1
|
Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Curr Top Microbiol Immunol 2022; 440:31-70. [PMID: 33861374 DOI: 10.1007/82_2021_233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Self-amplifying mRNAs derived from the genomes of positive-strand RNA viruses have recently come into focus as a promising technology platform for vaccine development. Non-virally delivered self-amplifying mRNA vaccines have the potential to be highly versatile, potent, streamlined, scalable, and inexpensive. By amplifying their genome and the antigen encoding mRNA in the host cell, the self-amplifying mRNA mimics a viral infection, resulting in sustained levels of the target protein combined with self-adjuvanting innate immune responses, ultimately leading to potent and long-lasting antigen-specific humoral and cellular immune responses. Moreover, in principle, any eukaryotic sequence could be encoded by self-amplifying mRNA without the need to change the manufacturing process, thereby enabling a much faster and flexible research and development timeline than the current vaccines and hence a quicker response to emerging infectious diseases. This chapter highlights the rapid progress made in using non-virally delivered self-amplifying mRNA-based vaccines against infectious diseases in animal models. We provide an overview of the unique attributes of this vaccine approach, summarize the growing body of work defining its mechanism of action, discuss the current challenges and latest advances, and highlight perspectives about the future of this promising technology.
Collapse
Affiliation(s)
| | | | | | - Dong Yu
- GSK, 14200 Shady Grove Road, Rockville, MD, 20850, USA. .,Dynavax Technologies, 2100 Powell Street Suite, Emeryville, CA, 94608, USA.
| |
Collapse
|
2
|
Immunogenicity and Protection Efficacy of a Naked Self-Replicating mRNA-Based Zika Virus Vaccine. Vaccines (Basel) 2019; 7:vaccines7030096. [PMID: 31450775 PMCID: PMC6789535 DOI: 10.3390/vaccines7030096] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
To combat emerging infectious diseases like Zika virus (ZIKV), synthetic messenger RNAs (mRNAs) encoding viral antigens are very attractive as they allow a rapid, generic, and flexible production of vaccines. In this work, we engineered a self-replicating mRNA (sr-mRNA) vaccine encoding the pre-membrane and envelope (prM-E) glycoproteins of ZIKV. Intradermal electroporation of as few as 1 µg of this mRNA-based ZIKV vaccine induced potent humoral and cellular immune responses in BALB/c and especially IFNAR1-/- C57BL/6 mice, resulting in a complete protection of the latter mice against ZIKV infection. In wild-type C57BL/6 mice, the vaccine resulted in very low seroconversion rates and antibody titers. The potency of the vaccine was inversely related to the dose of mRNA used in wild-type BALB/c or C57BL/6 mice, as robust type I interferon (IFN) response was determined in a reporter mice model (IFN-β+/Δβ-luc). We further investigated the inability of the sr-prM-E-mRNA ZIKV vaccine to raise antibodies in wild-type C57BL/6 mice and found indications that type I IFNs elicited by this naked sr-mRNA vaccine might directly impede the induction of a robust humoral response. Therefore, we assume that the efficacy of sr-mRNA vaccines after intradermal electroporation might be increased by strategies that temper their inherent innate immunogenicity.
Collapse
|
3
|
Newling M, Hoepel W, Vogelpoel LTC, Heineke MH, van Burgsteden JA, Taanman-Kueter EWM, Eggink D, Kuijpers TW, Beaumont T, van Egmond M, Kapsenberg ML, Baeten DLP, den Dunnen J, Jong ECD. Fc gamma receptor IIa suppresses type I and III interferon production by human myeloid immune cells. Eur J Immunol 2018; 48:1796-1809. [PMID: 30184252 PMCID: PMC6282563 DOI: 10.1002/eji.201847615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/17/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Type I and type III interferons (IFNs) are fundamental for antiviral immunity, but prolonged expression is also detrimental to the host. Therefore, upon viral infection high levels of type I and III IFNs are followed by a strong and rapid decline. However, the mechanisms responsible for this suppression are still largely unknown. Here, we show that IgG opsonization of model viruses influenza and respiratory syncytial virus (RSV) strongly and selectively suppressed type I and III IFN production by various human antigen-presenting cells. This suppression was induced by selective inhibition of TLR, RIG-I-like receptor, and STING-dependent type I and III IFN gene transcription. Surprisingly, type I and III IFN suppression was mediated by Syk and PI3K independent inhibitory signaling via FcγRIIa, thereby identifying a novel non-canonical FcγRIIa pathway in myeloid cells. Together, these results indicate that IgG opsonization of viruses functions as a novel negative feedback mechanism in humans, which may play a role in the selective suppression of type I and III IFN responses during the late-phase of viral infections. In addition, activation of this pathway may be used as a tool to limit type I IFN-associated pathology.
Collapse
Affiliation(s)
- Melissa Newling
- Amsterdam Rheumatology and Immunology Center, location Academic Medical Center (AMC), Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, location Academic Medical Center (AMC), Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Lisa T C Vogelpoel
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Marieke H Heineke
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Johan A van Burgsteden
- Amsterdam Rheumatology and Immunology Center, location Academic Medical Center (AMC), Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Esther W M Taanman-Kueter
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Dirk Eggink
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Beaumont
- AIMM Therapeutics, AMC, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, the Netherlands
| | - Martien L Kapsenberg
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Center, location Academic Medical Center (AMC), Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, location Academic Medical Center (AMC), Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Esther C de Jong
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kahan SM, Zajac AJ. Late arising T follicular helper cells cultivate the B cell crop during chronic infections. Sci Immunol 2018; 2:2/18/eaap9339. [PMID: 29196451 DOI: 10.1126/sciimmunol.aap9339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022]
Abstract
Follicular helper CD4+ T cells are essential for the development of neutralizing antibodies that contain chronic viral infection.
Collapse
Affiliation(s)
- Shannon M Kahan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Allan J Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
5
|
Abstract
Antibodies play a crucial role in virus control. The production of antibodies requires virus-specific B cells to encounter viral antigens in lymph nodes, become activated, interact with different immune cells, proliferate and enter specific differentiation programmes. Each step occurs in distinct lymph node niches, requiring a coordinated migration of B cells between different subcompartments. The development of multiphoton intravital microscopy has enabled researchers to begin to elucidate the precise cellular and molecular events by which lymph nodes coordinate humoral responses. This Review discusses recent studies that clarify how viruses interfere with antibody responses, highlighting how these mechanisms relate to our topological and temporal understanding of B cell activation within secondary lymphoid organs.
Collapse
Affiliation(s)
- Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 58, Milan 20132, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 58, Milan 20132, Italy
| |
Collapse
|