1
|
Okuyama K, Yamashita M, Koumoundourou A, Wiegreffe C, Ohno-Oishi M, Murphy SJH, Zhao X, Yoshida H, Ebihara T, Satoh-Takayama N, Kojo S, Ohno H, Morio T, Wu Y, Puck J, Xue HH, Britsch S, Taniuchi I. A mutant BCL11B-N440K protein interferes with BCL11A function during T lymphocyte and neuronal development. Nat Immunol 2024; 25:2284-2296. [PMID: 39487351 DOI: 10.1038/s41590-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Genetic studies in mice have shown that the zinc finger transcription factor BCL11B has an essential role in regulating early T cell development and neurogenesis. A de novo heterozygous missense BCL11B variant, BCL11BN441K, was isolated from a patient with T cell deficiency and neurological disorders. Here, we show that mice harboring the corresponding Bcl11bN440K mutation show the emergence of natural killer (NK)/group 1 innate lymphoid cell (ILC1)-like NKp46+ cells in the thymus and reduction in TBR1+ neurons in the neocortex, which are observed with loss of Bcl11a but not Bcl11b. Thus, the mutant BCL11B-N440K protein interferes with BCL11A function upon heterodimerization. Mechanistically, the Bcl11bN440K mutation dampens the interaction of BCL11B with T cell factor 1 (TCF1) in thymocytes, resulting in weakened antagonism against TCF1 activity that supports the differentiation of NK/ILC1-like cells. Collectively, our results shed new light on the function of BCL11A in suppressing non-T lymphoid developmental potential and uncover the pathogenic mechanism by which BCL11B-N440K interferes with partner BCL11 family proteins.
Collapse
Affiliation(s)
- Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Samuel J H Murphy
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Chemical Biology Mass Spectrometry Platform, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jennifer Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
| |
Collapse
|
2
|
Zaied RE, Gokuladhas S, Walker C, O’Sullivan JM. Unspecified asthma, childhood-onset, and adult-onset asthma have different causal genes: a Mendelian randomization analysis. Front Immunol 2024; 15:1412032. [PMID: 39628479 PMCID: PMC11611866 DOI: 10.3389/fimmu.2024.1412032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Asthma is a heterogeneous condition that is characterized by reversible airway obstruction. Childhood-onset asthma (COA) and adult-onset asthma (AOA) are two prominent asthma subtypes, each with unique etiological factors and prognosis, which suggests the existence of both shared and distinct risk factors. Methods Here, we employed a two-sample Mendelian randomization analysis to elucidate the causal association between genes within lung and whole-blood-specific gene regulatory networks (GRNs) and the development of unspecified asthma, COA, and AOA using the Wald ratio method. Lung and whole blood-specific GRNs, encompassing spatial eQTLs (instrumental variables) and their target genes (exposures), were utilized as exposure data. Genome-wide association studies for unspecified asthma, COA, and AOA were used as outcome data in this investigation. Results We identified 101 genes that were causally linked to unspecified asthma, 39 genes causally associated with COA, and ten genes causally associated with AOA. Among the identified genes, 29 were shared across some, or all of the asthma subtypes. Of the identified causal genes, ORMDL3 had the strongest causal association with both unspecified asthma (OR: 1.49; 95% CI:1.42-1.57; p=7.30x10-51) and COA (OR: 3.37; 95% CI: 3.02-3.76; p=1.95x10-102), whereas PEBP1P3 had the strongest causal association with AOA (OR: 1.28; 95% CI: 1.16-1.41; p=0.007). Discussion This study identified shared and unique genetic factors causally associated with different asthma subtypes. In so doing, our study emphasizes the need to move beyond perceiving asthma as a singular condition to enable the development of therapeutic interventions that target sub-type specific causal genes.
Collapse
Affiliation(s)
- Roan E. Zaied
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Sreemol Gokuladhas
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Caroline Walker
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin M. O’Sullivan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| |
Collapse
|
3
|
Rao VK. When Dumbo meets IKAROS: Fear and hubris. J Allergy Clin Immunol 2024; 154:552-553. [PMID: 38944392 DOI: 10.1016/j.jaci.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
|
4
|
García-Solís B, Tapia-Torres M, García-Soidán A, Hernández-Brito E, Martínez-Saavedra MT, Lorenzo-Salazar JM, García-Hernández S, Van Den Rym A, Mayani K, Govantes-Rodríguez JV, Gervais A, Bastard P, Puel A, Casanova JL, Flores C, Pérez de Diego R, Rodríguez-Gallego C. IgG4-related disease and B-cell malignancy due to an IKZF1 gain-of-function variant. J Allergy Clin Immunol 2024; 154:819-826. [PMID: 38579942 DOI: 10.1016/j.jaci.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Monoallelic loss-of-function IKZF1 (IKAROS) variants cause B-cell deficiency or combined immunodeficiency, whereas monoallelic gain-of-function (GOF) IKZF1 variants have recently been reported to cause hypergammaglobulinemia, abnormal plasma cell differentiation, autoimmune and allergic manifestations, and infections. OBJECTIVE We studied 7 relatives with autoimmune/inflammatory and lymphoproliferative manifestations to identify the immunologic disturbances and the genetic cause of their disease. METHODS We analyzed biopsy results and performed whole-exome sequencing and immunologic studies. RESULTS Disease onset occurred at a mean age of 25.2 years (range, 10-64, years). Six patients suffered from autoimmune/inflammatory diseases, 4 had confirmed IG4-related disease (IgG4-RD), and 5 developed B-cell malignancies: lymphoma in 4 and multiple myeloma in the remaining patient. Patients without immunosuppression were not particularly prone to infectious diseases. Three patients suffered from life-threatening coronavirus disease 2019 pneumonia, of whom 1 had autoantibodies neutralizing IFN-α. The recently described IKZF1 GOF p.R183H variant was found in the 5 affected relatives tested and in a 6-year-old asymptomatic girl. Immunologic analysis revealed hypergammaglobulinemia and high frequencies of certain lymphocyte subsets (exhausted B cells, effector memory CD4 T cells, effector memory CD4 T cells that have regained surface expression of CD45RA and CD28-CD57+ CD4+ and CD8+ T cells, TH2, and Tfh2 cells) attesting to immune dysregulation. Partial clinical responses to rituximab and corticosteroids were observed, and treatment with lenalidomide, which promotes IKAROS degradation, was initiated in 3 patients. CONCLUSIONS Heterozygosity for GOF IKZF1 variants underlies autoimmunity/inflammatory diseases, IgG4-RD, and B-cell malignancies, the onset of which may occur in adulthood. Clinical and immunologic data are similar to those for patients with unexplained IgG4-RD. Patients may therefore benefit from treatments inhibiting pathways displaying IKAROS-mediated overactivity.
