1
|
Lu HY, Vaseghi-Shanjani M, Lam AJ, Sharma M, Mohajeri A, Silva LBR, Gillies J, Yang GX, Lin S, Fu MP, Salman A, Rahmanian R, Armstrong L, Halparin J, Yang CL, Chilvers M, Henkelman E, Rehmus W, Morrison D, Setiadi A, Mostafavi S, Kobor MS, Kozak FK, Biggs CM, van Karnebeek C, Hildebrand KJ, Levings MK, Turvey SE. A Germline Heterozygous Dominant Negative IKZF2 Variant Causing Syndromic Primary Immune Regulatory Disorder and ICHAD. J Clin Immunol 2025; 45:89. [PMID: 40295428 PMCID: PMC12037660 DOI: 10.1007/s10875-025-01882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Monogenic defects that impair the control of inflammation and tolerance lead to profound immune dysregulation, including autoimmunity and atopy. Studying these disorders reveals important molecular and cellular factors that regulate human immune homeostasis and identifies potential precision medicine targets. Here, we provide a detailed immunological assessment of a pediatric patient with a recently discovered syndrome causing Immunodysregulation, Craniofacial anomalies, Hearing impairment, Athelia, and Developmental delay (or ICHAD syndrome). The immunodysregulation resulted in autoimmune hemolytic anemia (AIHA) and atopic dermatitis. The patient carried a de novo germline heterozygous c.406+540_574+13477dup;p.Gly136_Ser191dup variant in IKAROS family zinc finger 2 (IKZF2), which encodes HELIOS. This variant led to reduced HELIOS protein expression and dominant interference of wild-type HELIOS-mediated repression of the IL2 promoter. Multi-parameter flow cytometry analyses of patient peripheral blood mononuclear cells revealed strongly impaired natural killer cell differentiation and function, and increased CD8+ T cell activation and cytokine secretion. Strikingly, patient CD4+ T cells were hyperactive, produced elevated levels of nearly all T helper (TH) cytokines, and readily proliferated in response to stimulation. Patient regulatory T cells (Tregs) developed normally but aberrantly produced high levels of many TH cytokines. Single-cell RNA sequencing revealed largely normal Tregs (albeit mostly memory), but naïve CD4+ T cells that were more enriched in genes related to activation, proliferation, metabolism, and TH differentiation. This work describes the immunological phenotype of one of the first reported cases of germline dominant negative HELIOS deficiency, expands our understanding of the pathogenesis of AIHA on a single cell level, and provides valuable insights into HELIOS function in a variety of lymphocyte subsets.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Maryam Vaseghi-Shanjani
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Avery J Lam
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| | - Mehul Sharma
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Arezoo Mohajeri
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Leandro B R Silva
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Jana Gillies
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| | - Gui Xiang Yang
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Susan Lin
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Maggie P Fu
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
- Genome Science and Technology Program, Faculty of Science, The University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Areesha Salman
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Ronak Rahmanian
- Division of Otolaryngology - Head & Neck Surgery, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Linlea Armstrong
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Jessica Halparin
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Hematology, Oncology & Bone Marrow Transplant, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Connie L Yang
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Respiratory Medicine, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Mark Chilvers
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Respiratory Medicine, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Erika Henkelman
- Division of Plastic Surgery, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Wingfield Rehmus
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Dermatology, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Douglas Morrison
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Audi Setiadi
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Sara Mostafavi
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
- Department of Statistics, The University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Frederick K Kozak
- Division of Otolaryngology - Head & Neck Surgery, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Catherine M Biggs
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Immunology, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Kyla J Hildebrand
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Division of Immunology, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, 950 West 28 th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.
- Division of Immunology, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Moadab A, Khorramdelazad H, Javar MTA, Nejad MSM, Mirzaie S, Hatami S, Mahdavi N, Ghaffari S, Yazdian FA. Unmasking a Paradox: Roles of the PD-1/PD-L1 Axis in Alzheimer's Disease-Associated Neuroinflammation. J Neuroimmune Pharmacol 2025; 20:46. [PMID: 40285967 DOI: 10.1007/s11481-025-10206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Alzheimer's disease (AD) represents the most prevalent form of dementia, characterized by progressive cognitive impairment and chronic neuroinflammation. Immune checkpoint inhibitors (ICIs), including anti-programmed cell death (PD)-1 and anti-PD-L1, signify a revolutionary advancement in cancer treatment by preventing T-cell exhaustion; however, their therapeutic application in AD presents a conundrum. Hypothesis: Recent preclinical studies indicate that PD-1 inhibition in AD mouse models induces an interferon-gamma (IFN-γ)-mediated response, leading to increased recruitment of monocyte-derived macrophages into the brain, enhanced clearance of amyloid-beta (Aβ) plaques, and improved cognitive performance. Nonetheless, this therapeutic effect is counterbalanced by the potential for exacerbated neuroinflammation, as PD-1/PD-L1 blockade may potentiate pro-inflammatory T helper (Th)1 and Th17 responses. In this review, we critically discuss the pertinent pro-inflammatory and neuroprotective facets of T cell biology in the pathogenesis of AD, emphasizing the potential for modulation of the PD-1/PD-L1 axis to influence both Aβ clearance and the dynamics of neuroinflammatory processes. In summary, we determine that ICIs are promising tools for reducing AD pathology and improving cognition. However, it is essential to refine treatment protocols and carefully select patients to optimize neuroprotective effects while adequately considering inflammatory risks.
Collapse
Affiliation(s)
- Ali Moadab
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Taha Akbari Javar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Saber Mohammadian Nejad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shahrzad Mirzaie
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sina Hatami
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nima Mahdavi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Saeed Ghaffari
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari Yazdian
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
3
|
Liu L, Yan Y, Wang Y, Li Z, Yang L, Yu K, Zhao Z. Comparative efficacy and safety of first‑line PD‑1/PD‑L1 inhibitors in immunotherapy for non‑small cell lung cancer: A network meta‑analysis. Oncol Lett 2025; 29:157. [PMID: 39916949 PMCID: PMC11799748 DOI: 10.3892/ol.2025.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/16/2024] [Indexed: 02/09/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The emergence of programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors offers new therapeutic options for patients with advanced NSCLC, but a comprehensive evaluation of their efficacy and safety is still lacking. In the present study randomized controlled trials (RCTs) published from January 2005 to May 2023 were identified through searches of PubMed, the Cochrane Library and Embase. Analysis focused on 10 PD-1/PD-L1 inhibitors for stages III and IV NSCLC in studies evaluating overall survival (OS), progression-free survival (PFS), the objective response rate, the disease control rate (DCR) and the incidence of severe treatment-related and immune-related adverse events. A total of 37 RCTs involving 31,779 patients were included in the analysis. Compared with chemotherapy, tislelizumab, pembrolizumab and nivolumab all significantly improved OS, with tislelizumab showing the highest probability of being the best treatment for improving OS and DCR. While cemiplimab and tislelizumab had the highest probabilities of improved PFS, no significant differences were observed across all PD-1/PD-L1 inhibitors. Combination therapies, such as nivolumab or cemiplimab with chemotherapy, increased OS and PFS but also increased the incidence of severe treatment-related adverse events. In particular, cemiplimab and pembrolizumab were associated with a greater risk of severe immune-related adverse events. In conclusion, PD-1/PD-L1 inhibitors, especially tislelizumab, pembrolizumab and nivolumab, were effective first-line treatments for NSCLC, providing survival benefits. However, the combination of PD-1/PD-L1 inhibitors with chemotherapy increased the risk of severe adverse events. Further research is needed to optimize treatment strategies.
