1
|
In Kim J, Choi J, Kim J, Song J, Park J, Park YL. Bilateral Back Extensor Exosuit for multidimensional assistance and prevention of spinal injuries. Sci Robot 2024; 9:eadk6717. [PMID: 39047076 DOI: 10.1126/scirobotics.adk6717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Lumbar spine injuries resulting from heavy or repetitive lifting remain a prevalent concern in workplaces. Back-support devices have been developed to mitigate these injuries by aiding workers during lifting tasks. However, existing devices often fall short in providing multidimensional force assistance for asymmetric lifting, an essential feature for practical workplace use. In addition, validation of device safety across the entire human spine has been lacking. This paper introduces the Bilateral Back Extensor Exosuit (BBEX), a robotic back-support device designed to address both functionality and safety concerns. The design of the BBEX draws inspiration from the anatomical characteristics of the human spine and back extensor muscles. Using a multi-degree-of-freedom architecture and serially connected linear actuators, the device's components are strategically arranged to closely mimic the biomechanics of the human spine and back extensor muscles. To establish the efficacy and safety of the BBEX, a series of experiments with human participants was conducted. Eleven healthy male participants engaged in symmetric and asymmetric lifting tasks while wearing the BBEX. The results confirm the ability of the BBEX to provide effective multidimensional force assistance. Moreover, comprehensive safety validation was achieved through analyses of muscle fatigue in the upper and the lower erector spinae muscles, as well as mechanical loading on spinal joints during both lifting scenarios. By seamlessly integrating functionality inspired by human biomechanics with a focus on safety, this study offers a promising solution to address the persistent challenge of preventing lumbar spine injuries in demanding work environments.
Collapse
Affiliation(s)
- Jae In Kim
- Samsung Electronics, Suwon, Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Jaeyoun Choi
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyung Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| | - Junkyung Song
- Department of Physical Education, Seoul National University, Seoul 08826, Korea
- Institute of Sport Science, Seoul National University, Seoul 08826, Korea
| | - Jaebum Park
- Department of Physical Education, Seoul National University, Seoul 08826, Korea
- Institute of Sport Science, Seoul National University, Seoul 08826, Korea
| | - Yong-Lae Park
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Quirk DA, Chung J, Applegate M, Cherin JM, Dalton DM, Awad LN, Walsh CJ. Evaluating adaptiveness of an active back exosuit for dynamic lifting and maximum range of motion. ERGONOMICS 2024; 67:660-673. [PMID: 37482538 PMCID: PMC10803634 DOI: 10.1080/00140139.2023.2240044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Back exosuits deliver mechanical assistance to reduce the risk of back injury, however, minimising restriction is critical for adoption. We developed the adaptive impedance controller to minimise restriction while maintaining assistance by modulating impedance based on the user's movement direction and nonlinear sine curves. The objective of this study was to compare active assistance, delivered by a back exosuit via our adaptive impedance controller, to three levels of assistance from passive elastics. Fifteen participants completed five experimental blocks (4 exosuits and 1 no-suit) consisting of a maximum flexion and a constrained lifting task. While a higher stiffness elastic reduced back extensor muscle activity by 13%, it restricted maximum range of motion (RoM) by 13°. The adaptive impedance approach did not restrict RoM while reducing back extensor muscle activity by 15%, when lifting. This study highlights an adaptive impedance approach might improve usability by circumventing the assistance-restriction trade-off inherent to passive approaches.Practitioner summary: This study demonstrates a soft active exosuit that delivers assistance with an adaptive impedance approach can provide reductions in overall back muscle activity without the impacts of restricted range of motion or perception of restriction and discomfort.
Collapse
Affiliation(s)
- D. Adam Quirk
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Jinwon Chung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Megan Applegate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Jason M Cherin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
| | - Diane M. Dalton
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA
| | - Lou N. Awad
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA
| | - Conor J. Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| |
Collapse
|
3
|
Quirk DA, Chung J, Schiller G, Cherin JM, Arens P, Sherman DA, Zeligson ER, Dalton DM, Awad LN, Walsh CJ. Reducing Back Exertion and Improving Confidence of Individuals with Low Back Pain with a Back Exosuit: A Feasibility Study for Use in BACPAC. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:S175-S186. [PMID: 36794907 PMCID: PMC10403307 DOI: 10.1093/pm/pnad003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE Low back pain (LBP) is hallmarked by activity limitations, especially for tasks involving bending. Back exosuit technology reduces low back discomfort and improves self-efficacy of individuals with LBP during bending and lifting tasks. However, the biomechanical efficacy of these devices in individuals with LBP is unknown. This study sought to determine biomechanical and perceptual effects of a soft active back exosuit designed to assist individuals with LBP sagittal plane bending. To understand patient-reported usability and use cases for this device. METHODS Fifteen individuals with LBP performed two experimental lifting blocks once with and without an exosuit. Trunk biomechanics were measured by muscle activation amplitudes, and whole-body kinematics and kinetics. To evaluate device perception, participants rated task effort, low back discomfort, and their level of concern completing daily activities. RESULTS The back exosuit reduced peak back extensor: moments by 9%, and muscle amplitudes by 16% when lifting. There were no changes in abdominal co-activation and small reductions maximum trunk flexion compared to lifting without an exosuit. Participants reported lower task effort, back discomfort, and concern about bending and lifting with an exosuit compared to without. CONCLUSIONS This study demonstrates a back exosuit not only imparts perceptual benefits of reduced task effort, discomfort, and increased confidence in individuals with LBP but that it achieves these benefits through measurable biomechanical reductions in back extensor effort. The combined effect of these benefits implies back exosuits might be a potential therapeutic aid to augment physical therapy, exercises, or daily activities.