Collapse
Affiliation(s)
- Blanca García-Solís
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - María Tapia-Torres
- Department of Hematology, La Palma University Hospital, Breña Alta, Spain
| | - Ana García-Soidán
- Department of Immunology, University Hospital of Gran Canaria Dr Negrin, Las Palmas de Gran Canaria, Spain
| | - Elisa Hernández-Brito
- Department of Immunology, University Hospital of Gran Canaria Dr Negrin, Las Palmas de Gran Canaria, Spain
| | | | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Karan Mayani
- Department of Hematology, La Palma University Hospital, Breña Alta, Spain
| | | | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain; Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Santa Cruz de Tenerife, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| | - Carlos Rodríguez-Gallego
- Department of Immunology, University Hospital of Gran Canaria Dr Negrin, Las Palmas de Gran Canaria, Spain; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain; Department of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
5
|
Ciavatta DJ. Rare genetic variants provide a mechanistic basis for immune imbalance in IgG4-related disease. J Clin Invest 2024; 134:e183396. [PMID: 39145453 PMCID: PMC11324286 DOI: 10.1172/jci183396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Autoimmune diseases are commonly associated with a polygenic inheritance pattern. In rare instances, causal monogenic variants have been identified. The study by Liu et al. in this issue of the JCI provides an example of monogenic variants occurring in patients with IgG4-related disease (IgG4-RD). The authors investigated a familial cluster of IgG4-RD that consisted of an affected father and two daughters; the mother was unaffected. Genome sequencing of this quad identified a variant in IKZF1 (encoding IKAROS) and another variant in UBR4 (encoding E3 ubiquitin ligase). Both variants were present in the father and both daughters but absent in the unaffected mother. Using multidimensional profiling of immune cells and functional experiments in primary cells, the authors determined a molecular pathway contributing to T cell activation in IgG4-RD. Importantly, the characterization of these variants provides insights into pathogenic mechanisms in IgG4-RD and, potentially, other autoimmune diseases.
Collapse
|
6
|
James AE, Abdalgani M, Khoury P, Freeman AF, Milner JD. T H2-driven manifestations of inborn errors of immunity. J Allergy Clin Immunol 2024; 154:245-254. [PMID: 38761995 DOI: 10.1016/j.jaci.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Monogenic lesions in pathways critical for effector functions responsible for immune surveillance, protection against autoinflammation, and appropriate responses to allergens and microorganisms underlie the pathophysiology of inborn errors of immunity (IEI). Variants in cytokine production, cytokine signaling, epithelial barrier function, antigen presentation, receptor signaling, and cellular processes and metabolism can drive autoimmunity, immunodeficiency, and/or allergic inflammation. Identification of these variants has improved our understanding of the role that many of these proteins play in skewing toward TH2-related allergic inflammation. Early-onset or atypical atopic disease, often in conjunction with immunodeficiency and/or autoimmunity, should raise suspicion for an IEI. This becomes a diagnostic dilemma if the initial clinical presentation is solely allergic inflammation, especially when the prevalence of allergic diseases is becoming more common. Genetic sequencing is necessary for IEI diagnosis and is helpful for early recognition and implementation of targeted treatment, if available. Although genetic evaluation is not feasible for all patients with atopy, identifying atopic patients with molecular immune abnormalities may be helpful for diagnostic, therapeutic, and prognostic purposes. In this review, we focus on IEI associated with TH2-driven allergic manifestations and classify them on the basis of the affected molecular pathways and predominant clinical manifestations.
Collapse
Affiliation(s)
- Alyssa E James
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manar Abdalgani
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Paneez Khoury
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Joshua D Milner
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
7
|
Hoshino A, Picard BH, Polychronopoulou S, Kelaidi C, Azarnoush S, Kracker S, Rieux-Laucat F, Boutboul D, Latour S. Loss-of-phosphorylation of IKZF1 results in gain-of-function associated with immune dysregulation. J Allergy Clin Immunol 2024; 154:229-236.e2. [PMID: 38438084 DOI: 10.1016/j.jaci.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Immune dysregulation often presents as autoimmunity, inflammation, and/or lymphoproliferation. Several germline genetic defects have been associated with immune dysregulation; they include heterozygous gain-of-function (GOF) mutations in IKZF1, an essential transcription factor for hematopoiesis containing zinc finger domains (ZFs). However, in a large percentage of patients, the genetic origin of their immunedysregulation remains undetermined. OBJECTIVE A family with 2 members presenting immune dysregulation signs was studied to identify the genetic cause of their disease. METHODS Whole exome sequencing, analysis of immunologic parameters, and functional assays (including Western blotting, electrophoretic mobility shift assay during the cell cycle, and TH cell differentiation) were performed. RESULTS The 2 patients carried a novel heterozygous mutation in IKZF1 (IKZF1T398M). IKZF1 heterozygous mutations have previously been shown to be responsible for several distinct human immunologic diseases by directly affecting the ability of ZFs to bind to DNA or to dimerize. Herein, we showed that the IKZF1T398M, which is outside the ZFs, caused impaired phosphorylation of IKZF1, resulting in enhanced DNA-binding ability at the S phase of the cell cycle, reduction of the G1-S phase transition, and decreased proliferation. Confirming these data, similar functional alterations were observed with IKZF1T398A, but not with IKZF1T398D, mimicking dephosphorylation and phosphorylation, respectively. In T lymphocytes, expression of IKZF1T398M led to TH cell differentiation skewed toward TH2 cells. Thus, our data indicate that IKZF1T398M behaves as a GOF variant underlying immune dysregulation. CONCLUSION Disturbed IKZF1 phosphorylation represents a novel GOF mechanism (GOF by loss of phosphorylation (termed as GOF-LOP) associated with immune dysregulation, highlighting the regulatory role of IKZF1 during cell cycle progression through phosphorylation.
Collapse
Affiliation(s)
- Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Benoît Heid Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France; Université de Paris-Cité, Paris, France
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Goudi-Athens, Athens, Greece
| | - Charikleia Kelaidi
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Goudi-Athens, Athens, Greece
| | - Saba Azarnoush
- Department of Pediatric Immuno-Hematology, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sven Kracker
- Université de Paris-Cité, Paris, France; Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Frédéric Rieux-Laucat
- Université de Paris-Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmunity, INSERM UMR 1163, Imagine Institute, Paris, France
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France; Université de Paris-Cité, Paris, France.