Collapse
Affiliation(s)
- Liyan Liu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
- Department of Beijing Central Medical District, Chinese PLA General Hospital, Beijing 100080, P.R. China
| | - Yilong Yan
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Yuqiao Wang
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, P.R. China
| | - Ziming Li
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Li Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Kefu Yu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
4
|
Triantafyllou E, Gudd CLC, Possamai LA. Immune-mediated liver injury from checkpoint inhibitors: mechanisms, clinical characteristics and management. Nat Rev Gastroenterol Hepatol 2025; 22:112-126. [PMID: 39663461 DOI: 10.1038/s41575-024-01019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Immunotherapy has changed the treatment landscape for patients with cancer in the past decade. Immune checkpoint inhibitor (ICI)-based therapies have proven effective in a range of malignancies, including liver and gastrointestinal cancers, but they can cause diverse off-target organ toxicities. With the increasingly wider application of these drugs, immune-mediated liver injury from ICIs has become a commonly encountered challenge in clinical hepatology and gastroenterology. In this Review, we discuss the evidence from human and animal studies on the immunological mechanisms of immune-mediated liver injury from ICIs and summarize its clinical features and practical considerations for its management.
Collapse
Affiliation(s)
- Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| | - Cathrin L C Gudd
- Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lucia A Possamai
- Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
- Liver and Antiviral Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
5
|
Devasani JR, Guntuku G, Panatula N, Muthyala MKK, Palla MS, Siahaan TJ. Innovative CDR grafting and computational methods for PD-1 specific nanobody design. FRONTIERS IN BIOINFORMATICS 2025; 4:1488331. [PMID: 39897125 PMCID: PMC11782559 DOI: 10.3389/fbinf.2024.1488331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction The development of nanobodies targeting Programmed Cell Death Protein-1 (PD-1) offers a promising approach in cancer immunotherapy. This study aims to design and characterize a PD-1-specific nanobody using an integrated computational and experimental approach. Methods An in silico design strategy was employed, involving Complementarity-Determining Region (CDR) grafting to construct the nanobody sequence. The three-dimensional structure of the nanobody was predicted using AlphaFold2, and molecular docking simulations via ClusPro were conducted to evaluate binding interactions with PD-1. Physicochemical properties, including stability and solubility, were analyzed using web-based tools, while molecular dynamics (MD) simulations assessed stability under physiological conditions. The nanobody was produced and purified using Ni-NTA chromatography, and experimental validation was performed through Western blotting, ELISA, and dot blot analysis. Results Computational findings demonstrated favorable binding interactions, stability, and physicochemical properties of the nanobody. Experimental results confirmed the nanobody's specific binding affinity to PD-1, with ELISA and dot blot analyses providing evidence of robust interaction. Discussion This study highlights the potential of combining computational and experimental approaches for engineering nanobodies. The engineered PD-1 nanobody exhibits promising characteristics, making it a strong candidate for further testing in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Jagadeeswara Reddy Devasani
- Pharmaceutical Biotechnology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Girijasankar Guntuku
- Pharmaceutical Biotechnology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Nalini Panatula
- Pharmaceutical Biotechnology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Murali Krishna Kumar Muthyala
- Pharmaceutical Chemistry Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Mary Sulakshana Palla
- GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, India
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
6
|
Asashima H, Akao S, Matsumoto I. Emerging roles of checkpoint molecules on B cells. Immunol Med 2025:1-12. [PMID: 39819449 DOI: 10.1080/25785826.2025.2454045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Immune checkpoint molecules, including both co-inhibitory molecules and co-stimulatory molecules, are known to play critical roles in regulating T-cell responses. During the last decades, immunotherapies targeting these molecules (such as programmed cell death 1 (PD-1), and lymphocyte activation gene 3 (LAG-3)) have provided clinical benefits in many cancers. It is becoming apparent that not only T cells, but also B cells have a capacity to express some checkpoint molecules. These were originally thought to be only the markers for regulatory B cells which produce IL-10, but recent studies suggest that these molecules (especially T-cell immunoglobulin and mucin domain 1 (TIM-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and PD-1) can regulate intrinsic B-cell activation and functions. Here, we focus on these molecules and summarize their characteristics, ligands, and functions on B cells.
