1
|
Khurana J, Shrivastava A, Singh A, Gupta A. Exploring potential of Plasmodium RUVBL proteins as anti-malarial drug target. J Biomol Struct Dyn 2023; 41:736-752. [PMID: 34877896 DOI: 10.1080/07391102.2021.2011418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although malaria related cases and deaths have consistently declined over time, growing resistance to existing anti-malarial drugs in Plasmodium remains a matter of extreme concern. Since we rely so heavily on use of chemotherapy for malaria treatment and knowing that all the available anti-malarial drug will become virtually useless in the near future, we have to increase our understanding of basic biology of the parasite as well as characterize new molecular targets that can be exploited for anti-malarial therapy. In the present study, PfRUVBLs (AAA family member proteins) were evaluated for their potential as novel anti-malarial drug target candidates, using computational approaches. Virtual High-throughput screening of various pharmacophore libraries obtained from three different databases (which included, Asinex, ZINC15 & PubChem) followed by extra precision docking, resulted in identification of relevant hit compounds that showed binding affinity with the active region of PfRUVBL1 protein. Based on molecular docking data, MD simulations, and protein-ligand interaction studies, combined with toxicity assessment & ADME profiling data, at least three best hits were eventually identified that could be novel potent inhibitors of PfRUVBL1 protein and can be further tested for anti-malarial activity using in vitro protocols. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Juhi Khurana
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ashish Shrivastava
- Bioinformatics Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ashutosh Singh
- Bioinformatics Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
2
|
Wang H, Li B, Zuo L, Wang B, Yan Y, Tian K, Zhou R, Wang C, Chen X, Jiang Y, Zheng H, Qin F, Zhang B, Yu Y, Liu CP, Xu Y, Gao J, Qi Z, Deng W, Ji X. The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors. Nat Commun 2022; 13:5703. [PMID: 36171202 PMCID: PMC9519968 DOI: 10.1038/s41467-022-33433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
RNA polymerase II (Pol II) apparatuses are compartmentalized into transcriptional clusters. Whether protein factors control these clusters remains unknown. In this study, we find that the ATPase-associated with diverse cellular activities (AAA + ) ATPase RUVBL2 co-occupies promoters with Pol II and various transcription factors. RUVBL2 interacts with unphosphorylated Pol II in chromatin to promote RPB1 carboxy-terminal domain (CTD) clustering and transcription initiation. Rapid depletion of RUVBL2 leads to a decrease in the number of Pol II clusters and inhibits nascent RNA synthesis, and tethering RUVBL2 to an active promoter enhances Pol II clustering at the promoter. We also identify target genes that are directly linked to the RUVBL2-Pol II axis. Many of these genes are hallmarks of cancers and encode proteins with diverse cellular functions. Our results demonstrate an emerging activity for RUVBL2 in regulating Pol II cluster formation in the nucleus.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, 610500, China
| | - Boyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Linyu Zuo
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Bo Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan Yan
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Rong Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chenlu Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Fangfei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bin Zhang
- Departments of Pathology and Laboratory Medicine, and Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Juntao Gao
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Zhi Qi
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Zhou X, Li X, Wang R, Hua D, Sun C, Yu L, Shi C, Luo W, Jiang Z, An W, Wang Q, Yu S. Recruitment of LEF1 by Pontin chromatin modifier amplifies TGFBR2 transcription and activates TGFβ/SMAD signalling during gliomagenesis. Cell Death Dis 2022; 13:818. [PMID: 36153326 PMCID: PMC9509381 DOI: 10.1038/s41419-022-05265-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/23/2023]
Abstract
Synergies of transcription factors, chromatin modifiers and their target genes are vital for cell fate determination in human cancer. Although the importance of numerous epigenetic machinery for regulating gliomagenesis has been previously recognized, how chromatin modifiers collaborate with specific transcription factors remains largely elusive. Herein we report that Pontin chromatin remodelling factor acts as a coactivator for LEF1 to activate TGFβ/SMAD signalling, thereby contributing to gliomagenesis. Pontin is highly expressed in gliomas, and its overexpression paralleled the grade elevation and poor prognosis of patients. Functional studies verified its oncogenic roles in GBM cells by facilitating cell proliferation, survival and invasion both in vitro and in vivo. RNA sequencing results revealed that Pontin regulated multiple target genes involved in TGFβ/SMAD signalling. Intriguingly, we found that Pontin amplified TGFβR2 gene transcription by recruiting LEF1, thereby activating TGFβ/SMAD signalling and facilitating gliomagenesis. Furthermore, higher TGFβR2 expression conferred worse patient outcomes in glioma. To conclude, our study revealed that the Pontin-LEF1 module plays a crucial role in driving TGFβR2 gene transcription, which could be exploited to target TGFβ/SMAD signalling for anti-glioma therapy.
Collapse
Affiliation(s)
- Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China.
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China.
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Run Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, 300070, Tianjin, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Zhendong Jiang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Wenzhe An
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China.
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China.
| |
Collapse
|
4
|
Tang D, Zhang Z, Zboril E, Wetzel MD, Xu X, Zhang W, Chen L, Liu Z. Pontin Functions as A Transcriptional Co-activator for Retinoic Acid-induced HOX Gene Expression. J Mol Biol 2021; 433:166928. [PMID: 33713676 PMCID: PMC8184613 DOI: 10.1016/j.jmb.2021.166928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Pontin is a AAA+ ATPase protein that has functions in various biological contexts including gene transcription regulation, chromatin remodeling, DNA damage sensing and repair, as well as assembly of protein and ribonucleoprotein complexes. Pontin is known to regulate the transcription of several important signaling pathways, including Wnt signaling. However, its role in early embryonic signaling regulation remains unclear. Retinoic acid (RA) signaling plays a central role in vertebrate development. Using an in vivo biotin tagging technology, we mapped the genome-wide binding pattern of Pontin before and after RA-induced differentiation in the pluripotent embryo carcinoma cell line NTERA-2. Biotin ChIP-seq revealed significant changes in genome-wide Pontin binding sites upon RA stimulation. We also identified a substantial amount of overlapping binding peaks between Pontin and RARα, especially on all of the HOX gene loci (A-D clusters). Pontin knockdown experiments showed that its chromatin binding at the HOX gene clusters is required for RA-induced HOX gene expression. Furthermore, we performed Global Run-On sequencing (GRO-seq) to map de novo transcripts genome-wide and found that Pontin knockdown significantly diminished nascent HOX gene transcripts, indicating that Pontin regulates HOX gene expression at the transcriptional level. Finally, proteomic analysis demonstrated that Pontin associates with chromatin organization/remodeling complexes and various other functional complexes. Altogether, we have demonstrated that Pontin is a critical transcriptional co-activator for RA-induced HOX gene activation.