| |
Collapse
|
8
|
Liu Q, Zheng Y, Sturmlechner I, Jain A, Own M, Yang Q, Zhang H, Pinto e Vairo F, Cerosaletti K, Buckner JH, Warrington KJ, Koster MJ, Weyand CM, Goronzy JJ. IKZF1 and UBR4 gene variants drive autoimmunity and Th2 polarization in IgG4-related disease. J Clin Invest 2024; 134:e178692. [PMID: 38885295 PMCID: PMC11324302 DOI: 10.1172/jci178692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
IgG4-related disease (IgG4-RD) is a systemic immune-mediated fibroinflammatory disease whose pathomechanisms remain poorly understood. Here, we identified gene variants in familial IgG4-RD and determined their functional consequences. All 3 affected members of the family shared variants of the transcription factor IKAROS, encoded by IKZF1, and the E3 ubiquitin ligase UBR4. The IKAROS variant increased binding to the FYN promoter, resulting in higher transcription of FYN in T cells. The UBR4 variant prevented the lysosomal degradation of the phosphatase CD45. In the presence of elevated FYN, CD45 functioned as a positive regulatory loop, lowering the threshold for T cell activation. Consequently, T cells from the affected family members were hyperresponsive to stimulation. When transduced with a low-avidity, autoreactive T cell receptor, their T cells responded to the autoantigenic peptide. In parallel, high expression of FYN in T cells biased their differentiation toward Th2 polarization by stabilizing the transcription factor JunB. This bias was consistent with the frequent atopic manifestations in patients with IgG4-RD, including the affected family members in the present study. Building on the functional consequences of these 2 variants, we propose a disease model that is not only instructive for IgG4-RD but also for atopic diseases and autoimmune diseases associated with an IKZF1 risk haplotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Filippo Pinto e Vairo
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
9
|
Chen J, Chen R, Huang J. A pan-cancer single-cell transcriptional analysis of antigen-presenting cancer-associated fibroblasts in the tumor microenvironment. Front Immunol 2024; 15:1372432. [PMID: 38903527 PMCID: PMC11187094 DOI: 10.3389/fimmu.2024.1372432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are the primary stromal cells found in tumor microenvironment, and display high plasticity and heterogeneity. By using single-cell RNA-seq technology, researchers have identified various subpopulations of CAFs, particularly highlighting a recently identified subpopulation termed antigen-presenting CAFs (apCAFs), which are largely unknown. Methods We collected datasets from public databases for 9 different solid tumor types to analyze the role of apCAFs in the tumor microenvironment. Results Our data revealed that apCAFs, likely originating mainly from normal fibroblast, are commonly found in different solid tumor types and generally are associated with anti-tumor effects. apCAFs may be associated with the activation of CD4+ effector T cells and potentially promote the survival of CD4+ effector T cells through the expression of C1Q molecules. Moreover, apCAFs exhibited highly enrichment of transcription factors RUNX3 and IKZF1, along with increased glycolytic metabolism. Conclusions Taken together, these findings offer novel insights into a deeper understanding of apCAFs and the potential therapeutic implications for apCAFs targeted immunotherapy in cancer.
Collapse
Affiliation(s)
- Juntao Chen
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Renhui Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Hu C, Lei Y, Liu X, Yu X, Geng Z, Liu Y, Yang L, Tie X, Zhou W, Li X, Zhang Y, Liang Y. Dissecting microenvironment in cystadenomas and hepatic cysts based on single nucleus RNA-sequencing data. Comput Biol Med 2024; 176:108541. [PMID: 38744012 DOI: 10.1016/j.compbiomed.2024.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Hepatic cystadenoma is a rare disease, accounting for about 5% of all cystic lesions, with a high tendency of malignant transformation. The preoperative diagnosis of cystadenoma is difficult, and some cystadenomas are easily misdiagnosed as hepatic cysts at first. Hepatic cyst is a relatively common liver disease, most of which are benign, but large hepatic cysts can lead to pressure on the bile duct, resulting in abnormal liver function. To better understand the difference between the microenvironment of cystadenomas and hepatic cysts, we performed single-nuclei RNA-sequencing on cystadenoma and hepatic cysts samples. In addition, we performed spatial transcriptome sequencing of hepatic cysts. Based on nucleus RNA-sequencing data, a total of seven major cell types were identified. Here we described the tumor microenvironment of cystadenomas and hepatic cysts, particularly the transcriptome signatures and regulators of immune cells and stromal cells. By inferring copy number variation, it was found that the malignant degree of hepatic stellate cells in cystadenoma was higher. Pseudotime trajectory analysis demonstrated dynamic transformation of hepatocytes in hepatic cysts and cystadenomas. Cystadenomas had higher immune infiltration than hepatic cysts, and T cells had a more complex regulatory mechanism in cystadenomas than hepatic cysts. Immunohistochemistry confirms a cystadenoma-specific T-cell immunoregulatory mechanism. These results provided a single-cell atlas of cystadenomas and hepatic cyst, revealed a more complex microenvironment in cystadenomas than in hepatic cysts, and provided new perspective for the molecular mechanisms of cystadenomas and hepatic cyst.
Collapse
Affiliation(s)
- Congxue Hu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yongqi Lei
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyang Liu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xingxin Yu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Zhida Geng
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yu Liu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Liyu Yang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuehong Tie
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wenzhe Zhou
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yunpeng Zhang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yingjian Liang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
11
|
Strauss T, Körholz J, Kuehn HS, Gil Silva AA, Taube F, Trautmann-Grill K, Stittrich A, Pietzsch L, Wiedemuth R, Wahn V, von Bernuth H, Rosenzweig SD, Fasshauer M, Krüger R, Schuetz C. IKAROS-how many feathers have you lost: mild and severe phenotypes in IKZF1 deficiency. Front Pediatr 2024; 12:1345730. [PMID: 38813543 PMCID: PMC11135284 DOI: 10.3389/fped.2024.1345730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Heterozygous germline variants in human IKZF1 encoding for IKAROS define an inborn error of immunity with immunodeficiency, immune dysregulation and risk of malignancy with a broad phenotypic spectrum. Growing evidence of underlying pathophysiological genotype-phenotype correlations helps to improve our understanding of IKAROS-associated diseases. We describe 6 patients from 4 kindreds with two novel IKZF1 variants leading to haploinsufficiency from 3 centers in Germany. We also provide an overview of first symptoms to a final diagnosis including data from the literature.
Collapse
Affiliation(s)
- Timmy Strauss
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Julia Körholz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Agustin A. Gil Silva
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Franziska Taube
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
- Department of Hematology and Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karolin Trautmann-Grill
- Department of Hematology and Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin Charité-Vivantes GmbH, Berlin, Germany
| | - Leonora Pietzsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Ralf Wiedemuth
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Maria Fasshauer
- ImmunoDeficiencyCenter Leipzig (IDCL), Hospital St. Georg GGmbH Leipzig, Academic Teaching Hospital of the University of Leipzig, Leipzig, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Xu J, Li J, Wang X, An Y, Liu W, Luo R, Sun C. IRF4 Knockdown Inhibits the Chronic Rhinosinusitis Without Nasal Polyps Development by Regulating NLRP3/Caspase-1/GSDMD-Mediated Pyroptosis. Biochem Genet 2024:10.1007/s10528-024-10792-8. [PMID: 38635014 DOI: 10.1007/s10528-024-10792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Chronic rhinosinusitis without nasal polyps (CRSsNP) is a CRS phenotype. However, the mechanisms of CRSsNP remains unclear. Differentially expressed genes (DEGs) were obtained from the GSE36830 and GSE198950 datasets through the GEO2R tool. The six hub genes were screened by the protein-protein interaction (PPI) network analysis and Cytoscape software. Then we constructed the mouse models of CRS and verified the expression levels of hub genes by reverse transcription quantitative PCR (RT-qPCR). Hematoxylin-eosin (HE) staining was employed to observe pathological alterations in mouse tissues. Casepase-3 expression was detected by immunohistochemistry (IHC). The levels of TNF-α, IL-12, IL-6, IL-1β, LDH, and IL-18 were evaluated using enzyme-linked immunosorbent assay (ELISA). Pyroptosis-related protein expressions were measured by western blotting. Cell counting kit-8 (CCK-8) and flow cytometry were performed to assess the proliferation and apoptosis of lipopolysaccharide (LPS)-induced NP69 cells. Six hub DEGs were identified. The expression levels of IRF4, IKZF1, and CD79A were obviously increased in CRSsNP, while those of ADH6, ADH1A, and LDHC were significantly decreased. IRF4 knockdown attenuated the pathologic features of CRSsNP. IRF4 knockdown reduced levels of the TNF-α, IL-12, IL-6 IL-1β, LDH, and IL-18 as well as the proteins expression of Casepase-1, GSDMD, and NLRP3 both in vivo and in vitro, implying that inflammation and pyroptosis were inhibited. IRF4 knockdown hinders the development of CRSsNP by inhibiting the inflammatory response and NLRP3/Caspase-1/GSDMD-mediated pyroptosis, which offers novel promising treatment strategies for clinical intervention.