Collapse
Affiliation(s)
- Hiromitsu Asashima
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Akao
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Zeng X, Fan L, Qin Q, Zheng D, Wang H, Li M, Jiang Y, Wang H, Liu H, Liang S, Wu L, Liang S. Exogenous PD-L1 binds to PD-1 to alleviate and prevent autism-like behaviors in maternal immune activation-induced male offspring mice. Brain Behav Immun 2024; 122:527-546. [PMID: 39182588 DOI: 10.1016/j.bbi.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder caused by the interaction of multiple pathogenic factors. Epidemiological studies and animal experiments indicate that maternal immune activation (MIA) is closely related to the development of ASD in offspring. A large number of pro-inflammatory cytokines are transferred from the placenta to the fetal brain during MIA, which impedes fetal neurodevelopment and is accompanied by activation of immune cells and microglia. Programmed cell death protein 1 (PD-1) can be highly expressed on the surface of various activated immune cells, when combined with programmed cell death-ligand 1 (PD-L1), it can activate the PD-1/PD-L1 pathway and exert powerful immunosuppressive effects, suggesting that this immune checkpoint may have the potential to treat MIA-induced ASD. This study combined bioinformatics analysis and experimental validation to explore the efficacy of Fc-fused PD-L1 (PD-L1-Fc) in treating MIA-induced ASD. Bioinformatics analysis results showed that in human placental inflammation, IL-6 was upregulated, T cells proliferated significantly, and the PD-1/PD-L1 pathway was significantly enriched. The experimental results showed that intraperitoneal injection of poly(I:C) induced MIA in pregnant mice resulted in significant expression of IL-6 in their serum, placenta, and fetal brain. At the same time, the expression of PD-1 and PD-L1 in the placenta and fetal brain increased, CD4+ T cells in the spleen were significantly activated, and PD-1 expression increased. Their offspring mice exhibited typical ASD-like behaviors. In vitro experiments on primary microglia of offspring mice have confirmed that the expression of IL-6, PD-1, and PD-L1 is significantly increased, and PD-L1-Fc effectively reduced their expression levels. In the prefrontal cortex of MIA offspring mice, there was an increase in the expression of IL-6, PD-1, and PD-L1; activation of microglial cells, and colocalization with PD-1. Then we administered brain stereotaxic injections of PD-L1-Fc to MIA offspring mice and intraperitoneal injections to MIA pregnant mice. The results indicated that PD-L1-Fc effectively suppressed neuroinflammation in the frontal cortex of offspring mice and partially ameliorated ASD-like behaviors; MIA in pregnant mice was significantly alleviated, and the offspring mice they produced did not exhibit neuroinflammation or ASD-like behaviors. In summary, we have demonstrated the therapeutic ability of PD-L1-Fc for MIA-induced ASD, aiming to provide new strategies and insights for the treatment of ASD.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Linlin Fan
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Qian Qin
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Danyang Zheng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Han Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Mengyue Li
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yutong Jiang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hui Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hao Liu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Shengjun Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lijie Wu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Shuang Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
8
|
Hu L, Sun C, Yuan K, Yang P. Expression, regulation, and function of PD-L1 on non-tumor cells in the tumor microenvironment. Drug Discov Today 2024; 29:104181. [PMID: 39278561 DOI: 10.1016/j.drudis.2024.104181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Antiprogrammed death ligand 1 (PD-L1) therapy is a leading immunotherapy, but only some patients with solid cancers benefit. Overwhelming evidence has revealed that PD-L1 is expressed on various immune cells in the tumor microenvironment (TME), including macrophages, dendritic cells, and regulatory T cells, modulating tumor immunity and influencing tumor progression. PD-L1 can also be located on tumor cell membranes as well as in exosomes and cytoplasm. Accordingly, the dynamic expression and various forms of PD-L1 might explain the therapy's limited efficacy and resistance. Herein a systematic summary of the expression of PD-L1 on different immune cells and their regulatory mechanisms is provided to offer a solid foundation for future studies.
Collapse
Affiliation(s)
- Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
9
|
Lu B, Zhang Y, Wang J, Yang D, Liu M, Ma L, Yi W, Liang Y, Xu Y, Fan H, Liu W, Tang J, Zeng S, Cai L, Zhang L, Nie J, Zhang F, Gu X, Rosa Duque JS, Lu G, Zhang Y. PD1 +CD4 + T cells promote receptor editing and suppress autoreactivity of CD19 +CD21 low B cells within the lower respiratory airways in adenovirus pneumonia. Mucosal Immunol 2024; 17:1045-1059. [PMID: 39038753 DOI: 10.1016/j.mucimm.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Human adenovirus (HAdV) pneumonia poses a major health burden for young children, however, factors that contribute to disease severity remain elusive. We analyzed immune cells from bronchoalveolar lavage (BAL) of children with HAdV pneumonia and found that CD19+CD21low B cells were significantly enriched in the BAL and were associated with increased autoantibody concentrations and disease severity. Myeloid cells, PD-1+CD4+ T helper cells and CD21low B cells formed tertiary lymphoid structures within the respiratory tracts. Myeloid cells promoted autoantibody production by expressing high amounts of B cell activating factor (BAFF). In contrast, PD-1+CD4+ T helper cells induced production of IgG1 and IgG3 antibodies but suppressed autoreactive IgGs by initiating B cell receptor editing. In summary, this study reveals cellular components involved in protective versus autoreactive immune pathways in the respiratory tract, and these findings provide potential therapeutic targets for severe HAdV lower respiratory tract infections.
Collapse
Affiliation(s)
- Bingtai Lu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yanfang Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jun Wang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Diyuan Yang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Ming Liu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Liuheyi Ma
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Weijing Yi
- Zybio Inc., Chongqing Municipality, 400039, China
| | - Yufeng Liang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yingyi Xu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Huifeng Fan
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Wei Liu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jue Tang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Sengqiang Zeng
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Li Cai
- Department of Hospital Infection Control, Guangdong Provincial Hospital of Traditional Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Li Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Junli Nie
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Fen Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xiaoqiong Gu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jaime S Rosa Duque
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China; Department of Paediatric and Adolescent Medicine, the University of Hong Kong, Hong Kong, China.
| | - Gen Lu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Yuxia Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
10
|
Xu M, Li S. The opportunities and challenges of using PD-1/PD-L1 inhibitors for leukemia treatment. Cancer Lett 2024; 593:216969. [PMID: 38768681 DOI: 10.1016/j.canlet.2024.216969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Leukemia poses a significant clinical challenge due to its swift onset, rapid progression, and treatment-related complications. Tumor immune evasion, facilitated by immune checkpoints like programmed death receptor 1/programmed death receptor ligand 1 (PD-1/PD-L1), plays a critical role in leukemia pathogenesis and progression. In this review, we summarized the research progress and therapeutic potential of PD-L1 in leukemia, focusing on targeted therapy and immunotherapy. Recent clinical trials have demonstrated promising outcomes with PD-L1 inhibitors, highlighting their role in enhancing treatment efficacy. This review discusses the implications of PD-L1 expression levels on treatment response and long-term survival rates in leukemia patients. Furthermore, we address the challenges and opportunities in immunotherapy, emphasizing the need for personalized approaches and combination therapies to optimize PD-L1 inhibition in leukemia management. Future research prospects include exploring novel treatment strategies and addressing immune-related adverse events to improve clinical outcomes in leukemia. Overall, this review provides valuable insights into the role of PD-L1 in leukemia and its potential as a therapeutic target in the evolving landscape of leukemia treatment.