Collapse
Affiliation(s)
- Dan Tang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Emily Zboril
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael D Wetzel
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Zhang
- Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
5
|
Zhang G, Li S, Cheng KW, Chou TF. AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. Eur J Med Chem 2021; 219:113446. [PMID: 33873056 PMCID: PMC8165034 DOI: 10.1016/j.ejmech.2021.113446] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA ATPase) are essential enzymes found in all organisms. They are involved in various processes such as DNA replication, protein degradation, membrane fusion, microtubule serving, peroxisome biogenesis, signal transduction, and the regulation of gene expression. Due to the importance of AAA ATPases, several researchers identified and developed small-molecule inhibitors against these enzymes. We discuss six AAA ATPases that are potential drug targets and have well-developed inhibitors. We compare available structures that suggest significant differences of the ATP binding pockets among the AAA ATPases with or without ligand. The distances from ADP to the His20 in the His-Ser-His motif and the Arg finger (Arg353 or Arg378) in both RUVBL1/2 complex structures bound with or without ADP have significant differences, suggesting dramatically different interactions of the binding site with ADP. Taken together, the inhibitors of six well-studied AAA ATPases and their structural information suggest further development of specific AAA ATPase inhibitors due to difference in their structures. Future chemical biology coupled with proteomic approaches could be employed to develop variant specific, complex specific, and pathway specific inhibitors or activators for AAA ATPase proteins.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
6
|
Nakamura A, Kakihara Y, Funayama A, Haga K, Mikami T, Kobayashi D, Yoshida Y, Izumi K, Kobayashi T, Saeki M. HEATR1, a novel interactor of Pontin/Reptin, stabilizes Pontin/Reptin and promotes cell proliferation of oral squamous cell carcinoma. Biochem Biophys Res Commun 2021; 557:294-301. [PMID: 33894417 DOI: 10.1016/j.bbrc.2021.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Pontin and Reptin are closely related proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They form a hetero-oligomeric complex, Pontin/Reptin, which is involved in protein stability and assembly of the protein complexes as a molecular chaperone. Overexpression of Pontin and Reptin in tumor cells has been reported and is implicated in the development of various cancers. However, the molecular mechanism of Pontin/Reptin function in oral squamous cell carcinoma (OSCC) development remains unclear. Here, we identify HEAT repeat-containing protein 1 (HEATR1) as a novel binding factor of Pontin/Reptin. Functionally, HEATR1 stabilizes Pontin/Reptin and positively regulates OSCC cell proliferation by activating mTOR and pre-rRNA synthesis. We also find that HEATR1 expression is markedly upregulated in tumor region of OSCC tissue. Hence, we propose that HEATR1 is involved in the regulation of mTOR and ribosome biogenesis as a potential protein stabilizer of Pontin/Reptin in OSCC.
Collapse
Affiliation(s)
- Akihiko Nakamura
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan; Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Akinori Funayama
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kenta Haga
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Toshihiko Mikami
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Daiki Kobayashi
- Omics Unit, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Tadaharu Kobayashi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
7
|
Abrahão J, Amaro BT, Peres BR, Quel NG, Aragão AZB, Morea EGO, Cano MIN, Houry WA, Ramos CHI. Leishmania major RUVBL1 has a hexameric conformation in solution and, in the presence of RUVBL2, forms a heterodimer with ATPase activity. Arch Biochem Biophys 2021; 703:108841. [PMID: 33775623 DOI: 10.1016/j.abb.2021.108841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
ATPases belonging to the AAA+ superfamily are associated with diverse cellular activities and are mainly characterized by a nucleotide-binding domain (NBD) containing the Walker A and Walker B motifs. AAA+ proteins have a range of functions, from DNA replication to protein degradation. Rvbs, also known as RUVBLs, are AAA+ ATPases with one NBD domain and were described from human to yeast as participants of the R2TP (Rvb1-Rvb2-Tah1-Pih1) complex. Although essential for the assembly of multiprotein complexes-containing DNA and RNA, the protozoa Rvb orthologs are less studied. For the first time, this work describes the Rvbs from Leishmania major, one of the causative agents of Tegumentar leishmaniasis in human. Recombinant LmRUVBL1 and LmRUVBL2 his-tagged proteins were successfully purified and investigated using biophysical tools. LmRUVBL1 was able to form a well-folded elongated hexamer in solution, while LmRUVBL2 formed a large aggregate. However, the co-expression of LmRUVBL1 and LmRUVBL2 assembled the proteins into an elongated heterodimer in solution. Thermo-stability and fluorescence experiments indicated that the LmRUVBL1/2 heterodimer had ATPase activity in vitro. This is an interesting result because hexameric LmRUVBL1 alone had low ATPase activity. Additionally, using independent SL-RNAseq libraries, it was possible to show that both proteins are expressed in all L. major life stages. Specific antibodies obtained against LmRUVBLs identified the proteins in promastigotes and metacyclics cell extracts. Together, the results here presented are the first step towards the characterization of Leishmania Rvbs, and may contribute to the development of possible strategies to intervene against leishmaniasis, a neglected tropical disease of great medical importance.
Collapse
Affiliation(s)
- Josielle Abrahão
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Bárbara T Amaro
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Bárbara R Peres
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Natália G Quel
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Annelize Z B Aragão
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Edna G O Morea
- Department of Chemical and Biological Sciences, Biosciences Institute, Sao Paulo State University, Botucatu, SP, 18618689, Brazil
| | - Maria Isabel N Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, Sao Paulo State University, Botucatu, SP, 18618689, Brazil
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
8
|
Dafinger C, Benzing T, Dötsch J, Schermer B, Liebau MC. Targeted deletion of Ruvbl1 results in severe defects of epidermal development and perinatal mortality. Mol Cell Pediatr 2021; 8:1. [PMID: 33580312 PMCID: PMC7881068 DOI: 10.1186/s40348-021-00111-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Epidermal development is a complex process of regulated cellular proliferation, differentiation, and tightly controlled cell death involving multiple cellular signaling networks. Here, we report a first description linking the AAA+ (ATPases associated with various cellular activities) superfamily protein Ruvbl1 to mammalian epidermal development. Keratinocyte-specific Ruvbl1 knockout mice (Ruvbl1fl/flK14:Cretg) show a severe phenotype including dramatic structural epidermal defects resulting in the loss of the functional skin barrier and perinatal death. Thus, Ruvbl1 is a newly identified essential player for the development of differentiated epidermis in mice.
Collapse
Affiliation(s)
- Claudia Dafinger
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany. .,Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Pontin arginine methylation by CARM1 is crucial for epigenetic regulation of autophagy. Nat Commun 2020; 11:6297. [PMID: 33293536 PMCID: PMC7722926 DOI: 10.1038/s41467-020-20080-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a catabolic process through which cytoplasmic components are degraded and recycled in response to various stresses including starvation. Recently, transcriptional and epigenetic regulations of autophagy have emerged as essential mechanisms for maintaining homeostasis. Here, we identify that coactivator-associated arginine methyltransferase 1 (CARM1) methylates Pontin chromatin-remodeling factor under glucose starvation, and methylated Pontin binds Forkhead Box O 3a (FOXO3a). Genome-wide analyses and biochemical studies reveal that methylated Pontin functions as a platform for recruiting Tip60 histone acetyltransferase with increased H4 acetylation and subsequent activation of autophagy genes regulated by FOXO3a. Surprisingly, CARM1-Pontin-FOXO3a signaling axis can work in the distal regions and activate autophagy genes through enhancer activation. Together, our findings provide a signaling axis of CARM1-Pontin-FOXO3a and further expand the role of CARM1 in nuclear regulation of autophagy. Epigenetic regulations of autophagy have emerged as mechanisms for maintaining cellular homeostasis. Here the authors reveal that the CARM1-Pontin-FOXO3a signaling axis can activate autophagy related genes through enhancer activation.
Collapse
|
10
|
Deregulated levels of RUVBL1 induce transcription-dependent replication stress. Int J Biochem Cell Biol 2020; 128:105839. [PMID: 32846207 DOI: 10.1016/j.biocel.2020.105839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Chromatin regulators control transcription and replication, however if and how they might influence the coordination of these processes still is largely unknown. RUVBL1 and the related ATPase RUVBL2 participate in multiple nuclear processes and are implicated in cancer. Here, we report that both the excess and the deficit of the chromatin regulator RUVBL1 impede DNA replication as a consequence of altered transcription. Surprisingly, cells that either overexpressed or were silenced for RUVBL1 had slower replication fork rates and accumulated phosphorylated H2AX, dependent on active transcription. However, the mechanisms of transcription-dependent replication stress were different when RUVBL1 was overexpressed and when depleted. RUVBL1 overexpression led to increased c-Myc-dependent pause release of RNAPII, as evidenced by higher overall transcription, much stronger Ser2 phosphorylation of Rpb1- C-terminal domain, and enhanced colocalization of Rpb1 and c-Myc. RUVBL1 deficiency resulted in increased ubiquitination of Rpb1 and reduced mobility of an RNAP subunit, suggesting accumulation of stalled RNAPIIs on chromatin. Overall, our data show that by modulating the state of RNAPII complexes, RUVBL1 deregulation induces replication-transcription interference and compromises genome integrity during S-phase.