Collapse
Affiliation(s)
- Jun Xu
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China.
| | - Jiahui Li
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Xiaoya Wang
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Yunsong An
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Wenlong Liu
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Renzhong Luo
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Changzhi Sun
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
13
|
Li J, Liu S, Dong Q, Fu Y, Sun Y, Luo R, Tian X, Guo L, Liu W, Qiu Y, Lu Q, Ye C, Zong B, Fu S. PD-1/PD-L1 axis induced host immunosuppression via PI3K/Akt/mTOR signalling pathway in piglets infected by Glaesserella Parasuis. BMC Vet Res 2024; 20:141. [PMID: 38582846 PMCID: PMC10998357 DOI: 10.1186/s12917-024-03993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
Glaesserella parasuis, an important respiratory bacterial pathogen, causes Glässer's disease in piglets, with potential immunosuppression. We established a piglet infection model and explored the immunosuppression mechanism to improve our understanding of the host immune response to G. parasuis. Twenty piglets were randomly divided into two groups (n = 10). The infection group was intraperitoneally challenged with 2 × 108 CFU of G. parasuis in 2 mL TSB. The control group was intraperitoneally injected with equivalent TSB. After 72 h, the piglets were sacrificed, and spleen tissue was collected. PD-1/PD-L1 expression was determined. The splenocytes were isolated to detect CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+cell differentiation. Via data-independent acquisition (DIA), we compared the proteomics of healthy and infected spleen tissues. Glaesserella parasuis modified CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+ cell differentiation and PD-1/PD-L1 expression in the spleen. The infection group had 596 proteins with significant differences in expression, of which 301 were significantly upregulated and 295 downregulated. Differentially expressed proteins (DEPs) were mainly related to immune responses. This is the first study on PD-1/PD-L1 expression in the spleen associated with immunosuppression in a piglet model to explore the protein changes related to immune responses via DIA.
Collapse
Affiliation(s)
- Jingyang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Siyu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Qiaoli Dong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Yunjian Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Yamin Sun
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Ronghui Luo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Xinyue Tian
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Wei Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Bingbing Zong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China.
| |
Collapse
|
14
|
Shepherdson JL, Hutchison K, Don DW, McGillivray G, Choi TI, Allan CA, Amor DJ, Banka S, Basel DG, Buch LD, Carere DA, Carroll R, Clayton-Smith J, Crawford A, Dunø M, Faivre L, Gilfillan CP, Gold NB, Gripp KW, Hobson E, Holtz AM, Innes AM, Isidor B, Jackson A, Katsonis P, Amel Riazat Kesh L, Küry S, Lecoquierre F, Lockhart P, Maraval J, Matsumoto N, McCarrier J, McCarthy J, Miyake N, Moey LH, Németh AH, Østergaard E, Patel R, Pope K, Posey JE, Schnur RE, Shaw M, Stolerman E, Taylor JP, Wadman E, Wakeling E, White SM, Wong LC, Lupski JR, Lichtarge O, Corbett MA, Gecz J, Nicolet CM, Farnham PJ, Kim CH, Shinawi M. Variants in ZFX are associated with an X-linked neurodevelopmental disorder with recurrent facial gestalt. Am J Hum Genet 2024; 111:487-508. [PMID: 38325380 PMCID: PMC10940019 DOI: 10.1016/j.ajhg.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.
Collapse
Affiliation(s)
- James L Shepherdson
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie Hutchison
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - George McGillivray
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Carolyn A Allan
- Hudson Institute of Medical Research, Monash University, and Department of Endocrinology, Monash Health, Melbourne, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Donald G Basel
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Renée Carroll
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ali Crawford
- Medical Genomics Research, Illumina Inc, San Diego, CA, USA
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; INSERM UMR1231, Equipe GAD, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Christopher P Gilfillan
- Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia; Department of Endocrinology, Eastern Health, Box Hill Hospital, Melbourne, VIC, Australia
| | - Nina B Gold
- Harvard Medical School, Boston, MA, USA; Division of Medical Genetics and Metabolism, Massachusetts General Hospital, Boston, MA, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE, USA
| | - Emma Hobson
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Department of Clinical Genetics, Chapel Allerton Hospital, Leeds, UK
| | - Alexander M Holtz
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - A Micheil Innes
- Departments of Medical Genetics and Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 44000 Nantes, France
| | - Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Leila Amel Riazat Kesh
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Department of Clinical Genetics, Chapel Allerton Hospital, Leeds, UK
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 44000 Nantes, France
| | - François Lecoquierre
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, 76000 Rouen, France
| | - Paul Lockhart
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Julien Maraval
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; INSERM UMR1231, Equipe GAD, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Julie McCarrier
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Josephine McCarthy
- Department of Endocrinology, Eastern Health, Box Hill Hospital, Melbourne, VIC, Australia
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Lip Hen Moey
- Department of Genetics, Penang General Hospital, George Town, Penang, Malaysia
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rushina Patel
- Medical Genetics, Kaiser Permanente Oakland Medical Center, Oakland, CA, USA
| | - Kate Pope
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Julie P Taylor
- Medical Genomics Research, Illumina Inc, San Diego, CA, USA
| | - Erin Wadman
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE, USA
| | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Susan M White
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Lawrence C Wong
- Medical Genetics, Kaiser Permanente Downey Medical Center, Downey, CA, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Charles M Nicolet
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea.