Collapse
Affiliation(s)
- Mengdan Xu
- Department of Breast Cancer, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China; Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning Province, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, China; Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning Province, China.
| |
Collapse
|
11
|
Lee J, Whitney JB. Immune checkpoint inhibition as a therapeutic strategy for HIV eradication: current insights and future directions. Curr Opin HIV AIDS 2024; 19:179-186. [PMID: 38747727 DOI: 10.1097/coh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW HIV-1 infection contributes substantially to global morbidity and mortality, with no immediate promise of an effective prophylactic vaccine. Combination antiretroviral therapy (ART) suppresses HIV replication, but latent viral reservoirs allow the virus to persist and reignite active replication if ART is discontinued. Moreover, inflammation and immune disfunction persist despite ART-mediated suppression of HIV. Immune checkpoint molecules facilitate immune dysregulation and viral persistence. However, their therapeutic modulation may offer an avenue to enhance viral immune control for patients living with HIV-1 (PLWH). RECENT FINDINGS The success of immune checkpoint inhibitor (ICI) therapy in oncology suggests that targeting these same immune pathways might be an effective therapeutic approach for treating PLWH. Several ICIs have been evaluated for their ability to reinvigorate exhausted T cells, and possibly reverse HIV latency, in both preclinical and clinical HIV-1 studies. SUMMARY Although there are very encouraging findings showing enhanced CD8 + T-cell function with ICI therapy in HIV infection, it remains uncertain whether ICIs alone could demonstrably impact the HIV reservoir. Moreover, safety concerns and significant clinical adverse events present a hurdle to the development of ICI approaches. This review provides an update on the current knowledge regarding the development of ICIs for the remission of HIV-1 in PWH. We detail recent findings from simian immunodeficiency virus (SIV)-infected rhesus macaque models, clinical trials in PLWH, and the role of soluble immune checkpoint molecules in HIV pathogenesis.
Collapse
Affiliation(s)
- Jina Lee
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | | |
Collapse
|
12
|
Li S, Zou D. "Please don't lyse me": Programmed cell death ligand-1 expression on neonatal islet cells promotes xenotransplant acceptance. Am J Transplant 2024; 24:1093-1094. [PMID: 38325767 DOI: 10.1016/j.ajt.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Affiliation(s)
- Shuang Li
- Department of Cardiovascular Science, Houston Methodist Research Institute, Houston, Texas, USA
| | - Dawei Zou
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA.
| |
Collapse
|
13
|
Zhang Y, Cao M, Wu Y, Malih S, Xu D, Yang E, Younis MH, Lin W, Zhao H, Wang C, Liu Q, Engle JW, Rasaee MJ, Guan Y, Huang G, Liu J, Cai W, Xie F, Wei W. Preclinical development of novel PD-L1 tracers and first-in-human study of [ 68Ga]Ga-NOTA-RW102 in patients with lung cancers. J Immunother Cancer 2024; 12:e008794. [PMID: 38580333 PMCID: PMC11002357 DOI: 10.1136/jitc-2024-008794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The programmed cell death protein-1 (PD-1)/programmed death receptor ligand 1 (PD-L1) axis critically facilitates cancer cells' immune evasion. Antibody therapeutics targeting the PD-1/PD-L1 axis have shown remarkable efficacy in various tumors. Immuno-positron emission tomography (ImmunoPET) imaging of PD-L1 expression may help reshape solid tumors' immunotherapy landscape. METHODS By immunizing an alpaca with recombinant human PD-L1, three clones of the variable domain of the heavy chain of heavy-chain only antibody (VHH) were screened, and RW102 with high binding affinity was selected for further studies. ABDRW102, a VHH derivative, was further engineered by fusing RW102 with the albumin binder ABD035. Based on the two targeting vectors, four PD-L1-specific tracers ([68Ga]Ga-NOTA-RW102, [68Ga]Ga-NOTA-ABDRW102, [64Cu]Cu-NOTA-ABDRW102, and [89Zr]Zr-DFO-ABDRW102) with different circulation times were developed. The diagnostic efficacies were thoroughly evaluated in preclinical solid tumor models, followed by a first-in-human translational investigation of [68Ga]Ga-NOTA-RW102 in patients with non-small cell lung cancer (NSCLC). RESULTS While RW102 has a high binding affinity to PD-L1 with an excellent KD value of 15.29 pM, ABDRW102 simultaneously binds to human PD-L1 and human serum albumin with an excellent KD value of 3.71 pM and 3.38 pM, respectively. Radiotracers derived from RW102 and ABDRW102 have different in vivo circulation times. In preclinical studies, [68Ga]Ga-NOTA-RW102 immunoPET imaging allowed same-day annotation of differential PD-L1 expression with specificity, while [64Cu]Cu-NOTA-ABDRW102 and [89Zr]Zr-DFO-ABDRW102 enabled longitudinal visualization of PD-L1. More importantly, a pilot clinical trial shows the safety and diagnostic value of [68Ga]Ga-NOTA-RW102 immunoPET imaging in patients with NSCLCs and its potential to predict immune-related adverse effects following PD-L1-targeted immunotherapies. CONCLUSIONS We developed and validated a series of PD-L1-targeted tracers. Initial preclinical and clinical evidence indicates that immunoPET imaging with [68Ga]Ga-NOTA-RW102 holds promise in visualizing differential PD-L1 expression, selecting patients for PD-L1-targeted immunotherapies, and monitoring immune-related adverse effects in patients receiving PD-L1-targeted treatments. TRIAL REGISTRATION NUMBER NCT06165874.
Collapse
Affiliation(s)
- You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Cao
- Department of Thoracic Surgery,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Sara Malih
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Dong Xu
- Department of Thoracic Surgery, Huashan Hospital Fudan University, Shanghai, China
| | - Erpeng Yang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wilson Lin
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Haitao Zhao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mohammad J Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Albu DI, Wolf BJ, Qin Y, Wang X, Daniel Ulumben A, Su M, Li V, Ding E, Angel Gonzalo J, Kong J, Jadhav R, Kuklin N, Visintin A, Gong B, Schuetz TJ. A bispecific anti-PD-1 and PD-L1 antibody induces PD-1 cleavage and provides enhanced anti-tumor activity. Oncoimmunology 2024; 13:2316945. [PMID: 38379869 PMCID: PMC10877993 DOI: 10.1080/2162402x.2024.2316945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Combinatorial strategies, such as targeting different immune checkpoint receptors, hold promise to increase the breadth and duration of the response to cancer therapy. Here we describe the preclinical evaluation of CTX-8371, a protein construct which combines PD-1 and PD-L1 targeting in one bispecific, tetravalent antibody. CTX-8371 matched or surpassed the activity of anti-PD-1 and PD-L1 benchmark antibodies in several in vitro T cell activation assays and outperformed clinically approved benchmarks in the subcutaneous MC38 colon and the B16F10 lung metastasis mouse tumor models. Investigation into the mechanism of action revealed that CTX-8371 co-engagement of PD-1 and PD-L1 induced the proteolytic cleavage and loss of cell surface PD-1, which is a novel and non-redundant mechanism that adds to the PD-1/PD-L1 signaling axis blockade. The combination of CTX-8371 and an agonistic anti-CD137 antibody further increased the anti-tumor efficacy with long-lasting curative therapeutic effect. In summary, CTX-8371 is a novel checkpoint inhibitor that might provide greater clinical benefit compared to current anti-PD-1 and PD-L1 antibodies, especially when combined with agents with orthogonal mechanisms of action, such as agonistic anti-CD137 antibodies.
