an AUC of 0.922, surpassing the second-best model TAGPPI with 0.844. Moreover, the newly developed TPepPro identify certain PepPIs that can be validated according to previous experimental evidence, thus indicating the efficiency of TPepPro to detect high potential PepPIs that would be helpful for amino acid drug applications. AVAILABILITY AND IMPLEMENTATION The source code of TPepPro is available at https://github.com/wanglabhku/TPepPro.
Collapse
Affiliation(s)
- Xiaohong Jin
- School of Electronic Information, Guangxi University for Nationalities, Nanning 530000, China
| | - Zimeng Chen
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Dan Yu
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qianhui Jiang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhuobin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bin Yan
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yong Liu
- School of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530000, China
| | - Junwen Wang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- HKU Shenzhen Hospital, Shenzhen 518000, China
| |
Collapse
|
2
|
Mason DM, Reddy ST. Predicting adaptive immune receptor specificities by machine learning is a data generation problem. Cell Syst 2024; 15:1190-1197. [PMID: 39701035 DOI: 10.1016/j.cels.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
Determining the specificity of adaptive immune receptors-B cell receptors (BCRs), their secreted form antibodies, and T cell receptors (TCRs)-is critical for understanding immune responses and advancing immunotherapy and drug discovery. Immune receptors exhibit extensive diversity in their variable domains, enabling them to interact with a plethora of antigens. Despite the significant progress made by AI tools such as AlphaFold in predicting protein structures, challenges remain in accurately modeling the structure and specificity of immune receptors, primarily due to the limited availability of high-quality crystal structures and the complexity of immune receptor-antigen interactions. In this perspective, we highlight recent advancements in sequence-based and structure-based data generation for immune receptors, which are crucial for training machine learning models that predict receptor specificity. We discuss the current bottlenecks and potential future directions in generating and utilizing high-dimensional datasets for predicting and designing the specificity of antibodies and TCRs.
Collapse
Affiliation(s)
- Derek M Mason
- Botnar Institute of Immune Engineering, 4056 Basel, Switzerland
| | - Sai T Reddy
- Botnar Institute of Immune Engineering, 4056 Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland.
| |
Collapse
|
3
|
Johnson S, DeKosky BJ. Expanding the landscape of antibody discovery. CELL REPORTS METHODS 2024; 4:100936. [PMID: 39689694 DOI: 10.1016/j.crmeth.2024.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Library:library screening technologies hold substantial promise for paired antibody:antigen discovery, but challenges have persisted. In this issue of Cell Reports Methods, Wagner et al. introduce a method that combines antibody-ribosome-mRNA complexes, antigen cell surface display, and single-cell RNA sequencing to successfully screen diverse antibody gene libraries against a library of viral receptor proteins.
Collapse
Affiliation(s)
- Shelbe Johnson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Brandon J DeKosky
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; The Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Zheng JY, Ji XY, Zhao AQ, Sun FY, Liu LF, Xin GZ. Mass Spectrometry Probe Combined with Machine Learning to Capture the Relationship between Metabolites and Mitochondrial Complex Activity at the Whole-Cell Level. Anal Chem 2024; 96:18195-18203. [PMID: 39484990 DOI: 10.1021/acs.analchem.4c04376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondrial complex activity controls a multitude of physiological processes by regulating the cellular metabolism. Current methods for evaluating mitochondrial complex activity mainly focus on single metabolic reactions within mitochondria. These methods often require fresh samples in large quantities for mitochondria purification or intact mitochondrial membranes for real-time monitoring. Confronting these limitations, we shifted the analytical perspective toward interactive metabolic networks at the whole-cell level to reflect mitochondrial complex activity. To this end, we compiled a panel of mitochondrial respiratory chain-mapped metabolites (MRCMs), whose perturbations theoretically provide an overall reflection on mitochondrial complex activity. By introducing N-dimethyl-p-phenylenediamine and N-methyl-p-phenylenediamine as a pair of mass spectrometry probes, an ultraperformance liquid chromatography-tandem mass spectrometry method with high sensitivity (LLOQ as low as 0.2 fmol) was developed to obtain accurate quantitative data of MRCMs. Machine learning was then combined to capture the relationship between MRCMs and mitochondrial complex activity. Using Complex I as a proof-of-concept, we identified NADH, alanine, and phosphoenolpyruvate as metabolites associated with Complex I activity based on the whole-cell level. The effectiveness of using their concentrations to reflect Complex I activity was further validated in external data sets. Hence, by capturing the relationship between metabolites and mitochondrial complex activity at the whole-cell level, this study explores a novel analytical paradigm for the interrogation of mitochondrial complex activity, offering a favorable complement to existing methods particularly when sample quantities, type, and treatment timeliness pose challenges. More importantly, it shifts the focus from individual metabolic reactions within mitochondria to a more comprehensive view of an interactive metabolic network, which should serve as a promising direction for future research into the functional architecture between mitochondrial complexes and metabolites.