Collapse
|
11
|
Brunkard JO. Exaptive Evolution of Target of Rapamycin Signaling in Multicellular Eukaryotes. Dev Cell 2020; 54:142-155. [PMID: 32649861 PMCID: PMC7346820 DOI: 10.1016/j.devcel.2020.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022]
Abstract
Target of rapamycin (TOR) is a protein kinase that coordinates metabolism with nutrient and energy availability in eukaryotes. TOR and its primary interactors, RAPTOR and LST8, have been remarkably evolutionarily static since they arose in the unicellular last common ancestor of plants, fungi, and animals, but the upstream regulatory mechanisms and downstream effectors of TOR signaling have evolved considerable diversity in these separate lineages. Here, I focus on the roles of exaptation and adaptation in the evolution of novel signaling axes in the TOR network in multicellular eukaryotes, concentrating especially on amino acid sensing, cell-cell signaling, and cell differentiation.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research Service, Albany, CA 94710, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
12
|
VPS72/YL1-Mediated H2A.Z Deposition Is Required for Nuclear Reassembly after Mitosis. Cells 2020; 9:cells9071702. [PMID: 32708675 PMCID: PMC7408173 DOI: 10.3390/cells9071702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
The eukaryotic nucleus remodels extensively during mitosis. Upon mitotic entry, the nuclear envelope breaks down and chromosomes condense into rod-shaped bodies, which are captured by the spindle apparatus and segregated during anaphase. Through telophase, chromosomes decondense and the nuclear envelope reassembles, leading to a functional interphase nucleus. While the molecular processes occurring in early mitosis are intensively investigated, our knowledge about molecular mechanisms of nuclear reassembly is rather limited. Using cell free and cellular assays, we identify the histone variant H2A.Z and its chaperone VPS72/YL1 as important factors for reassembly of a functional nucleus after mitosis. Live-cell imaging shows that siRNA-mediated downregulation of VPS72 extends the telophase in HeLa cells. In vitro, depletion of VPS72 or H2A.Z results in malformed and nonfunctional nuclei. VPS72 is part of two chromatin-remodeling complexes, SRCAP and EP400. Dissecting the mechanism of nuclear reformation using cell-free assays, we, however, show that VPS72 functions outside of the SRCAP and EP400 remodeling complexes to deposit H2A.Z, which in turn is crucial for formation of a functional nucleus.
Collapse
|
13
|
Shin SH, Lee JS, Zhang JM, Choi S, Boskovic ZV, Zhao R, Song M, Wang R, Tian J, Lee MH, Kim JH, Jeong M, Lee JH, Petukhov M, Lee SW, Kim SG, Zou L, Byun S. Synthetic lethality by targeting the RUVBL1/2-TTT complex in mTORC1-hyperactive cancer cells. SCIENCE ADVANCES 2020; 6:eaay9131. [PMID: 32789167 PMCID: PMC7399646 DOI: 10.1126/sciadv.aay9131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/19/2020] [Indexed: 05/08/2023]
Abstract
Despite considerable efforts, mTOR inhibitors have produced limited success in the clinic. To define the vulnerabilities of mTORC1-addicted cancer cells and to find previously unknown therapeutic targets, we investigated the mechanism of piperlongumine, a small molecule identified in a chemical library screen to specifically target cancer cells with a hyperactive mTORC1 phenotype. Sensitivity to piperlongumine was dependent on its ability to suppress RUVBL1/2-TTT, a complex involved in chromatin remodeling and DNA repair. Cancer cells with high mTORC1 activity are subjected to higher levels of DNA damage stress via c-Myc and displayed an increased dependency on RUVBL1/2 for survival and counteracting genotoxic stress. Examination of clinical cancer tissues also demonstrated that high mTORC1 activity was accompanied by high RUVBL2 expression. Our findings reveal a previously unknown role for RUVBL1/2 in cell survival, where it acts as a functional chaperone to mitigate stress levels induced in the mTORC1-Myc-DNA damage axis.
Collapse
Affiliation(s)
- Seung Ho Shin
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Su Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Sungbin Choi
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Zarko V. Boskovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Ran Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mengqiu Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Rui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jie Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mee-Hyun Lee
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Minju Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael Petukhov
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Sam W. Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sang Gyun Kim
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Li H, Tong X, Xu Y, Wang M, Dai H, Shi T, Sun M, Chen K, Cheng X, Wei Q. Functional genetic variants of RUVBL1 predict overall survival of Chinese patients with epithelial ovarian cancer. Carcinogenesis 2020; 40:1209-1219. [PMID: 31083717 DOI: 10.1093/carcin/bgz092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 11/13/2022] Open
Abstract
To date, the 5-year overall survival of epithelial ovarian cancer (EOC) remains poor. Because studies suggest that RUVBL1 may be a chemotherapeutic target for the treatment of cancer, in this study, therefore, we investigated the role of potentially functional single nucleotide polymorphisms (SNPs) of RUVBL1 in the survival of Chinese patients with EOC, and we subsequently performed functional prediction and validation of the identified significant SNPs. We found that RUVBL1 rs1057156 A>G and RUVBL1 rs149652370 A>G were associated with survival of EOC patients in the multivariate Cox proportional hazards regression analysis. Specifically, the RUVBL1 rs149652370 AG genotype was associated with a shorter progression-free survival ([adjusted hazards ratio (HR)] = 3.32, 95% confidence interval (CI) = 1.76-6.25 and P = 2.01E-04), compared with the AA genotype. The RUVBL1 rs1057156 AG (only nine had GG) genotype was also associated with a poor overall survival (adjusted HR = 1.73, 95% CI = 1.19-2.52, P = 0.004), compared with the AA genotype. Further experiments showed that the RUVBL1 rs1057156 A>G change lowered its binding affinity to microRNA-4294 and led to upregulation of the RUVBL1 expression. We further found that overexpression of RUVBL1 promoted cell proliferation and metastatic potential. Overall, RUVBL1 enhanced EOC cell proliferation, invasion and migration presumably by stimulating the process of glycolysis. Thus, this study provides evidence that functional variants of RUVBL1 may regulate its gene expression, a possible mechanism affecting survival of EOC patients and that RUVBL1 may be a potential chemotherapeutic target for the treatment of EOC patients.