Collapse
Affiliation(s)
| | | | - Yan Qin
- Compass Therapeutics Inc, Boston, MA, USA
| | | | | | - Mei Su
- Compass Therapeutics Inc, Boston, MA, USA
| | - Vivian Li
- Compass Therapeutics Inc, Boston, MA, USA
| | | | | | - Jason Kong
- Compass Therapeutics Inc, Boston, MA, USA
| | | | | | | | - Bing Gong
- Compass Therapeutics Inc, Boston, MA, USA
| | | |
Collapse
|
15
|
Cui JW, Li Y, Yang Y, Yang HK, Dong JM, Xiao ZH, He X, Guo JH, Wang RQ, Dai B, Zhou ZL. Tumor immunotherapy resistance: Revealing the mechanism of PD-1 / PD-L1-mediated tumor immune escape. Biomed Pharmacother 2024; 171:116203. [PMID: 38280330 DOI: 10.1016/j.biopha.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.
Collapse
Affiliation(s)
- Jia-Wen Cui
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Yao Li
- College of Pharmacy, Macau University of Science and Technology (MUST), China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hai-Kui Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Mei Dong
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhi-Hua Xiao
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin He
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Hao Guo
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City 528200, Guangdong Province, China.
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| |
Collapse
|
16
|
Hou B, Hu Y, Zhu Y, Wang X, Li W, Tang J, Jia X, Wang J, Cong Y, Quan M, Yang H, Zheng H, Bao Y, Chen XL, Wang HR, Xu B, Gascoigne NRJ, Fu G. SHP-1 Regulates CD8+ T Cell Effector Function but Plays a Subtle Role with SHP-2 in T Cell Exhaustion Due to a Stage-Specific Nonredundant Functional Relay. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:397-409. [PMID: 38088801 DOI: 10.4049/jimmunol.2300462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
SHP-1 (Src homology region 2 domain-containing phosphatase 1) is a well-known negative regulator of T cells, whereas its close homolog SHP-2 is the long-recognized main signaling mediator of the PD-1 inhibitory pathway. However, recent studies have challenged the requirement of SHP-2 in PD-1 signaling, and follow-up studies further questioned the alternative idea that SHP-1 may replace SHP-2 in its absence. In this study, we systematically investigate the role of SHP-1 alone or jointly with SHP-2 in CD8+ T cells in a series of gene knockout mice. We show that although SHP-1 negatively regulates CD8+ T cell effector function during acute lymphocytic choriomeningitis virus (LCMV) infection, it is dispensable for CD8+ T cell exhaustion during chronic LCMV infection. Moreover, in contrast to the mortality of PD-1 knockout mice upon chronic LCMV infection, mice double deficient for SHP-1 and SHP-2 in CD8+ T cells survived without immunopathology. Importantly, CD8+ T cells lacking both phosphatases still differentiate into exhausted cells and respond to PD-1 blockade. Finally, we found that SHP-1 and SHP-2 suppressed effector CD8+ T cell expansion at the early and late stages, respectively, during chronic LCMV infection.
Collapse
Affiliation(s)
- Bowen Hou
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanyan Hu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhen Zhu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaocui Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wanyun Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jian Tang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayu Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yu Cong
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Minxue Quan
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongying Yang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhou Bao
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hong-Rui Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Cancer Research Center of Xiamen University, Xiamen, China
- Laboratory Animal Center, Xiamen University; Xiamen, China
| |
Collapse
|
17
|
Almonte AA, Cavic G, Carroll CSE, Neeman T, Fahrer AM. Early T Cell Infiltration Correlates with Anti-CTLA4 Treatment Response in Murine Cancer Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1858-1867. [PMID: 37930122 DOI: 10.4049/jimmunol.2300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Immune checkpoint inhibitor (ICI) Abs are a revolutionary class of cancer treatment, but only ∼30% of patients receive a lasting benefit from therapy. Preclinical studies using animals from the same genetic backgrounds, challenged with the same cancer models, also show nonuniform responses. Most mouse studies that have evaluated tumor-infiltrating leukocytes after ICI therapy cannot directly correlate their findings with treatment outcomes, because terminal methods were used to acquire immune infiltrate data. In the present study, we used fine-needle aspiration (a nonterminal sampling method) to collect multiple aspirates over several days from s.c. implanted P815, CT26, and 4T1 mouse cancer models treated with ICI Abs. These aspirates were then analyzed with flow cytometry to directly correlate tumor-infiltrating leukocyte populations with treatment success. We found that the P815 and CT26 models respond well to anti-CTLA4 therapies. Among P815-challenged animals, mice that regressed following anti-CTLA4 treatment showed significant increases in CD8+ T cells on days 3, 5, and 7 and in CD4+ T cells on days 5 and 7 and a decrease in macrophages and monocytes on days 3, 5, and 7 after treatment. Similar results were obtained in the CT26 model on day 11 posttreatment. Our study is the first, to our knowledge, to directly correlate early tumor infiltration of T cells with anti-CTLA4 treatment success, thus providing a mechanistic clue toward understanding why alloidentical mice challenged with identical tumors do not respond uniformly to ICI therapies.
Collapse
Affiliation(s)
- Andrew A Almonte
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - George Cavic
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | | | - Teresa Neeman
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Aude M Fahrer
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
18
|
Hamilton AG, Swingle KL, Joseph RA, Mai D, Gong N, Billingsley MM, Alameh MG, Weissman D, Sheppard NC, June CH, Mitchell MJ. Ionizable Lipid Nanoparticles with Integrated Immune Checkpoint Inhibition for mRNA CAR T Cell Engineering. Adv Healthc Mater 2023; 12:e2301515. [PMID: 37602495 DOI: 10.1002/adhm.202301515] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/13/2023] [Indexed: 08/22/2023]
Abstract
The programmed cell death protein 1 (PD-1) signaling pathway is a major source of dampened T cell activity in the tumor microenvironment. While clinical approaches to inhibiting the PD-1 pathway using antibody blockade have been broadly successful, these approaches lead to widespread PD-1 suppression, increasing the risk of autoimmune reactions. This study reports the development of an ionizable lipid nanoparticle (LNP) platform for simultaneous therapeutic gene expression and RNA interference (RNAi)-mediated transient gene knockdown in T cells. In developing this platform, interesting interactions are observed between the two RNA cargoes when co-encapsulated, leading to improved expression and knockdown characteristics compared to delivering either cargo alone. This messenger RNA (mRNA)/small interfering RNA (siRNA) co-delivery platform is adopted to deliver chimeric antigen receptor (CAR) mRNA and siRNA targeting PD-1 to primary human T cells ex vivo and strong CAR expression and PD-1 knockdown are observed without apparent changes to overall T cell activation state. This delivery platform shows great promise for transient immune gene modulation for a number of immunoengineering applications, including the development of improved cancer immunotherapies.