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Klangkalya N, Stoddard J, Niemela J, Sponaugle J, Greenwell IB, Reigh E, Kuehn HS, Kanakry JA, Rosenzweig SD, Dimitrova D. IKAROS gain of function disease: Allogeneic hematopoietic cell transplantation experience and expanded clinical phenotypes. Clin Immunol 2024; 260:109922. [PMID: 38320737 PMCID: PMC10923168 DOI: 10.1016/j.clim.2024.109922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
IKAROS, encoded by IKZF1, is a tumor suppressor and a key hematopoietic transcription factor responsible for lymphoid and myeloid differentiation. IKZF1 mutations result in inborn errors of immunity presenting with increased susceptibility to infections, immune dysregulation, and malignancies. In particular, patients carrying IKZF1 gain-of-function (GOF) mutations mostly exhibit symptoms of immune dysregulation and polyclonal plasma cell proliferation. Herein, we describe seven new IKAROS GOF cases from two unrelated families, presenting with novel infectious, immune dysregulation and hematologic diseases. Two of the patients underwent allogeneic hematopoietic cell transplantation (HCT) due to poorly responsive complications. HCT was well-tolerated achieving full engraftment in both patients receiving reduced intensity, matched unrelated donor grafts, with no severe acute or chronic graft-vs-host-disease, and in remission from their diseases 2.5 and 4 years post-HCT, respectively. These results suggest that HCT is a valid and curative option in patients with IKAROS GOF disease and severe clinical manifestations.
Collapse
Affiliation(s)
- Natchanun Klangkalya
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA; Department of Pediatric, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Jennifer Sponaugle
- Center for Immuno-Oncology, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Irl Brian Greenwell
- Division of Hematology and Medical Oncology, Hollings Cancer Center of the Medical University of South Carolina, Charleston, SC, USA
| | - Erin Reigh
- Section of Allergy and Clinical Immunology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Jennifer A Kanakry
- Center for Immuno-Oncology, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA.
| | - Dimana Dimitrova
- Center for Immuno-Oncology, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Al Naji H, Winter JM, Pedersen SK, Roy A, Byrne SE, Young GP, Symonds EL. Evaluating the Role of Methylated Circulating Tumor DNA in Combination With Pathological Prognostic Factors for Predicting Recurrence of Colorectal Cancer. Biomark Insights 2024; 19:11772719241232870. [PMID: 38426070 PMCID: PMC10903227 DOI: 10.1177/11772719241232870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Background Colorectal cancer (CRC) has a high rate of recurrence, in particular for advanced disease, but prognosis based on staging and pathology at surgery can have limited efficacy. The presence of circulating tumor DNA (ctDNA) at diagnosis could be used to improve the prediction for disease recurrence. Objectives To assess the impact of detecting methylated BCAT1/IKZF1 ctDNA at diagnosis in combination with demographic, lifestyle, clinical factors and tumor pathology, to assess predictive value for recurrence. Design A retrospective cohort study. Methods The cohort included 180 patients (36 with recurrent CRC), who had undergone complete treatment and surveillance for a minimum of 3 years. Participant clinical details and ctDNA methylated BCAT1/IKZF1 results were compared between those with and without recurrence, and cox regression analysis assessed each factor on disease-free survival. Results Clinical factors independently associated with reduced disease-free survival included nodal involvement (HR = 3.83, 95% CI 1.56-9.43, P = .003), M1 stage (HR = 4.41, 95% CI 1.18-16.45, P = .027), a resection margin less than 2 mm (HR = 4.60, 95% CI 1.19-17.76, P = .027), perineural involvement (HR = 2.50, 95% CI 1.01-6.17, P = .047) and distal tumors (HR = 3.13, 95% CI 1.07-9.18, P = .037). Methylated BCAT1/IKZF1 was detected in 51.7% (93/180) of pre-treatment plasma samples. When a positive ctDNA finding was considered in combination with these clinical prognostic factors, there was improved predictive power of recurrence for patients with perineural involvement (HR = 4.44, 95% CI 1.92-10.26, P < .001), and it marginally improved the predictive factor for M1 stage (HR = 7.59, 95% CI 2.30-25.07, P = .001) and distal tumors (HR = 5.04, 95% CI 1.88-13.49, P = .001). Conclusions Nodal invasion, metastatic disease, distal tumor site, low resection margins and perineural invasion were associated with disease recurrence. Pre-treatment methylated ctDNA measurement can improve the predictive value for recurrence in a subset of patients, particularly those with perineural involvement. Registration Australian and New Zealand Clinical Trials Registry #12611000318987.
Collapse
Affiliation(s)
- Hiba Al Naji
- Department of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Jean M Winter
- Cancer Research, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | | | - Amitesh Roy
- Cancer Research, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Department of Oncology, Flinders Medical Centre, SALHN, Bedford Park, SA, Australia
| | - Susan E Byrne
- Cancer Research, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Graeme P Young
- Cancer Research, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Erin L Symonds
- Cancer Research, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Bowel Health Service, Gastroenterology Department, Flinders Medical Centre, SALHN, Bedford Park, SA, Australia
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs), also called inborn errors of immunity (IEI), are genetic disorders characterized by increased susceptibility to infection and/or aberrant regulation of immunological pathways. This review summarizes and highlights the new IEI disorders in the International Union of Immunological Societies (IUIS) 2022 report and current trends among new PIDs. RECENT FINDINGS Since the 2019 IUIS report and the 2021 IUIS interim update, the IUIS IEI classification now includes 485 validated IEIs. Increasing utilization of genetic testing and advances in the strategic evaluation of genetic variants has continued to drive the identification of, not only novel IEI disorders, but additional genetic etiologies for known IEI disorders and phenotypes. SUMMARY The recognition of new IEIs continues to advance at a rapid pace, which is due in part to increased performance and application of genetic modalities as well as expansion of the underlying science that is applied to convincingly establish causality. These disorders, as a whole, continue to emphasize the specificity of immunity, complexity of immune mechanisms, and the fine balance that defines immune homeostasis.
Collapse
Affiliation(s)
- Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
18
|
Kastner P, Chan S. IKAROS Family Transcription Factors in Lymphocyte Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:33-52. [PMID: 39017838 DOI: 10.1007/978-3-031-62731-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The IKAROS family of transcription factors comprises four zinc-finger proteins (IKAROS, HELIOS, AIOLOS, and EOS), which over the last decades have been established to be critical regulators of the development and function of lymphoid cells. These factors act as homo- or heterodimers and are involved both in gene activation and repression. Their function often involves cross-talk with other regulatory circuits, such as the JAK/STAT, NF-κB, and NOTCH pathways. They control lymphocyte differentiation at multiple stages and are notably critical for lymphoid commitment in multipotent hematopoietic progenitors and for T and B cell differentiation downstream of pre-TCR and pre-BCR signaling. They also control many aspects of effector functions in mature B and T cells. They are dysregulated or mutated in multiple pathologies affecting the lymphoid system, which range from leukemia to immunodeficiencies. In this chapter, we review the molecular and physiological function of these factors in lymphocytes and their implications in human pathologies.
Collapse
Affiliation(s)
- Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch-Graffenstaden, France.
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch-Graffenstaden, France.
- Université de Strasbourg, Illkirch-Graffenstaden, France.
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch-Graffenstaden, France.