Collapse
Affiliation(s)
- Haoran Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxia Tong
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Xu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tingyan Shi
- Ovarian Cancer Program, Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Fudan University Zhongshan Hospital, Shanghai, China
| | - Menghong Sun
- Department of Pathology, Tissue Bank, Shanghai, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xi Cheng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
15
|
Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P. TOR dynamically regulates plant cell-cell transport. Proc Natl Acad Sci U S A 2020; 117:5049-5058. [PMID: 32051250 PMCID: PMC7060719 DOI: 10.1073/pnas.1919196117] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The coordinated redistribution of sugars from mature "source" leaves to developing "sink" leaves requires tight regulation of sugar transport between cells via plasmodesmata (PD). Although fundamental to plant physiology, the mechanisms that control PD transport and thereby support development of new leaves have remained elusive. From a forward genetic screen for altered PD transport, we discovered that the conserved eukaryotic glucose-TOR (TARGET OF RAPAMYCIN) metabolic signaling network restricts PD transport in leaves. Genetic approaches and chemical or physiological treatments to either promote or disrupt TOR activity demonstrate that glucose-activated TOR decreases PD transport in leaves. We further found that TOR is significantly more active in mature leaves photosynthesizing excess sugars than in young, growing leaves, and that this increase in TOR activity correlates with decreased rates of PD transport. We conclude that leaf cells regulate PD trafficking in response to changing carbohydrate availability monitored by the TOR pathway.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Department of Biology, Northwest University, 710069 Xi'an, China
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Snigdha Chatterjee
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Elena A Shemyakina
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Howard M Goodman
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
| | - Patricia Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
| |
Collapse
|
16
|
Yan T, Liu F, Gao J, Lu H, Cai J, Zhao X, Sun Y. Multilevel regulation of RUVBL2 expression predicts poor prognosis in hepatocellular carcinoma. Cancer Cell Int 2019; 19:249. [PMID: 31572066 PMCID: PMC6764127 DOI: 10.1186/s12935-019-0974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second-most lethal cancer worldwide with a complex pathogenesis. RuvB-like 2 (RUVBL2) was previously found to contribute to hepatocarcinogenesis. However, its expression, regulation and clinical significance have not been systematically evaluated in a large number of clinical samples. Methods Here, we performed a comprehensive analysis of RUVBL2 based on multiple datasets from 371 liver cancer patients of The Cancer Genome Atlas (TCGA) and on immunohistochemical staining in 153 subjects. In addition, the aberrant signaling pathways caused by RUVBL2 overexpression were investigated. Results We demonstrated that promoter hypomethylation, copy number gain, MYC amplification and CTNNB1 mutation were all responsible for RUVBL2 overexpression in HCC. High levels of RUVBL2 mRNA were associated with shorter recurrence-free survival time (RFS) but not overall survival time (OS). Furthermore, RUVBL2 protein was overexpressed in the nucleus and cytoplasm of HCC samples. Univariate and multivariate survival analyses showed that strong nuclear and cytoplasmic staining of RUVBL2 independently predicted worse OS and RFS with a 2.03-fold and a 1.71-fold increase in the hazard ratio, respectively. High levels of RUVBL2 promoted carcinogenesis through the heat shock protein 90 (HSP90)-Cell Division Cycle 37 (CDC37), AKT serine/threonine kinase (AKT) and mitogen-activated protein kinase (ERK/MAPK) pathways. Conclusion The deregulation of RUVBL2 in HCC is influenced at the genomic, epigenetic and transcriptional levels. Our findings highlight the potential roles of RUVBL2 as a promising prognostic marker as well as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Tao Yan
- 1Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100021 China
| | - Fang Liu
- 2State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Jiajia Gao
- 2State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Haizhen Lu
- 3Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100021 China
| | - Jianqiang Cai
- 4Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100021 China
| | - Xiaohang Zhao
- 2State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Yulin Sun
- 2State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| |
Collapse
|
17
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Coufalova D, Remnant L, Hernychova L, Muller P, Healy A, Kannan S, Westwood N, Verma CS, Vojtesek B, Hupp TR, Houston DR. An inter-subunit protein-peptide interface that stabilizes the specific activity and oligomerization of the AAA+ chaperone Reptin. J Proteomics 2019; 199:89-101. [PMID: 30862565 DOI: 10.1016/j.jprot.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 02/23/2019] [Indexed: 12/26/2022]
Abstract
Reptin is a member of the AAA+ superfamily whose members can exist in equilibrium between monomeric apo forms and ligand bound hexamers. Inter-subunit protein-protein interfaces that stabilize Reptin in its oligomeric state are not well-defined. A self-peptide binding assay identified a protein-peptide interface mapping to an inter-subunit "rim" of the hexamer bridged by Tyrosine-340. A Y340A mutation reduced ADP-dependent oligomer formation using a gel filtration assay, suggesting that Y340 forms a dominant oligomer stabilizing side chain. The monomeric ReptinY340A mutant protein exhibited increased activity to its partner protein AGR2 in an ELISA assay, further suggesting that hexamer formation can preclude certain protein interactions. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) demonstrated that the Y340A mutation attenuated deuterium suppression of Reptin in this motif in the presence of ligand. By contrast, the tyrosine motif of Reptin interacts with a shallower pocket in the hetero-oligomeric structure containing Pontin and HDX-MS revealed no obvious role of the Y340 side chain in stabilizing the Reptin-Pontin oligomer. Molecular dynamic simulations (MDS) rationalized how the Y340A mutation impacts upon a normally stabilizing inter-subunit amino acid contact. MDS also revealed how the D299N mutation can, by contrast, remove oligomer de-stabilizing contacts. These data suggest that the Reptin interactome can be regulated by a ligand dependent equilibrium between monomeric and hexameric forms through a hydrophobic inter-subunit protein-protein interaction motif bridged by Tyrosine-340. SIGNIFICANCE: Discovering dynamic protein-protein interactions is a fundamental aim of research in the life sciences. An emerging view of protein-protein interactions in higher eukaryotes is that they are driven by small linear polypeptide sequences; the linear motif. We report on the use of linear-peptide motif screens to discover a relatively high affinity peptide-protein interaction for the AAA+ and pro-oncogenic protein Reptin. This peptide interaction site was shown to form a 'hot-spot' protein-protein interaction site, and validated to be important for ligand-induced oligomerization of the Reptin protein. These biochemical data provide a foundation to understand how single point mutations in Reptin can impact on its oligomerization and protein-protein interaction landscape.
Collapse
Affiliation(s)
- Dominika Coufalova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lucy Remnant
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Lenka Hernychova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Alan Healy
- St Andrews University, St Andrews, Scotland, United Kingdom
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix 07-01 138671, Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix 07-01 138671, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Department of Biological Sciences, National University of Singapore, 14, Science Drive 4, 117543, Singapore
| | - Borek Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Ted R Hupp
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland EH4 2XR, United Kingdom; University of Gdansk, International Centre for Cancer Vaccine Science, ul. Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Douglas R Houston
- University of Edinburgh, Institute of Quantitative Biology, Biochemistry and Biotechnology, Edinburgh, Scotland EH9 3BF, United Kingdom
| |
Collapse
|
19
|
Schořová Š, Fajkus J, Záveská Drábková L, Honys D, Schrumpfová PP. The plant Pontin and Reptin homologues, RuvBL1 and RuvBL2a, colocalize with TERT and TRB proteins in vivo, and participate in telomerase biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:195-212. [PMID: 30834599 DOI: 10.1111/tpj.14306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 05/15/2023]
Abstract
Telomerase maturation and recruitment to telomeres is regulated by several telomerase- and telomere-associated proteins. Among a number of proteins, human Pontin and Reptin play critical roles in telomerase biogenesis. Here we characterized plant orthologues of Pontin and Reptin, RuvBL1 and RuvBL2a, respectively, and show association of Arabidopsis thaliana RuvBL1 (AtRuvBL1) with the catalytic subunit of telomerase (AtTERT) in the nucleolus in vivo. In contrast to mammals, interactions between AtTERT and AtRuvBL proteins in A. thaliana are not direct and they are rather mediated by one of the Arabidopsis thaliana Telomere Repeat Binding (AtTRB) proteins. We further show that plant orthologue of dyskerin, named AtCBF5, is indirectly associated with AtTRB proteins but not with the AtRuvBL proteins in the plant nucleus/nucleolus, and interacts with the Protection of telomere 1 (AtPOT1a) in the nucleolus or cytoplasmic foci. Our genome-wide phylogenetic analyses identify orthologues in RuvBL protein family within the plant kingdom. Dysfunction of AtRuvBL genes in heterozygous T-DNA insertion A. thaliana mutants results in reduced telomerase activity and indicate the involvement of AtRuvBL in plant telomerase biogenesis.