Collapse
Affiliation(s)
- Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ryann A Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Mai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Neil C Sheppard
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carl H June
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Wu Y, Wang H, Song A, Wang X, Ma Q, Yao C, Xu J, Dai H, Wang C, Lu T, Xu F. PD-L1-Expressing Extracellular Vesicles for the Treatment of Pneumonia. ACS Biomater Sci Eng 2023; 9:6464-6471. [PMID: 37844209 DOI: 10.1021/acsbiomaterials.3c01173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung condition with a high mortality rate and a lack of effective drug therapy. In this work, we developed mesenchymal stem cell (MSC)-derived extracellular vesicles with high PD-L1 expression (MSC-EVs-PD-L1) for treating lipopolysaccharide (LPS)-induced pneumonia by intratracheal administration. We found an upregulation of PD-1 expression in the inflammatory region of murine lungs; hence, MSC-EVs-PD-L1 exerted immunosuppressive effects via the PD-1/PD-L1 signaling pathway. Furthermore, we treated LPS-induced pneumonia mice by intratracheal administration, which enabled heavy drug accumulation in the lungs of mice and better therapeutic efficacy compared to systemic administration. Our results suggest that MSC-EVs-PD-L1 has the potential to provide a universal platform technology for the immunotherapy of pneumonia.
Collapse
Affiliation(s)
- Yi Wu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Heng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Anning Song
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaoyu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Chenlu Yao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Ting Lu
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
20
|
Wu Q, Pan C, Zhou Y, Wang S, Xie L, Zhou W, Ding L, Chen T, Qian J, Su R, Gao X, Mei Z, Qiao Y, Yin S, Wu Y, Wang J, Zhou L, Zheng S. Targeting neuropilin-1 abolishes anti-PD-1-upregulated regulatory T cells and synergizes with 4-1BB agonist for liver cancer treatment. Hepatology 2023; 78:1402-1417. [PMID: 36811396 DOI: 10.1097/hep.0000000000000320] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND AIMS Regulatory T cells (Tregs) are an obstacle to PD-1 blockade-mediated antitumor efficacy. However, the behaviors of Tregs response to anti-PD-1 in HCC and the characteristics of Tregs tissue adaptation from peripheral lymphoid tissues to the tumor are still unclear. APPROACH RESULTS Here, we determine that PD-1 monotherapy potentially augments the accumulation of tumor CD4 + Tregs. Mechanistically, anti-PD-1 mediates Tregs proliferation in lymphoid tissues rather than in the tumor. Increased peripheral Tregs burden replenishes intratumoral Tregs, raising the ratio of intratumoral CD4 + Tregs to CD8 + T cells. Subsequently, single-cell transcriptomics revealed that neuropilin-1 (Nrp-1) supports Tregs migration behavior, and the genes of Crem and Tnfrsf9 regulate the behaviors of the terminal suppressive Tregs. Nrp-1 + 4-1BB - Tregs stepwise develop to the Nrp-1 - 4-1BB + Tregs from lymphoid tissues into the tumor. Moreover, Treg-restricted Nrp1 depletion abolishes anti-PD-1-upregulated intratumoral Tregs burden and synergizes with the 4-1BB agonist to enhance the antitumor response. Finally, a combination of the Nrp-1 inhibitor and the 4-1BB agonist in humanized HCC models showed a favorable and safe outcome and evoked the antitumor effect of the PD-1 blockade. CONCLUSION Our findings elucidate the potential mechanism of anti-PD-1-mediated intratumoral Tregs accumulation in HCC and uncover the tissue adaptation characteristics of Tregs and identify the therapeutic potential of targeting Nrp-1 and 4-1BB for reprogramming the HCC microenvironment.
Collapse
Affiliation(s)
- Qinchuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Caixu Pan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Yuan Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Liting Xie
- Department of Ultrasound, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wuhua Zhou
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Limin Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Tianchi Chen
- Department of vascular surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Rong Su
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Xingxing Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Zhibin Mei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Shengyong Yin
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Yi Wu
- Lyvgen Biopharma, Shanghai, China
| | | | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Zhao Z, Wang X, Wang J, Li Y, Lin W, Lu K, Chen J, Xia W, Mao ZW. A Nanobody-Bioorthogonal Catalyst Conjugate Triggers Spatially Confined Prodrug Activation for Combinational Chemo-immunotherapy. J Med Chem 2023; 66:11951-11964. [PMID: 37590921 DOI: 10.1021/acs.jmedchem.3c00557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Checkpoint inhibitors have been used with chemotherapy to improve antitumor efficacy. However, overcoming the immunosuppressive effect of chemotherapeutics remains a challenge. We report a nanobody-catalyst conjugate Ru-PD-L1 by fusing a ruthenium catalyst to an anti-PD-L1 nanobody. After administration of Ru-PD-L1 and a doxorubicin (DOX) prodrug, Ru-PD-L1 disrupts the PD-L1/PD-1 interaction and catalyzes the uncaging of the DOX prodrug. The spatially confined release of DOX reduces its systemic toxicity and leads to immunogenic cell death (ICD). The induced ICD triggers antitumor immune responses, which are further amplified by PD-L1 blockade to elicit synergistic chemo-immunotherapy, substantially increasing the number of tumor-infiltrating T-cells by 49.7% compared with the controls, thereby exhibiting high antitumor activity and low cytotoxicity in murine models. The combinational treatment could inhibit the growth of mice tumors by 67.7% compared to the control group. This combinational approach circumvents the negative immunogenic effects of chemotherapeutics and provides a potential chemo-immunotherapy strategy for human cancer treatment.