Collapse
Affiliation(s)
- Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Yuan Ji
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - An-Qi Zhao
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Fang-Yuan Sun
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
5
|
Deichmann M, Hansson FG, Jensen ED. Yeast-based screening platforms to understand and improve human health. Trends Biotechnol 2024; 42:1258-1272. [PMID: 38677901 DOI: 10.1016/j.tibtech.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Detailed molecular understanding of the human organism is essential to develop effective therapies. Saccharomyces cerevisiae has been used extensively for acquiring insights into important aspects of human health, such as studying genetics and cell-cell communication, elucidating protein-protein interaction (PPI) networks, and investigating human G protein-coupled receptor (hGPCR) signaling. We highlight recent advances and opportunities of yeast-based technologies for cost-efficient chemical library screening on hGPCRs, accelerated deciphering of PPI networks with mating-based screening and selection, and accurate cell-cell communication with human immune cells. Overall, yeast-based technologies constitute an important platform to support basic understanding and innovative applications towards improving human health.
Collapse
Affiliation(s)
- Marcus Deichmann
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
6
|
Iliadis S, Papanikolaou NA. Reactive Oxygen Species Mechanisms that Regulate Protein-Protein Interactions in Cancer. Int J Mol Sci 2024; 25:9255. [PMID: 39273204 PMCID: PMC11395503 DOI: 10.3390/ijms25179255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Reactive oxygen species (ROS) are produced during cellular metabolism and in response to environmental stress. While low levels of ROS play essential physiological roles, excess ROS can damage cellular components, leading to cell death or transformation. ROS can also regulate protein interactions in cancer cells, thereby affecting processes such as cell growth, migration, and angiogenesis. Dysregulated interactions occur via various mechanisms, including amino acid modifications, conformational changes, and alterations in complex stability. Understanding ROS-mediated changes in protein interactions is crucial for targeted cancer therapies. In this review, we examine the role that ROS mechanisms in regulating pathways through protein-protein interactions.
Collapse
Affiliation(s)
- Stavros Iliadis
- Laboratory of Biological Chemistry, Department of Medicine, Section of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Macedonia, Greece
| | - Nikolaos A Papanikolaou
- Laboratory of Biological Chemistry, Department of Medicine, Section of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Macedonia, Greece
| |
Collapse
|
7
|
Lipsh-Sokolik R, Fleishman SJ. Addressing epistasis in the design of protein function. Proc Natl Acad Sci U S A 2024; 121:e2314999121. [PMID: 39133844 PMCID: PMC11348311 DOI: 10.1073/pnas.2314999121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Mutations in protein active sites can dramatically improve function. The active site, however, is densely packed and extremely sensitive to mutations. Therefore, some mutations may only be tolerated in combination with others in a phenomenon known as epistasis. Epistasis reduces the likelihood of obtaining improved functional variants and dramatically slows natural and lab evolutionary processes. Research has shed light on the molecular origins of epistasis and its role in shaping evolutionary trajectories and outcomes. In addition, sequence- and AI-based strategies that infer epistatic relationships from mutational patterns in natural or experimental evolution data have been used to design functional protein variants. In recent years, combinations of such approaches and atomistic design calculations have successfully predicted highly functional combinatorial mutations in active sites. These were used to design thousands of functional active-site variants, demonstrating that, while our understanding of epistasis remains incomplete, some of the determinants that are critical for accurate design are now sufficiently understood. We conclude that the space of active-site variants that has been explored by evolution may be expanded dramatically to enhance natural activities or discover new ones. Furthermore, design opens the way to systematically exploring sequence and structure space and mutational impacts on function, deepening our understanding and control over protein activity.
Collapse
Affiliation(s)
- Rosalie Lipsh-Sokolik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Wang H, Chen M, Wei X, Xia R, Pei D, Huang X, Han B. Computational tools for plant genomics and breeding. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1579-1590. [PMID: 38676814 DOI: 10.1007/s11427-024-2578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
Plant genomics and crop breeding are at the intersection of biotechnology and information technology. Driven by a combination of high-throughput sequencing, molecular biology and data science, great advances have been made in omics technologies at every step along the central dogma, especially in genome assembling, genome annotation, epigenomic profiling, and transcriptome profiling. These advances further revolutionized three directions of development. One is genetic dissection of complex traits in crops, along with genomic prediction and selection. The second is comparative genomics and evolution, which open up new opportunities to depict the evolutionary constraints of biological sequences for deleterious variant discovery. The third direction is the development of deep learning approaches for the rational design of biological sequences, especially proteins, for synthetic biology. All three directions of development serve as the foundation for a new era of crop breeding where agronomic traits are enhanced by genome design.