Collapse
Affiliation(s)
- Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Hartill VL, van de Hoek G, Patel MP, Little R, Watson CM, Berry IR, Shoemark A, Abdelmottaleb D, Parkes E, Bacchelli C, Szymanska K, Knoers NV, Scambler PJ, Ueffing M, Boldt K, Yates R, Winyard PJ, Adler B, Moya E, Hattingh L, Shenoy A, Hogg C, Sheridan E, Roepman R, Norris D, Mitchison HM, Giles RH, Johnson CA. DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport. Hum Mol Genet 2019; 27:529-545. [PMID: 29228333 PMCID: PMC5886296 DOI: 10.1093/hmg/ddx422] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 01/11/2023] Open
Abstract
DNAAF1 (LRRC50) is a cytoplasmic protein required for dynein heavy chain assembly and cilia motility, and DNAAF1 mutations cause primary ciliary dyskinesia (PCD; MIM 613193). We describe four families with DNAAF1 mutations and complex congenital heart disease (CHD). In three families, all affected individuals have typical PCD phenotypes. However, an additional family demonstrates isolated CHD (heterotaxy) in two affected siblings, but no clinical evidence of PCD. We identified a homozygous DNAAF1 missense mutation, p.Leu191Phe, as causative for heterotaxy in this family. Genetic complementation in dnaaf1-null zebrafish embryos demonstrated the rescue of normal heart looping with wild-type human DNAAF1, but not the p.Leu191Phe variant, supporting the conserved pathogenicity of this DNAAF1 missense mutation. This observation points to a phenotypic continuum between CHD and PCD, providing new insights into the pathogenesis of isolated CHD. In further investigations of the function of DNAAF1 in dynein arm assembly, we identified interactions with members of a putative dynein arm assembly complex. These include the ciliary intraflagellar transport protein IFT88 and the AAA+ (ATPases Associated with various cellular Activities) family proteins RUVBL1 (Pontin) and RUVBL2 (Reptin). Co-localization studies support these findings, with the loss of RUVBL1 perturbing the co-localization of DNAAF1 with IFT88. We show that RUVBL1 orthologues have an asymmetric left-sided distribution at both the mouse embryonic node and the Kupffer's vesicle in zebrafish embryos, with the latter asymmetry dependent on DNAAF1. These results suggest that DNAAF1-RUVBL1 biochemical and genetic interactions have a novel functional role in symmetry breaking and cardiac development.
Collapse
Affiliation(s)
- Verity L Hartill
- Leeds Institute of Biomedical and Clinical Sciences, Faculty of Medicine & Health, University of Leeds, Leeds LS9 7TF, UK
| | - Glenn van de Hoek
- Department of Nephrology and Hypertension.,Department of Medical Genetics, University Medical Center, Utrecht, 3508 GA, The Netherlands
| | - Mitali P Patel
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Rosie Little
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Christopher M Watson
- Leeds Genetics Laboratory, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Ian R Berry
- Leeds Genetics Laboratory, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Amelia Shoemark
- PCD Diagnostic Team and Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London SW3 6NP, UK.,School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Dina Abdelmottaleb
- Leeds Institute of Biomedical and Clinical Sciences, Faculty of Medicine & Health, University of Leeds, Leeds LS9 7TF, UK.,Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Emma Parkes
- Manchester Royal Infirmary, Manchester M13 9WL, UK
| | - Chiara Bacchelli
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Katarzyna Szymanska
- Leeds Institute of Biomedical and Clinical Sciences, Faculty of Medicine & Health, University of Leeds, Leeds LS9 7TF, UK
| | - Nine V Knoers
- Department of Medical Genetics, University Medical Center, Utrecht, 3508 GA, The Netherlands
| | - Peter J Scambler
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK.,Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research and Medical Bioanalytics Core, University of Tübingen, 72074 Tübingen, Germany
| | - Karsten Boldt
- Department for Ophthalmology, Institute for Ophthalmic Research and Medical Bioanalytics Core, University of Tübingen, 72074 Tübingen, Germany
| | - Robert Yates
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK.,Paediatric Cardiology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Paul J Winyard
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Beryl Adler
- Department of Paediatrics, Luton and Dunstable Hospital NHS Trust, Luton LU4 0DZ, UK
| | - Eduardo Moya
- Department of Paediatrics, Bradford Teaching Hospitals NHS Trust, Bradford BD9 6RJ, UK
| | - Louise Hattingh
- Department of Paediatrics, Bradford Teaching Hospitals NHS Trust, Bradford BD9 6RJ, UK
| | - Anil Shenoy
- Department of Paediatrics, Bradford Teaching Hospitals NHS Trust, Bradford BD9 6RJ, UK
| | - Claire Hogg
- PCD Diagnostic Team and Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London SW3 6NP, UK
| | - Eamonn Sheridan
- Leeds Institute of Biomedical and Clinical Sciences, Faculty of Medicine & Health, University of Leeds, Leeds LS9 7TF, UK
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands
| | - Dominic Norris
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | | | - Colin A Johnson
- Leeds Institute of Biomedical and Clinical Sciences, Faculty of Medicine & Health, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
21
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Silva STN, Brito JA, Arranz R, Sorzano CÓS, Ebel C, Doutch J, Tully MD, Carazo JM, Carrascosa JL, Matias PM, Bandeiras TM. X-ray structure of full-length human RuvB-Like 2 - mechanistic insights into coupling between ATP binding and mechanical action. Sci Rep 2018; 8:13726. [PMID: 30213962 PMCID: PMC6137109 DOI: 10.1038/s41598-018-31997-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/30/2018] [Indexed: 01/27/2023] Open
Abstract
RuvB-Like transcription factors function in cell cycle regulation, development and human disease, such as cancer and heart hyperplasia. The mechanisms that regulate adenosine triphosphate (ATP)-dependent activity, oligomerization and post-translational modifications in this family of enzymes are yet unknown. We present the first crystallographic structure of full-length human RuvBL2 which provides novel insights into its mechanistic action and biology. The ring-shaped hexameric RuvBL2 structure presented here resolves for the first time the mobile domain II of the human protein, which is responsible for protein-protein interactions and ATPase activity regulation. Structural analysis suggests how ATP binding may lead to domain II motion through interactions with conserved N-terminal loop histidine residues. Furthermore, a comparison between hsRuvBL1 and 2 shows differences in surface charge distribution that may account for previously described differences in regulation. Analytical ultracentrifugation and cryo electron microscopy analyses performed on hsRuvBL2 highlight an oligomer plasticity that possibly reflects different physiological conformations of the protein in the cell, as well as that single-stranded DNA (ssDNA) can promote the oligomerization of monomeric hsRuvBL2. Based on these findings, we propose a mechanism for ATP binding and domain II conformational change coupling.
Collapse
Affiliation(s)
- Sara T N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - José A Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Rocío Arranz
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Christine Ebel
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs CS 10090, 38044, Grenoble, France
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, STFC, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Mark D Tully
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - José-María Carazo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal.
| |
Collapse
|
23
|
Sen U, Saxena H, Khurana J, Nayak A, Gupta A. Plasmodium falciparum RUVBL3 protein: a novel DNA modifying enzyme and an interacting partner of essential HAT protein MYST. Sci Rep 2018; 8:10917. [PMID: 30026605 PMCID: PMC6053374 DOI: 10.1038/s41598-018-29137-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/26/2018] [Indexed: 11/09/2022] Open
Abstract
RUVBLs constitute a conserved group of ATPase proteins that play significant role in a variety of cellular processes including transcriptional regulation, cell cycle and DNA damage repair. Three RUVBL homologues, namely, PfRUVBL1, PfRUVBL2 and PfRUVBL3 have been identified in P. falciparum, unlike its eukaryotic counterparts, which have two RUVBL proteins (RUVBL1 & RUVBL2). The present study expands our understanding of PfRUVBL3 protein and thereby basic biology of Plasmodium in general. Here, we have shown that parasite PfRUVBL3 is a true homolog of human/yeast RUVBL2 protein. Our result show that PfRUVBL3 constitutively expresses throughout the stages of intra-erythrocytic cycle (IDC) with varied localization. In addition to ATPase and oligomerization activity, we have for the first time shown that PfRUVBL3 possess DNA cleavage activity which interestingly is dependent on its insertion domain. Furthermore, we have also identified RUVBL3 to be an interacting partner of an essential chromatin remodeling protein PfMYST and together they colocalize with H3K9me1 histone in parasitophorous vacuole during the ring stage of IDC suggesting their potential involvement in chromatin remodeling and gene transcription.