Collapse
Affiliation(s)
- Zhennan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinyu Wang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinhui Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiyi Li
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenkai Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Chen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Blum SM, Rouhani SJ, Sullivan RJ. Effects of immune-related adverse events (irAEs) and their treatment on antitumor immune responses. Immunol Rev 2023; 318:167-178. [PMID: 37578634 DOI: 10.1111/imr.13262] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are potentially life-saving cancer therapies that can trigger immune-related adverse events (irAEs). irAEs can impact any organ and range in their presentation from mild side effects to life-threatening complications. The relationship between irAEs and antitumor immune responses is nuanced and may depend on the irAE organ, the tumor histology, and the patient. While some irAEs likely represent an immune response against antigens shared between tumor cells and healthy tissues, other irAEs may be entirely unrelated to antitumor immune responses. Clinical observations suggest that low-grade irAEs have a positive association with responses to ICIs, but the correlation between severe irAEs and clinical benefit is less clear. Currently, severe irAEs are typically treated by interrupting or permanently discontinuing ICI treatment and administering empirically selected systemic immunosuppressive agents. However, these interventions could potentially diminish the antitumor effects of ICIs. Efforts to understand the mechanistic relationship between irAEs and the tumor microenvironment have yielded meaningful insights and nominated therapeutic targets for irAE management that may preserve or even boost ICI efficacy. We explore the clinical and molecular relationship between irAEs and antitumor immunity as well as the role that irAE treatments may play in shaping antitumor immune responses.
Collapse
Affiliation(s)
- Steven M Blum
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sherin J Rouhani
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Yu J, Li M, Ren B, Cheng L, Wang X, Ma Z, Yong WP, Chen X, Wang L, Goh BC. Unleashing the efficacy of immune checkpoint inhibitors for advanced hepatocellular carcinoma: factors, strategies, and ongoing trials. Front Pharmacol 2023; 14:1261575. [PMID: 37719852 PMCID: PMC10501787 DOI: 10.3389/fphar.2023.1261575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer, representing approximately 85% of cases. The diagnosis is often made in the middle and late stages, necessitating systemic treatment as the primary therapeutic option. Despite sorafenib being the established standard of care for advanced HCC in the past decade, the efficacy of systemic therapy remains unsatisfactory, highlighting the need for novel treatment modalities. Recent breakthroughs in immunotherapy have shown promise in HCC treatment, particularly with immune checkpoint inhibitors (ICIs). However, the response rate to ICIs is currently limited to approximately 15%-20% of HCC patients. Recently, ICIs demonstrated greater efficacy in "hot" tumors, highlighting the urgency to devise more effective approaches to transform "cold" tumors into "hot" tumors, thereby enhancing the therapeutic potential of ICIs. This review presented an updated summary of the factors influencing the effectiveness of immunotherapy in HCC treatment, identified potential combination therapies that may improve patient response rates to ICIs, and offered an overview of ongoing clinical trials focusing on ICI-based combination therapy.
Collapse
Affiliation(s)
- Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wei Peng Yong
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Zhong S, Yin Y. Regulatory role of the programmed cell death 1 signaling pathway in sepsis induced immunosuppression. Front Immunol 2023; 14:1183542. [PMID: 37292207 PMCID: PMC10244656 DOI: 10.3389/fimmu.2023.1183542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Sepsis is a multiple organ dysfunction syndrome caused by the host's immune response to infection, with extremely high incidence and mortality. Immunosuppression is an essential pathophysiological alteration that influences the clinical treatment and prognosis of sepsis. Recent studies have suggested that the programmed cell death 1 signaling pathway is involved in the formation of immunosuppression in sepsis. In this review, we systematically present the mechanisms of immune dysregulation in sepsis and elucidate the expression and regulatory effects of the programmed cell death 1 signaling pathway on immune cells associated with sepsis. We then specify current research developments and prospects for the application of the programmed cell death 1 signaling pathway in immunomodulatory therapy for sepsis. Several open questions and future research are discussed at the end.
Collapse
Affiliation(s)
- Shubai Zhong
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanqin Yin
- Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
25
|
Gutiérrez-Melo N, Baumjohann D. T follicular helper cells in cancer. Trends Cancer 2023; 9:309-325. [PMID: 36642575 DOI: 10.1016/j.trecan.2022.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
T follicular helper (Tfh) cells provide essential help to B cells for effective antibody-mediated immune responses. Although the crucial function of these CD4+ T cells in infection and vaccination is well established, their involvement in cancer is only beginning to emerge. Increased numbers of Tfh cells in Tfh cell-derived or B cell-associated malignancies are often associated with an unfavorable outcome, whereas in various solid organ tumor types of non-lymphocytic origin, their presence frequently coincides with a better prognosis. We discuss recent advances in understanding how Tfh cell crosstalk with B cells and CD8+ T cells in secondary and tertiary lymphoid structures (TLS) enhances antitumor immunity, but may also exacerbate immune-related adverse events (irAEs) such as autoimmunity during immune checkpoint blockade (ICB) and cancer immunotherapy.
Collapse
Affiliation(s)
- Nicolás Gutiérrez-Melo
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology, and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology, and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
26
|
Hsiung S, Egawa T. Population dynamics and gene regulation of T cells in response to chronic antigen stimulation. Int Immunol 2023; 35:67-77. [PMID: 36334059 DOI: 10.1093/intimm/dxac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
Abstract
T cells are activated by antigen and co-stimulatory receptor signaling and undergo robust proliferation and differentiation into effector cells with protective function. Such quantitatively and qualitatively amplified T cell responses are effective in controlling acute infection and are followed by contraction of the effector population and the formation of resting memory T cells for enhanced protection against previously experienced antigens. However, in the face of persistent antigen during chronic viral infection, in autoimmunity, or in the tumor microenvironment, T cells exhibit distinct responses relative to those in acute insult in several aspects, including reduced clonal expansion and impaired effector function associated with inhibitory receptor expression, a state known as exhaustion. Nevertheless, their responses to chronic infection and tumors are sustained through the establishment of hierarchical heterogeneity, which preserves the duration of the response by generating newly differentiated effector cells. In this review, we highlight recent findings on distinct dynamics of T cell responses under "exhausting" conditions and the roles of the transcription factors that support attenuated yet long-lasting T cell responses as well as the establishment of dysfunctional states.
Collapse
Affiliation(s)
- Sunnie Hsiung
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| |
Collapse
|
27
|
Samanas NB, Murphy RC, Miralda I, Hallstrand TS, Piliponsky AM. Neutrophilic asthma at an inhibitory checkpoint: A PD-1-targeted approach. J Allergy Clin Immunol 2023; 151:420-422. [PMID: 36463980 DOI: 10.1016/j.jaci.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Nyssa B Samanas
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Ryan C Murphy
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, Wash; Center for Lung Biology, University of Washington, Seattle, Wash
| | - Irina Miralda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, Wash; Center for Lung Biology, University of Washington, Seattle, Wash
| | - Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash; Department of Pediatrics, Seattle, Wash; Department of Pathology, Seattle, Wash; Department of Global Health, University of Washington School of Medicine, Seattle, Wash.