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch-Graffenstaden, France.
- Université de Strasbourg, Illkirch-Graffenstaden, France.
| |
Collapse
|
19
|
Guess R, Harocopos G, Bednarski JJ, Hassmann LM, Bigley TM. Pediatric Necrobiotic Xanthogranuloma as a Novel Phenotype of IKAROS Gain of Function. J Clin Immunol 2023; 44:19. [PMID: 38129715 PMCID: PMC10739487 DOI: 10.1007/s10875-023-01622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Rachel Guess
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, MO, USA
| | - George Harocopos
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J Bednarski
- Division or Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Lynn M Hassmann
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Tarin M Bigley
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, MO, USA.
| |
Collapse
|
20
|
Sams L, Wijetilleka S, Ponsford M, Gennery A, Jolles S. Atopic manifestations of inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:478-490. [PMID: 37755421 PMCID: PMC10621644 DOI: 10.1097/aci.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW Allergy and atopic features are now well recognized manifestations of many inborn errors of immunity (IEI), and indeed may be the hallmark in some, such as DOCK8 deficiency. In this review, we describe the current IEI associated with atopy, using a comprehensive literature search and updates from the IUIS highlighting clinical clues for underlying IEI such as very early onset of atopic disease or treatment resistance to enable early and accurate genetic diagnosis. RECENT FINDINGS We focus on recently described genes, their categories of pathogenic mechanisms and the expanding range of potential therapies. SUMMARY We highlight in this review that patients with very early onset or treatment resistant atopic disorders should be investigated for an IEI, as targeted and effective therapies exist. Early and accurate genetic diagnosis is crucial in this cohort to reduce the burden of disease and mortality.
Collapse
Affiliation(s)
- Laura Sams
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Sonali Wijetilleka
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Mark Ponsford
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Andrew Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
21
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
22
|
Wobma H, Janssen E. Expanding IPEX: Inborn Errors of Regulatory T Cells. Rheum Dis Clin North Am 2023; 49:825-840. [PMID: 37821198 DOI: 10.1016/j.rdc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Regulatory T cells (Tregs) are critical for enforcing peripheral tolerance. Monogenic "Tregopathies" affecting Treg development, stability, and/or function commonly present with polyautoimmunity, atopic disease, and infection. While autoimmune manifestations may present in early childhood, as more disorders are characterized, conditions with later onset have been identified. Treg numbers in the blood may be decreased in Tregopathies, but this is not always the case, and genetic testing should be pursued when there is high clinical suspicion. Currently, hematopoietic cell transplantation is the only curative treatment, but gene therapies are in development, and small molecule inhibitors/biologics may also be used.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Erin Janssen
- Department of Pediatrics, Division of Pediatric Rheumatology, Michigan Medicine, C.S. Mott Children's Hospital, 1500 East Medical Center Drive, SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Peng X, Kaviany S. Approach to Diagnosing Inborn Errors of Immunity. Rheum Dis Clin North Am 2023; 49:731-739. [PMID: 37821192 DOI: 10.1016/j.rdc.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Inborn errors of immunity are now understood to encompass manifold features including but not limited to immunodeficiency, autoimmunity, autoinflammation, atopy, bone marrow defects, and/or increased malignancy risk. As such, it is essential to maintain a high index of suspicion, as these disorders are not limited to specific demographics such as children or those with recurrent infections. Clinical presentations and standard immunophenotyping are informative for suggesting potential underlying etiologies, but integration of data from multimodal approaches including genomics is often required to achieve diagnosis.
Collapse
Affiliation(s)
- Xiao Peng
- McKusick-Nathans, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Blalock 1008, Baltimore, MD 21287, USA
| | - Saara Kaviany
- The University of Chicago & Biological Sciences, Department of Pediatrics, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
25
|
Fan W, Wang X, Zeng S, Li N, Wang G, Li R, He S, Li W, Huang J, Li X, Liu J, Hou S. Global lactylome reveals lactylation-dependent mechanisms underlying T H17 differentiation in experimental autoimmune uveitis. SCIENCE ADVANCES 2023; 9:eadh4655. [PMID: 37851814 PMCID: PMC10584346 DOI: 10.1126/sciadv.adh4655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Dysregulation of CD4+ T cell differentiation is linked to autoimmune diseases. Metabolic reprogramming from oxidative phosphorylation to glycolysis and accumulation of lactate are involved in this process. However, the underlying mechanisms remain unclear. Our study showed that lactate-derived lactylation regulated CD4+ T cell differentiation. Lactylation levels in CD4+ T cells increased with the progression of experimental autoimmune uveitis (EAU). Inhibition of lactylation suppressed TH17 differentiation and attenuated EAU inflammation. The global lactylome revealed the landscape of lactylated sites and proteins in the CD4+ T cells of normal and EAU mice. Specifically, hyperlactylation of Ikzf1 at Lys164 promoted TH17 differentiation by directly modulating the expression of TH17-related genes, including Runx1, Tlr4, interleukin-2 (IL-2), and IL-4. Delactylation of Ikzf1 at Lys164 impaired TH17 differentiation. These findings exemplify how glycolysis regulates the site specificity of protein lactylation to promote TH17 differentiation and implicate Ikzf1 lactylation as a potential therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Wei Fan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shuhao Zeng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Na Li
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Guoqing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Ruonan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Siyuan He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jiaxing Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xingran Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| |
Collapse
|
26
|
Liang J, Fang D, Yao F, Chen L, Zou Z, Tang X, Feng L, Zhuang Y, Xie T, Wei P, Li P, Zheng H, Zhang S. Analysis of shared ceRNA networks and related-hub genes in rats with primary and secondary photoreceptor degeneration. Front Neurosci 2023; 17:1259622. [PMID: 37811327 PMCID: PMC10552924 DOI: 10.3389/fnins.2023.1259622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Photoreceptor degenerative diseases are characterized by the progressive death of photoreceptor cells, resulting in irreversible visual impairment. However, the role of competing endogenous RNA (ceRNA) in photoreceptor degeneration is unclear. We aimed to explore the shared ceRNA regulation network and potential molecular mechanisms between primary and secondary photoreceptor degenerations. Methods We established animal models for both types of photoreceptor degenerations and conducted retina RNA sequencing to identify shared differentially expressed long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs). Using ceRNA regulatory principles, we constructed a shared ceRNA network and performed function enrichment and protein-protein interaction (PPI) analyses to identify hub genes and key pathways. Immune cell infiltration and drug-gene interaction analyses were conducted, and hub gene expression was validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results We identified 37 shared differentially expressed lncRNAs, 34 miRNAs, and 247 mRNAs and constructed a ceRNA network consisting of 3 lncRNAs, 5 miRNAs, and 109 mRNAs. Furthermore, we examined 109 common differentially expressed genes (DEGs) through functional annotation, PPI analysis, and regulatory network analysis. We discovered that these diseases shared the complement and coagulation cascades pathway. Eight hub genes were identified and enriched in the immune system process. Immune infiltration analysis revealed increased T cells and decreased B cells in both photoreceptor degenerations. The expression of hub genes was closely associated with the quantities of immune cell types. Additionally, we identified 7 immune therapeutical drugs that target the hub genes. Discussion Our findings provide new insights and directions for understanding the common mechanisms underlying the development of photoreceptor degeneration. The hub genes and related ceRNA networks we identified may offer new perspectives for elucidating the mechanisms and hold promise for the development of innovative treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