Collapse
Affiliation(s)
- Utsav Sen
- Department of Life Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Himani Saxena
- Department of Life Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Juhi Khurana
- Department of Life Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Akshaykumar Nayak
- Department of Life Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, 201314, India.
| |
Collapse
|
24
|
Targeted deletion of the AAA-ATPase Ruvbl1 in mice disrupts ciliary integrity and causes renal disease and hydrocephalus. Exp Mol Med 2018; 50:1-17. [PMID: 29959317 PMCID: PMC6026120 DOI: 10.1038/s12276-018-0108-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Ciliopathies comprise a large number of hereditary human diseases and syndromes caused by mutations resulting in dysfunction of either primary or motile cilia. Both types of cilia share a similar architecture. While primary cilia are present on most cell types, expression of motile cilia is limited to specialized tissues utilizing ciliary motility. We characterized protein complexes of ciliopathy proteins and identified the conserved AAA-ATPase Ruvbl1 as a common novel component. Here, we demonstrate that Ruvbl1 is crucial for the development and maintenance of renal tubular epithelium in mice: both constitutive and inducible deletion in tubular epithelial cells result in renal failure with tubular dilatations and fewer ciliated cells. Moreover, inducible deletion of Ruvbl1 in cells carrying motile cilia results in hydrocephalus, suggesting functional relevance in both primary and motile cilia. Cilia of Ruvbl1-negative cells lack crucial proteins, consistent with the concept of Ruvbl1-dependent cytoplasmic pre-assembly of ciliary protein complexes. A protein involved in building and maintaining thin protrusions from cell surfaces called cilia is implicated in “ciliopathies”, diseases in which ciliary function is disrupted. These include polycystic kidney disease and disorders collectively known as ciliary dyskinesias. “Primary cilia” perform sensory functions, detecting external chemical and physical signals and initiating responses within cells. In addition, “motile cilia” beat rhythmically to move fluids surrounding cells. Researchers in Germany and the Netherlands, led by Bernhard Schermer and Max C. Liebau at the University of Cologne, studied a protein called Ruvbl1, known to interact with DNA and other proteins. The researchers found it is crucial for the functioning of both types of cilia. Deleting the gene for Ruvbl1 in mice caused kidney failure and a build-up of fluid in the brain known as hydrocephalus. The research could help understand and ultimately treat ciliopathies.
Collapse
|
25
|
Bellazzo A, Sicari D, Valentino E, Del Sal G, Collavin L. Complexes formed by mutant p53 and their roles in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:101-112. [PMID: 29950894 PMCID: PMC6011883 DOI: 10.2147/bctt.s145826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women, and mutations in the tumor suppressor p53 are commonly detected in the most aggressive subtypes. The majority of TP53 gene alterations are missense substitutions, leading to expression of mutant forms of the p53 protein that are frequently detected at high levels in cancer cells. P53 mutants not only lose the physiological tumor-suppressive activity of the wild-type p53 protein but also acquire novel powerful oncogenic functions, referred to as gain of function, that may actively confer a selective advantage during tumor progression. Some of the best-characterized oncogenic activities of mutant p53 are mediated by its ability to form aberrant protein complexes with other transcription factors or proteins not directly related to gene transcription. The set of cellular proteins available to interact with mutant p53 is dependent on cell type and extensively affected by environmental signals, so the prognostic impact of p53 mutation is complex. Specific functional interactions of mutant p53 can profoundly impact homeostasis of breast cancer cells, reprogramming gene expression in response to specific extracellular inputs or cell-intrinsic conditions. The list of protein complexes involving mutant p53 in breast cancer is continuously growing, as is the number of oncogenic phenotypes in which they could be involved. In consideration of the functional impact of such complexes, key interactions of mutant p53 may be exploited as potential targets for development of therapies aimed at defusing the oncogenic potential of p53 mutation.
Collapse
Affiliation(s)
- Arianna Bellazzo
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy
| | - Daria Sicari
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elena Valentino
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giannino Del Sal
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Licio Collavin
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
26
|
Mohtar MA, Hernychova L, O'Neill JR, Lawrence ML, Murray E, Vojtesek B, Hupp TR. The Sequence-specific Peptide-binding Activity of the Protein Sulfide Isomerase AGR2 Directs Its Stable Binding to the Oncogenic Receptor EpCAM. Mol Cell Proteomics 2018; 17:737-763. [PMID: 29339412 PMCID: PMC5880107 DOI: 10.1074/mcp.ra118.000573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 protein has a relatively unique property for a chaperone in that it can bind sequence-specifically to a specific peptide motif (TTIYY). A synthetic TTIYY-containing peptide column was used to affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that interacts with the TTIYY peptide to within a structural loop from amino acids 131–135 (VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by measuring its activity against a mutant peptide library. Screening the human proteome for proteins harboring this motif revealed an enrichment in transmembrane proteins and we focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM proteins formed a dose-dependent protein-protein interaction in vitro. Proximity ligation assays demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM's detergent binding site. These data define a dominant site on AGR2 that mediates its specific peptide-binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined for the secretory pathway.
Collapse
Affiliation(s)
- M Aiman Mohtar
- From the ‡University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland, United Kingdom, EH4 2XR.,§National University of Malaysia, UKM Medical Molecular Biology Institute (UMBI), 56000 Kuala Lumpur, Malaysia
| | - Lenka Hernychova
- ¶Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - J Robert O'Neill
- From the ‡University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland, United Kingdom, EH4 2XR
| | - Melanie L Lawrence
- From the ‡University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland, United Kingdom, EH4 2XR
| | - Euan Murray
- From the ‡University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland, United Kingdom, EH4 2XR.,¶Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Borek Vojtesek
- ¶Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Ted R Hupp
- From the ‡University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland, United Kingdom, EH4 2XR; .,¶Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.,‖University of Gdansk, International Centre for Cancer Vaccine Science, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
27
|
von Morgen P, Burdova K, Flower TG, O'Reilly NJ, Boulton SJ, Smerdon SJ, Macurek L, Hořejší Z. MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene 2017; 36:4943-4950. [PMID: 28436950 PMCID: PMC5531254 DOI: 10.1038/onc.2017.99] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/05/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
The MRN (MRE11-RAD50-NBS1) complex is essential for repair of DNA double-strand breaks and stalled replication forks. Mutations of the MRN complex subunit MRE11 cause the hereditary cancer-susceptibility disease ataxia-telangiectasia-like disorder (ATLD). Here we show that MRE11 directly interacts with PIH1D1, a subunit of heat-shock protein 90 cochaperone R2TP complex, which is required for the assembly of large protein complexes, such as RNA polymerase II, small nucleolar ribonucleoproteins and mammalian target of rapamycin complex 1. The MRE11-PIH1D1 interaction is dependent on casein kinase 2 (CK2) phosphorylation of two acidic sequences within the MRE11 C terminus containing serines 558/561 and 688/689. Conversely, the PIH1D1 phospho-binding domain PIH-N is required for association with MRE11 phosphorylated by CK2. Consistent with these findings, depletion of PIH1D1 resulted in MRE11 destabilization and affected DNA-damage repair processes dependent on MRE11. Additionally, mutations of serines 688/689, which abolish PIH1D1 binding, also resulted in decreased MRE11 stability. As depletion of R2TP frequently leads to instability of its substrates and as truncation mutation of MRE11 lacking serines 688/689 leads to decreased levels of the MRN complex both in ATLD patients and an ATLD mouse model, our results suggest that the MRN complex is a novel R2TP complex substrate and that their interaction is regulated by CK2 phosphorylation.