| |
Collapse
|
28
|
Copic D, Direder M, Klas K, Bormann D, Laggner M, Ankersmit HJ, Mildner M. Antithymocyte Globulin Inhibits CD8 + T Cell Effector Functions via the Paracrine Induction of PDL-1 on Monocytes. Cells 2023; 12:cells12030382. [PMID: 36766722 PMCID: PMC9913606 DOI: 10.3390/cells12030382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Antithymocyte globulins (ATG) are T cell-depleting antibodies used in solid organ transplantation for induction therapy in sensitized patients with a high risk of graft rejection. Previously described effects besides the depletion of T cells have suggested additional modes of action and identified further cellular targets. METHODS We examined the transcriptional changes arising in immune cells from human blood after ex vivo stimulation with ATG at the single-cell level to uncover additional mechanisms by which ATG regulates T cell activity and effector functions. FINDINGS Analysis of the paracrine factors present in the plasma of ATG-treated whole blood revealed high levels of chemokines and cytokines, including interferon-γ (IFN-γ). Furthermore, we identified an increase in the surface expression of the programmed death ligand 1 (PDL-1) on monocytes mediated by the released paracrine factors. In addition, we showed that this induction is dependent on the activation of JAK/STAT signaling via the binding of IFN-γ to interferon-γ receptor 1 (IFN-γR1). Lastly, we demonstrated that the modulation of the immune regulatory axis of programmed cell death protein 1 (PD1) on activated CD8+ T cells with PDL-1 found on monocytes mediated by ATG potently inhibits effector functions including the proliferation and granzyme B release of activated T cells. INTERPRETATION Together, our findings represent a novel mode of action by which ATG exerts its immunosuppressive effects.
Collapse
Affiliation(s)
- Dragan Copic
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Martin Direder
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Katharina Klas
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Daniel Bormann
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Maria Laggner
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Correspondence: (H.J.A.); (M.M.); Tel.: +43-(0)1-40400-67770 (H.J.A.); +43-(0)1-40400-73507 (M.M.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
- Correspondence: (H.J.A.); (M.M.); Tel.: +43-(0)1-40400-67770 (H.J.A.); +43-(0)1-40400-73507 (M.M.)
| |
Collapse
|
29
|
Wang Y, Jenq RR, Wargo JA, Watowich SS. Microbiome influencers of checkpoint blockade-associated toxicity. J Exp Med 2023; 220:213796. [PMID: 36622383 PMCID: PMC9836236 DOI: 10.1084/jem.20220948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Immunotherapy has greatly improved cancer outcomes, yet variability in response and off-target tissue damage can occur with these treatments, including immune checkpoint inhibitors (ICIs). Multiple lines of evidence indicate the host microbiome influences ICI response and risk of immune-related adverse events (irAEs). As the microbiome is modifiable, these advances indicate the potential to manipulate microbiome components to increase ICI success. We discuss microbiome features associated with ICI response, with focus on bacterial taxa and potential immune mechanisms involved in irAEs, and the overall goal of driving novel approaches to manipulate the microbiome to improve ICI efficacy while avoiding irAE risk.
Collapse
Affiliation(s)
- Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S. Watowich
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
30
|
Pan M, Zhao H, Jin R, Leung PSC, Shuai Z. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future. Front Immunol 2023; 14:1156212. [PMID: 37090741 PMCID: PMC10115969 DOI: 10.3389/fimmu.2023.1156212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCA) associated vasculitis (AAV) is a necrotizing vasculitis mainly involving small blood vessels. It is demonstrated that T cells are important in the pathogenesis of AAV, including regulatory T cells (Treg) and helper T cells (Th), especially Th2, Th17, and follicular Th cells (Tfh). In addition, the exhaustion of T cells predicted the favorable prognosis of AAV. The immune checkpoints (ICs) consist of a group of co-stimulatory and co-inhibitory molecules expressed on the surface of T cells, which maintains a balance between the activation and exhaustion of T cells. CD28, inducible T-cell co-stimulator (ICOS), OX40, CD40L, glucocorticoid induced tumor necrosis factor receptor (GITR), and CD137 are the common co-stimulatory molecules, while the programmed cell death 1 (PD-1), cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), T cell immunoglobulin (Ig) and mucin domain-containing protein 3 (TIM-3), B and T lymphocyte attenuator (BTLA), V-domain Ig suppressor of T cell activation (VISTA), T-cell Ig and ITIM domain (TIGIT), CD200, and lymphocyte activation gene 3 (LAG-3) belong to co-inhibitory molecules. If this balance was disrupted and the activation of T cells was increased, autoimmune diseases (AIDs) might be induced. Even in the treatment of malignant tumors, activation of T cells by immune checkpoint inhibitors (ICIs) may result in AIDs known as rheumatic immune-related adverse events (Rh-irAEs), suggesting the importance of ICs in AIDs. In this review, we summarized the features of AAV induced by immunotherapy using ICIs in patients with malignant tumors, and then reviewed the biological characteristics of different ICs. Our aim was to explore potential targets in ICs for future treatment of AAV.
Collapse
Affiliation(s)
- Menglu Pan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruimin Jin
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Patrick S. C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| |
Collapse
|
31
|
Check(point) yourself before you wreck yourself in tumors. Nat Immunol 2023; 24:10-11. [PMID: 36596895 DOI: 10.1038/s41590-022-01391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Cowles SC, Sheen A, Santollani L, Lutz EA, Lax BM, Palmeri JR, Freeman GJ, Wittrup KD. An affinity threshold for maximum efficacy in anti-PD-1 immunotherapy. MAbs 2022; 14:2088454. [PMID: 35924382 PMCID: PMC9354768 DOI: 10.1080/19420862.2022.2088454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Monoclonal antibodies targeting the programmed cell death protein 1 (PD-1) remain the most prevalent cancer immunotherapy both as a monotherapy and in combination with additional therapies. Despite the extensive success of anti-PD-1 monoclonal antibodies in the clinic, the experimental relationship between binding affinity and functional potency for anti-PD-1 antibodies in vivo has not been reported. Anti-PD-1 antibodies with higher and lower affinity than nivolumab or pembrolizumab are entering the clinic and show varied preclinical efficacy. Here, we explore the role of broad-ranging affinity variation within a single lineage in a syngeneic immunocompetent mouse model. By developing a panel of murine anti-PD-1 antibodies with varying affinity (ranging from KD = 20 pM - 15 nM), we find that there is a threshold affinity required for maximum efficacy at a given dose in the treatment of the MC38 adenocarcinoma model with anti-PD-1 immunotherapy. Physiologically based pharmacokinetic modeling complements interpretation of the experimental results and highlights the direct relationship between dose, affinity, and PD-1 target saturation in the tumor.
Collapse
Affiliation(s)
- Sarah C. Cowles
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Emi A. Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brianna M. Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joseph R. Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gordon J. Freeman
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|