Collapse
Affiliation(s)
- D Adam Quirk
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Jinwon Chung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Gregory Schiller
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Jason M Cherin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Philipp Arens
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - David A Sherman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Emma R Zeligson
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Diane M Dalton
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Lou N Awad
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
4
|
Roe DG, Ho DH, Choi YY, Choi YJ, Kim S, Jo SB, Kang MS, Ahn JH, Cho JH. Humanlike spontaneous motion coordination of robotic fingers through spatial multi-input spike signal multiplexing. Nat Commun 2023; 14:5. [PMID: 36596783 PMCID: PMC9810717 DOI: 10.1038/s41467-022-34324-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/19/2022] [Indexed: 01/05/2023] Open
Abstract
With advances in robotic technology, the complexity of control of robot has been increasing owing to fundamental signal bottlenecks and limited expressible logic state of the von Neumann architecture. Here, we demonstrate coordinated movement by a fully parallel-processable synaptic array with reduced control complexity. The synaptic array was fabricated by connecting eight ion-gel-based synaptic transistors to an ion gel dielectric. Parallel signal processing and multi-actuation control could be achieved by modulating the ionic movement. Through the integration of the synaptic array and a robotic hand, coordinated movement of the fingers was achieved with reduced control complexity by exploiting the advantages of parallel multiplexing and analog logic. The proposed synaptic control system provides considerable scope for the advancement of robotic control systems.
Collapse
Affiliation(s)
- Dong Gue Roe
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dong Hae Ho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoon Young Choi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Young Jin Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seongchan Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sae Byeok Jo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
KIM JENAM, SHIN MIYEON, CHONG WOOSUK, YU CHANGHO, KIM KYONG. DEVELOPMENT OF RAIL-BASED DYNAMIC REHABILITATION TRAINING SYSTEM CONSIDERING USER’S MOVEMENT. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Appropriate motion assistance based on understanding the patient’s exact intention plays an important role in improving the patient’s rehabilitation ability. This paper is a study on the development of user intention technology for a rehabilitation training system that performs dynamic rehabilitation training related to lower extremities such as posture balance and walking. The rehabilitation training system consists of a rail platform installed on the ceiling and a trolley with autonomous driving, weight support, and detection of user intention. When performing dynamic rehabilitation training such as posture balance and walking, the motion intention detection function of the patient knows the direction in which the patient is going to move in advance, and the trolley can be moved to prevent a risk such as a fall of the patient. To this end, the rehabilitation training system can measure the motion in all directions of 360∘, and visually inform the therapist or guardian by blinking the LED under the trolley whenever motion intent in each direction is detected. The user intention function of this system was tested for weight-bearing stability when performing the user’s walking motion and sitting–standing motion. As a result of the experiment, it was confirmed that the RMS error was within 4% and 2%, and the peak-to-peak error was within 8% and 5%. In the future, it is expected that these results will contribute to increase the rehabilitation effect of the walking disabled. However, the results of this study were limited in their application to actual patients because they were values measured under limited experimental conditions targeting healthy subjects, so in future studies, usability tests for various users such as healthy adults, elderly people, and stroke patients will be conducted.
Collapse
Affiliation(s)
- JE NAM KIM
- New Technology Convergence Team, R&BD Division CAMTIC Advanced Mechatronics Technology Institute for Commercialization, Jeonju-si, Jeollabuk-do 54852, Republic of Korea
| | - MI YEON SHIN
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - WOO SUK CHONG
- New Technology Convergence Team, R&BD Division CAMTIC Advanced Mechatronics Technology Institute for Commercialization, Jeonju-si, Jeollabuk-do 54852, Republic of Korea
| | - CHANG HO YU
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - KYONG KIM
- Department of Rehabilitation Medical Engineering, Daegu Hanny University, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| |
Collapse
|