Collapse
Affiliation(s)
- P von Morgen
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - K Burdova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - T G Flower
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, London,UK
| | - N J O'Reilly
- Peptide Chemistry, The Francis Crick Institute, London, UK
| | - S J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - S J Smerdon
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, London,UK
| | - L Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Z Hořejší
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Centre, Charterhouse Square, London, UK
| |
Collapse
|
28
|
Mao YQ, Houry WA. The Role of Pontin and Reptin in Cellular Physiology and Cancer Etiology. Front Mol Biosci 2017; 4:58. [PMID: 28884116 PMCID: PMC5573869 DOI: 10.3389/fmolb.2017.00058] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Pontin (RUVBL1, TIP49, TIP49a, Rvb1) and Reptin (RUVBL2, TIP48, TIP49b, Rvb2) are highly conserved ATPases of the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various cellular processes that are important for oncogenesis. First identified as being upregulated in hepatocellular carcinoma and colorectal cancer, their overexpression has since been shown in multiple cancer types such as breast, lung, gastric, esophageal, pancreatic, kidney, bladder as well as lymphatic, and leukemic cancers. However, their exact functions are still quite unknown as they interact with many molecular complexes with vastly different downstream effectors. Within the nucleus, Pontin and Reptin participate in the TIP60 and INO80 complexes important for chromatin remodeling. Although not transcription factors themselves, Pontin and Reptin modulate the transcriptional activities of bona fide proto-oncogenes such as MYC and β-catenin. They associate with proteins involved in DNA damage repair such as PIKK complexes as well as with the core complex of Fanconi anemia pathway. They have also been shown to be important for cell cycle progression, being involved in assembly of telomerase, mitotic spindle, RNA polymerase II, and snoRNPs. When the two ATPases localize to the cytoplasm, they were reported to promote cancer cell invasion and metastasis. Due to their various roles in carcinogenesis, it is not surprising that Pontin and Reptin are proving to be important biomarkers for diagnosis and prognosis of various cancers. They are also current targets for the development of new therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of TorontoToronto, ON, Canada.,Department of Chemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
29
|
Raymond AA, Javary J, Breig O, Neaud V, Rosenbaum J. Reptin regulates insulin-stimulated Akt phosphorylation in hepatocellular carcinoma via the regulation of SHP-1/PTPN6. Cell Biochem Funct 2017; 35:289-295. [DOI: 10.1002/cbf.3274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Anne-Aurélie Raymond
- University of Bordeaux; INSERM, U1053, Bordeaux Research In Translational Oncology, BaRITOn; Bordeaux France
| | - Joaquim Javary
- University of Bordeaux; INSERM, U1053, Bordeaux Research In Translational Oncology, BaRITOn; Bordeaux France
| | - Osman Breig
- University of Bordeaux; INSERM, U1053, Bordeaux Research In Translational Oncology, BaRITOn; Bordeaux France
| | - Véronique Neaud
- University of Bordeaux; INSERM, U1053, Bordeaux Research In Translational Oncology, BaRITOn; Bordeaux France
| | - Jean Rosenbaum
- University of Bordeaux; INSERM, U1053, Bordeaux Research In Translational Oncology, BaRITOn; Bordeaux France
| |
Collapse
|
30
|
Toth R, Scherer D, Kelemen LE, Risch A, Hazra A, Balavarca Y, Issa JPJ, Moreno V, Eeles RA, Ogino S, Wu X, Ye Y, Hung RJ, Goode EL, Ulrich CM. Genetic Variants in Epigenetic Pathways and Risks of Multiple Cancers in the GAME-ON Consortium. Cancer Epidemiol Biomarkers Prev 2017; 26:816-825. [PMID: 28115406 PMCID: PMC6054308 DOI: 10.1158/1055-9965.epi-16-0728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022] Open
Abstract
Background: Epigenetic disturbances are crucial in cancer initiation, potentially with pleiotropic effects, and may be influenced by the genetic background.Methods: In a subsets (ASSET) meta-analytic approach, we investigated associations of genetic variants related to epigenetic mechanisms with risks of breast, lung, colorectal, ovarian and prostate carcinomas using 51,724 cases and 52,001 controls. False discovery rate-corrected P values (q values < 0.05) were considered statistically significant.Results: Among 162,887 imputed or genotyped variants in 555 candidate genes, SNPs in eight genes were associated with risk of more than one cancer type. For example, variants in BABAM1 were confirmed as a susceptibility locus for squamous cell lung, overall breast, estrogen receptor (ER)-negative breast, and overall prostate, and overall serous ovarian cancer; the most significant variant was rs4808076 [OR = 1.14; 95% confidence interval (CI) = 1.10-1.19; q = 6.87 × 10-5]. DPF1 rs12611084 was inversely associated with ER-negative breast, endometrioid ovarian, and overall and aggressive prostate cancer risk (OR = 0.93; 95% CI = 0.91-0.96; q = 0.005). Variants in L3MBTL3 were associated with colorectal, overall breast, ER-negative breast, clear cell ovarian, and overall and aggressive prostate cancer risk (e.g., rs9388766: OR = 1.06; 95% CI = 1.03-1.08; q = 0.02). Variants in TET2 were significantly associated with overall breast, overall prostate, overall ovarian, and endometrioid ovarian cancer risk, with rs62331150 showing bidirectional effects. Analyses of subpathways did not reveal gene subsets that contributed disproportionately to susceptibility.Conclusions: Functional and correlative studies are now needed to elucidate the potential links between germline genotype, epigenetic function, and cancer etiology.Impact: This approach provides novel insight into possible pleiotropic effects of genes involved in epigenetic processes. Cancer Epidemiol Biomarkers Prev; 26(6); 816-25. ©2017 AACR.
Collapse
Affiliation(s)
- Reka Toth
- National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Scherer
- National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Linda E Kelemen
- Medical University of South Carolina and Hollings Cancer Center, Charleston, South Carolina
| | - Angela Risch
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Cancer Research and Epigenetics, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Aditi Hazra
- Brigham and Women's Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yesilda Balavarca
- National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Victor Moreno
- Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | | | - Shuji Ogino
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- University of Toronto, Toronto, Canada
| | - Ellen L Goode
- Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Cornelia M Ulrich
- National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Huntsman Cancer Institute, Salt Lake City, Utah
| |
Collapse
|
31
|
Suppression of Type I Interferon Signaling by E1A via RuvBL1/Pontin. J Virol 2017; 91:JVI.02484-16. [PMID: 28122980 DOI: 10.1128/jvi.02484-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/18/2017] [Indexed: 11/20/2022] Open
Abstract
Suppression of interferon signaling is of paramount importance to a virus. Interferon signaling significantly reduces or halts the ability of a virus to replicate; therefore, viruses have evolved sophisticated mechanisms that suppress activation of the interferon pathway or responsiveness of the infected cell to interferon. Adenovirus has multiple modes of inhibiting the cellular response to interferon. Here, we report that E1A, previously shown to regulate interferon signaling in multiple ways, inhibits interferon-stimulated gene expression by modulating RuvBL1 function. RuvBL1 was previously shown to affect type I interferon signaling. E1A binds to RuvBL1 and is recruited to RuvBL1-regulated promoters in an interferon-dependent manner, preventing their activation. Depletion of RuvBL1 impairs adenovirus growth but does not appear to significantly affect viral protein expression. Although RuvBL1 has been shown to play a role in cell growth, its depletion had no effect on the ability of the virus to replicate its genome or to drive cells into S phase. E1A was found to bind to RuvBL1 via the C terminus of E1A, and this interaction was important for suppression of interferon-stimulated gene transcriptional activation and recruitment of E1A to interferon-regulated promoters. Here, we report the identification of RuvBL1 as a new target for adenovirus in its quest to suppress the interferon response.IMPORTANCE For most viruses, suppression of the interferon signaling pathway is crucial to ensure a successful replicative cycle. Human adenovirus has evolved several different mechanisms that prevent activation of interferon or the ability of the cell to respond to interferon. The viral immediate-early gene E1A was previously shown to affect interferon signaling in several different ways. Here, we report a novel mechanism reliant on RuvBL1 that E1A uses to prevent activation of interferon-stimulated gene expression following infection or interferon treatment. This adds to the growing knowledge of how viruses are able to inhibit interferon and identifies a novel target used by adenovirus for modulation of the cellular interferon pathway.