27
|
Similuk M, Kuijpers T. Nature and nurture: understanding phenotypic variation in inborn errors of immunity. Front Cell Infect Microbiol 2023; 13:1183142. [PMID: 37780853 PMCID: PMC10538643 DOI: 10.3389/fcimb.2023.1183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
The overall disease burden of pediatric infection is high, with widely varying clinical outcomes including death. Among the most vulnerable children, those with inborn errors of immunity, reduced penetrance and variable expressivity are common but poorly understood. There are several genetic mechanisms that influence phenotypic variation in inborn errors of immunity, as well as a body of knowledge on environmental influences and specific pathogen triggers. Critically, recent advances are illuminating novel nuances for fundamental concepts on disease penetrance, as well as raising new areas of inquiry. The last few decades have seen the identification of almost 500 causes of inborn errors of immunity, as well as major advancements in our ability to characterize somatic events, the microbiome, and genotypes across large populations. The progress has not been linear, and yet, these developments have accumulated into an enhanced ability to diagnose and treat inborn errors of immunity, in some cases with precision therapy. Nonetheless, many questions remain regarding the genetic and environmental contributions to phenotypic variation both within and among families. The purpose of this review is to provide an updated summary of key concepts in genetic and environmental contributions to phenotypic variation within inborn errors of immunity, conceptualized as including dynamic, reciprocal interplay among factors unfolding across the key dimension of time. The associated findings, potential gaps, and implications for research are discussed in turn for each major influencing factor. The substantial challenge ahead will be to organize and integrate information in such a way that accommodates the heterogeneity within inborn errors of immunity to arrive at a more comprehensive and accurate understanding of how the immune system operates in health and disease. And, crucially, to translate this understanding into improved patient care for the millions at risk for serious infection and other immune-related morbidity.
Collapse
Affiliation(s)
- Morgan Similuk
- Centralized Sequencing Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
29
|
Kuehn HS, Boast B, Rosenzweig SD. Inborn errors of human IKAROS: LOF and GOF variants associated with primary immunodeficiency. Clin Exp Immunol 2023; 212:129-136. [PMID: 36433803 PMCID: PMC10128159 DOI: 10.1093/cei/uxac109] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022] Open
Abstract
IKAROS/IKZF1 plays a pivotal role in lymphocyte differentiation and development. Germline mutations in IKZF1, which have been shown to be associated with primary immunodeficiency, can be classified through four different mechanisms of action depending on the protein expression and its functional defects: haploinsufficiency, dimerization defective, dominant negative, and gain of function. These different mechanisms are associated with variable degrees of susceptibility to infectious diseases, autoimmune disorders, allergic diseases, and malignancies. To date, more than 30 heterozygous IKZF1 germline variants have been reported in patients with primary immunodeficiency. Here we review recent discoveries and clinical/immunological characterization of IKAROS-associated diseases that are linked to different mechanisms of action in IKAROS function.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Brigette Boast
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| |
Collapse
|
30
|
The link between rheumatic disorders and inborn errors of immunity. EBioMedicine 2023; 90:104501. [PMID: 36870198 PMCID: PMC9996386 DOI: 10.1016/j.ebiom.2023.104501] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are immunological disorders characterized by variable susceptibility to infections, immune dysregulation and/or malignancies, as a consequence of damaging germline variants in single genes. Though initially identified among patients with unusual, severe or recurrent infections, non-infectious manifestations and especially immune dysregulation in the form of autoimmunity or autoinflammation can be the first or dominant phenotypic aspect of IEIs. An increasing number of IEIs causing autoimmunity or autoinflammation, including rheumatic disease have been reported over the last decade. Despite their rarity, identification of those disorders provided insight into the pathomechanisms of immune dysregulation, which may be relevant for understanding the pathogenesis of systemic rheumatic disorders. In this review, we present novel IEIs primarily causing autoimmunity or autoinflammation along with their pathogenic mechanisms. In addition, we explore the likely pathophysiological and clinical relevance of IEIs in systemic rheumatic disorders.
Collapse
|
31
|
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder with multifaceted neuropathological features, including β-amyloid plaques, neurofibrillary tangles, and neuroinflammation. Over the past decade, emerging evidence has implicated both beneficial and pathological roles for innate immune genes and immune cells, including peripheral immune cells such as T cells, which can infiltrate the brain and either ameliorate or exacerbate AD neuropathogenesis. These findings support a neuroimmune axis of AD, in which the interplay of adaptive and innate immune systems inside and outside the brain critically impacts the etiology and pathogenesis of AD. In this review, we discuss the complexities of AD neuropathology at the levels of genetics and cellular physiology, highlighting immune signaling pathways and genes associated with AD risk and interactions among both innate and adaptive immune cells in the AD brain. We emphasize the role of peripheral immune cells in AD and the mechanisms by which immune cells, such as T cells and monocytes, influence AD neuropathology, including microglial clearance of amyloid-β peptide, the key component of β-amyloid plaque cores, pro-inflammatory and cytotoxic activity of microglia, astrogliosis, and their interactions with the brain vasculature. Finally, we review the challenges and outlook for establishing immune-based therapies for treating and preventing AD.
Collapse
|
32
|
Cowan MJ, Yu J, Facchino J, Fraser-Browne C, Sanford U, Kawahara M, Dara J, Long-Boyle J, Oh J, Chan W, Chag S, Broderick L, Chellapandian D, Decaluwe H, Golski C, Hu D, Kuo CY, Miller HK, Petrovic A, Currier R, Hilton JF, Punwani D, Dvorak CC, Malech HL, McIvor RS, Puck JM. Lentiviral Gene Therapy for Artemis-Deficient SCID. N Engl J Med 2022; 387:2344-2355. [PMID: 36546626 PMCID: PMC9884487 DOI: 10.1056/nejmoa2206575] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The DNA-repair enzyme Artemis is essential for rearrangement of T- and B-cell receptors. Mutations in DCLRE1C, which encodes Artemis, cause Artemis-deficient severe combined immunodeficiency (ART-SCID), which is poorly responsive to allogeneic hematopoietic-cell transplantation. METHODS We carried out a phase 1-2 clinical study of the transfusion of autologous CD34+ cells, transfected with a lentiviral vector containing DCLRE1C, in 10 infants with newly diagnosed ART-SCID. We followed them for a median of 31.2 months. RESULTS Marrow harvest, busulfan conditioning, and lentiviral-transduced CD34+ cell infusion produced the expected grade 3 or 4 adverse events. All the procedures met prespecified criteria for feasibility at 42 days after infusion. Gene-marked T cells were detected at 6 to 16 weeks after infusion in all the patients. Five of 6 patients who were followed for at least 24 months had T-cell immune reconstitution at a median of 12 months. The diversity of T-cell receptor β chains normalized by 6 to 12 months. Four patients who were followed for at least 24 months had sufficient B-cell numbers, IgM concentration, or IgM isohemagglutinin titers to permit discontinuation of IgG infusions. Three of these 4 patients had normal immunization responses, and the fourth has started immunizations. Vector insertion sites showed no evidence of clonal expansion. One patient who presented with cytomegalovirus infection received a second infusion of gene-corrected cells to achieve T-cell immunity sufficient for viral clearance. Autoimmune hemolytic anemia developed in 4 patients 4 to 11 months after infusion; this condition resolved after reconstitution of T-cell immunity. All 10 patients were healthy at the time of this report. CONCLUSIONS Infusion of lentiviral gene-corrected autologous CD34+ cells, preceded by pharmacologically targeted low-exposure busulfan, in infants with newly diagnosed ART-SCID resulted in genetically corrected and functional T and B cells. (Funded by the California Institute for Regenerative Medicine and the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT03538899.).