Collapse
Affiliation(s)
- Hai Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Mengjiao Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200233, China
| |
Collapse
|
9
|
Basu S, Subedi U, Tonelli M, Afshinpour M, Tiwari N, Fuentes EJ, Chakravarty S. Assessing the functional roles of coevolving PHD finger residues. Protein Sci 2024; 33:e5065. [PMID: 38923615 PMCID: PMC11201814 DOI: 10.1002/pro.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Although in silico folding based on coevolving residue constraints in the deep-learning era has transformed protein structure prediction, the contributions of coevolving residues to protein folding, stability, and other functions in physical contexts remain to be clarified and experimentally validated. Herein, the PHD finger module, a well-known histone reader with distinct subtypes containing subtype-specific coevolving residues, was used as a model to experimentally assess the contributions of coevolving residues and to clarify their specific roles. The results of the assessment, including proteolysis and thermal unfolding of wildtype and mutant proteins, suggested that coevolving residues have varying contributions, despite their large in silico constraints. Residue positions with large constraints were found to contribute to stability in one subtype but not others. Computational sequence design and generative model-based energy estimates of individual structures were also implemented to complement the experimental assessment. Sequence design and energy estimates distinguish coevolving residues that contribute to folding from those that do not. The results of proteolytic analysis of mutations at positions contributing to folding were consistent with those suggested by sequence design and energy estimation. Thus, we report a comprehensive assessment of the contributions of coevolving residues, as well as a strategy based on a combination of approaches that should enable detailed understanding of the residue contributions in other large protein families.
Collapse
Affiliation(s)
- Shraddha Basu
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Ujwal Subedi
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Maral Afshinpour
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Nitija Tiwari
- Department of Biochemistry & Molecular BiologyUniversity of IowaIowa CityIowaUSA
| | - Ernesto J. Fuentes
- Department of Biochemistry & Molecular BiologyUniversity of IowaIowa CityIowaUSA
| | - Suvobrata Chakravarty
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
10
|
Wossnig L, Furtmann N, Buchanan A, Kumar S, Greiff V. Best practices for machine learning in antibody discovery and development. Drug Discov Today 2024; 29:104025. [PMID: 38762089 DOI: 10.1016/j.drudis.2024.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
In the past 40 years, therapeutic antibody discovery and development have advanced considerably, with machine learning (ML) offering a promising way to speed up the process by reducing costs and the number of experiments required. Recent progress in ML-guided antibody design and development (D&D) has been hindered by the diversity of data sets and evaluation methods, which makes it difficult to conduct comparisons and assess utility. Establishing standards and guidelines will be crucial for the wider adoption of ML and the advancement of the field. This perspective critically reviews current practices, highlights common pitfalls and proposes method development and evaluation guidelines for various ML-based techniques in therapeutic antibody D&D. Addressing challenges across the ML process, best practices are recommended for each stage to enhance reproducibility and progress.
Collapse
Affiliation(s)
- Leonard Wossnig
- LabGenius Ltd, The Biscuit Factory, 100 Drummond Road, London SE16 4DG, UK; Department of Computer Science, University College London, 66-72 Gower St, London WC1E 6EA, UK.
| | - Norbert Furtmann
- R&D Large Molecules Research Platform, Sanofi Deutschland GmbH, Industriepark Höchst, Frankfurt Am Main, Germany
| | - Andrew Buchanan
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Sandeep Kumar
- Computational Protein Design and Modeling Group, Computational Science, Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Ornelas MY, Ouyang WO, Wu NC. A library-on-library screen reveals the breadth expansion landscape of a broadly neutralizing betacoronavirus antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597810. [PMID: 38915656 PMCID: PMC11195093 DOI: 10.1101/2024.06.06.597810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) typically evolve cross-reactivity breadth through acquiring somatic hypermutations. While evolution of breadth requires improvement of binding to multiple antigenic variants, most experimental evolution platforms select against only one antigenic variant at a time. In this study, a yeast display library-on-library approach was applied to delineate the affinity maturation of a betacoronavirus bnAb, S2P6, against 27 spike stem helix peptides in a single experiment. Our results revealed that the binding affinity landscape of S2P6 varies among different stem helix peptides. However, somatic hypermutations that confer general improvement in binding affinity across different stem helix peptides could also be identified. We further showed that a key somatic hypermutation for breadth expansion involves long-range interaction. Overall, our work not only provides a proof-of-concept for using a library-on-library approach to analyze the evolution of antibody breadth, but also has important implications for the development of broadly protective vaccines.
Collapse
Affiliation(s)
- Marya Y. Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Irvine EB, Reddy ST. Advancing Antibody Engineering through Synthetic Evolution and Machine Learning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:235-243. [PMID: 38166249 DOI: 10.4049/jimmunol.2300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
Abs are versatile molecules with the potential to achieve exceptional binding to target Ags, while also possessing biophysical properties suitable for therapeutic drug development. Protein display and directed evolution systems have transformed synthetic Ab discovery, engineering, and optimization, vastly expanding the number of Ab clones able to be experimentally screened for binding. Moreover, the burgeoning integration of high-throughput screening, deep sequencing, and machine learning has further augmented in vitro Ab optimization, promising to accelerate the design process and massively expand the Ab sequence space interrogated. In this Brief Review, we discuss the experimental and computational tools employed in synthetic Ab engineering and optimization. We also explore the therapeutic challenges posed by developing Abs for infectious diseases, and the prospects for leveraging machine learning-guided protein engineering to prospectively design Abs resistant to viral escape.
Collapse
Affiliation(s)
- Edward B Irvine
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|