Collapse
Affiliation(s)
- Morton J Cowan
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Jason Yu
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Janelle Facchino
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Carol Fraser-Browne
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Ukina Sanford
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Misako Kawahara
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Jasmeen Dara
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Janel Long-Boyle
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Jess Oh
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Wendy Chan
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Shivali Chag
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Lori Broderick
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Deepak Chellapandian
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Hélène Decaluwe
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Catherine Golski
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Diana Hu
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Caroline Y Kuo
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Holly K Miller
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Aleksandra Petrovic
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Robert Currier
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Joan F Hilton
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Divya Punwani
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Christopher C Dvorak
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Harry L Malech
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - R Scott McIvor
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| | - Jennifer M Puck
- From the Departments of Pediatrics (M.J.C., J.Y., J.F., C.F.-B., U.S., M.K., J.D., J.L.-B., W.C., S.C., R.C., C.C.D., J.M.P.) and Epidemiology and Biostatistics (J.F.H.), the Smith Cardiovascular Research Institute (M.J.C., J.M.P.), and the School of Pharmacy (J.L.-B.), University of California, San Francisco (UCSF), and UCSF Benioff Children's Hospital (M.J.C., J.F., J.D., J.L.-B., J.O., C.C.D., J.M.P.), San Francisco, the Department of Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego (L.B.), and the Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles (C.Y.K.) - all in California; the Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL (D.C.); the Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal (H.D.); Tuba City Regional Health Care, Tuba City (C.G., D.H.), and Phoenix Children's Hospital, Phoenix (H.K.M.) - both in Arizona; the Department of Pediatrics, University of Washington Seattle Children's Hospital, Seattle (A.P.); Clinical Development, Roche Diagnostics Solutions, Singapore (D.P.); the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (H.L.M.); and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis (R.S.M.)
| |
Collapse
|
33
|
Stage-specific and cell type-specific requirements of ikzf1 during haematopoietic differentiation in zebrafish. Sci Rep 2022; 12:21401. [PMID: 36496511 PMCID: PMC9741631 DOI: 10.1038/s41598-022-25978-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The zinc finger transcription factor Ikaros1 (Ikzf1) is required for lymphoid development in mammals. Four zinc fingers constitute its DNA binding domain and two zinc fingers are present in the C-terminal protein interaction module. We describe the phenotypes of zebrafish homozygous for two distinct mutant ikzf1 alleles. The IT325 variant lacks the C-terminal two zinc fingers, whereas the fr105 variant retains only the first zinc finger of the DNA binding domain. An intact ikzf1 gene is required for larval T cell development, whereas low levels of adult lymphoid development recover in the mutants. By contrast, the mutants exhibit a signature of increased myelopoiesis at larval and adult stages. Both mutations stimulate erythroid differentiation in larvae, indicating that the C-terminal zinc fingers negatively regulate the extent of red blood cell production. An unexpected differential effect of the two mutants on adult erythropoiesis suggests a direct requirement of an intact DNA binding domain for entry of progenitors into the red blood cell lineage. Collectively, our results reinforce the biological differences between larval and adult haematopoiesis, indicate a stage-specific function of ikzf1 in regulating the hierarchical bifurcations of differentiation, and assign distinct functions to the DNA binding domain and the C-terminal zinc fingers.
Collapse
|
34
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
35
|
Ahmed A, Lippner E, Khanolkar A. Clinical Aspects of B Cell Immunodeficiencies: The Past, the Present and the Future. Cells 2022; 11:3353. [PMID: 36359748 PMCID: PMC9654110 DOI: 10.3390/cells11213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022] Open
Abstract
B cells and antibodies are indispensable for host immunity. Our understanding of the mechanistic processes that underpin how B cells operate has left an indelible mark on the field of clinical pathology, and recently has also dramatically reshaped the therapeutic landscape of diseases that were once considered incurable. Evaluating patients with primary immunodeficiency diseases (PID)/inborn errors of immunity (IEI) that primarily affect B cells, offers us an opportunity to further our understanding of how B cells develop, mature, function and, in certain instances, cause further disease. In this review we provide a brief compendium of IEI that principally affect B cells at defined stages of their developmental pathway, and also attempt to offer some educated viewpoints on how the management of these disorders could evolve over the years.
Collapse
Affiliation(s)
- Aisha Ahmed
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth Lippner
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Picard C, Puel A, Puck J, Seppänen MRJ, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2022; 42:1473-1507. [PMID: 35748970 PMCID: PMC9244088 DOI: 10.1007/s10875-022-01289-3] [Citation(s) in RCA: 502] [Impact Index Per Article: 251.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022]
Abstract
We report the updated classification of inborn errors of immunity, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 55 novel monogenic gene defects, and 1 phenocopy due to autoantibodies, that have either been discovered since the previous update (published January 2020) or were characterized earlier but have since been confirmed or expanded in subsequent studies. While variants in additional genes associated with immune diseases have been reported in the literature, this update includes only those that the committee assessed that reached the necessary threshold to represent novel inborn errors of immunity. There are now a total of 485 inborn errors of immunity. These advances in discovering the genetic causes of human immune diseases continue to significantly further our understanding of molecular, cellular, and immunological mechanisms of disease pathogenesis, thereby simultaneously enhancing immunological knowledge and improving patient diagnosis and management. This report is designed to serve as a resource for immunologists and geneticists pursuing the molecular diagnosis of individuals with heritable immunological disorders and for the scientific dissection of cellular and molecular mechanisms underlying monogenic and related human immune diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca, Morocco
| | | | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Université Paris Cité, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital, 75015, Paris, France
- Université Paris Cité, Imagine Institute, 75015, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center and Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raz Somech
- Pediatric Department and Immunology Unit, Sheba Medical Center, Tel Aviv, Israel
| | - Helen C Su
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Isabelle Meyts
- Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|