Collapse
|
32
|
A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression. Mol Cell Biol 2015; 36:886-99. [PMID: 26711270 DOI: 10.1128/mcb.00594-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function.
Collapse
|
33
|
Recruitment of Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer progression. Nat Commun 2015; 6:10028. [PMID: 26639898 PMCID: PMC4686657 DOI: 10.1038/ncomms10028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022] Open
Abstract
Changes in gene expression during tumorigenesis are often considered the consequence of de novo mutations occurring in the tumour. An alternative possibility is that the transcriptional response of oncogenic transcription factors evolves during tumorigenesis. Here we show that aberrant E2f activity, following inactivation of the Rb gene family in a mouse model of liver cancer, initially activates a robust gene expression programme associated with the cell cycle. Slowly accumulating E2f1 progressively recruits a Pontin/Reptin complex to open the chromatin conformation at E2f target genes and amplifies the E2f transcriptional response. This mechanism enhances the E2f-mediated transactivation of cell cycle genes and initiates the activation of low binding affinity E2f target genes that regulate non-cell-cycle functions, such as the Warburg effect. These data indicate that both the physiological and the oncogenic activities of E2f result in distinct transcriptional responses, which could be exploited to target E2f oncogenic activity for therapy. E2F transcription factors are primarily known for the regulation of the cell cycle and are often dysregulated in cancer. Here, the authors show that during cancer progression E2F1 recruits a Pontin/Reptin complex to E2F target genes to open chromatin and increase E2F transcriptional response.
Collapse
|
34
|
Herr P, Lundin C, Evers B, Ebner D, Bauerschmidt C, Kingham G, Palmai-Pallag T, Mortusewicz O, Frings O, Sonnhammer E, Helleday T. A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair. Cell Discov 2015; 1:15034. [PMID: 27462432 PMCID: PMC4860774 DOI: 10.1038/celldisc.2015.34] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022] Open
Abstract
To identify new regulators of homologous recombination repair, we carried out a genome-wide short-interfering RNA screen combined with ionizing irradiation using RAD51 foci formation as readout. All candidates were confirmed by independent short-interfering RNAs and validated in secondary assays like recombination repair activity and RPA foci formation. Network analysis of the top modifiers identified gene clusters involved in recombination repair as well as components of the ribosome, the proteasome and the spliceosome, which are known to be required for effective DNA repair. We identified and characterized the RNA polymerase II-associated protein CDC73/Parafibromin as a new player in recombination repair and show that it is critical for genomic stability. CDC73 interacts with components of the SCF/Cullin and INO80/NuA4 chromatin-remodeling complexes to promote Histone ubiquitination. Our findings indicate that CDC73 is involved in local chromatin decondensation at sites of DNA damage to promote DNA repair. This function of CDC73 is related to but independent of its role in transcriptional elongation.
Collapse
Affiliation(s)
- Patrick Herr
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Cecilia Lundin
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Bastiaan Evers
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Headington, UK
| | - Christina Bauerschmidt
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Headington, UK
| | - Guy Kingham
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford , Oxford, UK
| | | | - Oliver Mortusewicz
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Oliver Frings
- Science for Life Laboratory, Bioinformatics Centre Stockholm, Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | - Erik Sonnhammer
- Science for Life Laboratory, Bioinformatics Centre Stockholm, Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
35
|
Gentili C, Castor D, Kaden S, Lauterbach D, Gysi M, Steigemann P, Gerlich DW, Jiricny J, Ferrari S. Chromosome Missegregation Associated with RUVBL1 Deficiency. PLoS One 2015; 10:e0133576. [PMID: 26201077 PMCID: PMC4511761 DOI: 10.1371/journal.pone.0133576] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
Abstract
RUVBL1 (RuvB-like1) and RUVBL2 (RuvB-like 2) are integral components of multisubunit protein complexes involved in processes ranging from cellular metabolism, transcription and chromatin remodeling to DNA repair. Here, we show that although RUVBL1 and RUVBL2 are known to form heterodimeric complexes in which they stabilize each other, the subunits separate during cytokinesis. In anaphase-to-telophase transition, RUVBL1 localizes to structures of the mitotic spindle apparatus, where it partially co-localizes with polo-like kinase 1 (PLK1). The ability of PLK1 to phosphorylate RUVBL1-but not RUVBL2-in vitro and their physical association in vivo suggest that this kinase differentially regulates the function of the RuvB-like proteins during mitosis. We further show that siRNA-mediated knock-down of RuvB-like proteins causes severe defects in chromosome alignment and segregation. In addition, we show that the ATPase activity of RUVBL1 is indispensable for cell proliferation. Our data thus demonstrate that RUVBL1 is essential for efficient mitosis and proliferation.
Collapse
Affiliation(s)
- Christian Gentili
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Dennis Castor
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Svenja Kaden
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - David Lauterbach
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Mario Gysi
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Patrick Steigemann
- Institute of Biochemistry, Schafmattstrasse 18, HPM E17.2, Swiss Institute of Technology Zurich (ETHZ), CH-8093, Zurich, Switzerland
| | - Daniel W. Gerlich
- Institute of Biochemistry, Schafmattstrasse 18, HPM E17.2, Swiss Institute of Technology Zurich (ETHZ), CH-8093, Zurich, Switzerland
| | - Josef Jiricny
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
36
|
Matias PM, Baek SH, Bandeiras TM, Dutta A, Houry WA, Llorca O, Rosenbaum J. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors. Front Mol Biosci 2015; 2:17. [PMID: 25988184 PMCID: PMC4428354 DOI: 10.3389/fmolb.2015.00017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.
Collapse
Affiliation(s)
- Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras, Portugal ; Instituto de Biologia Experimental e Tecnológica Oeiras, Portugal
| | - Sung Hee Baek
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University Seoul, South Korea
| | | | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia Charlottesville, VA, USA
| | - Walid A Houry
- Department of Biochemistry, University of Toronto Toronto, ON, Canada
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council, CSIC) Madrid, Spain
| | - Jean Rosenbaum
- INSERM, U1053 Bordeaux, France ; Groupe de Recherches pour l'Etude du Foie, Université de Bordeaux Bordeaux, France
| |
Collapse
|
37
|
Healy AR, Houston DR, Remnant L, Huart AS, Brychtova V, Maslon MM, Meers O, Muller P, Krejci A, Blackburn EA, Vojtesek B, Hernychova L, Walkinshaw MD, Westwood NJ, Hupp TR. Discovery of a novel ligand that modulates the protein-protein interactions of the AAA+ superfamily oncoprotein reptin. Chem Sci 2015; 6:3109-3116. [PMID: 28706685 PMCID: PMC5490336 DOI: 10.1039/c4sc03885a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/20/2015] [Indexed: 12/31/2022] Open
Abstract
Developing approaches to discover protein-protein interactions (PPIs) remains a fundamental challenge. A chemical biology platform is applied here to identify novel PPIs for the AAA+ superfamily oncoprotein reptin. An in silico screen coupled with chemical optimization provided Liddean, a nucleotide-mimetic which modulates reptin's oligomerization status, protein-binding activity and global conformation. Combinatorial peptide phage library screening of Liddean-bound reptin with next generation sequencing identified interaction motifs including a novel reptin docking site on the p53 tumor suppressor protein. Proximity ligation assays demonstrated that endogenous reptin forms a predominantly cytoplasmic complex with its paralog pontin in cancer cells and Liddean promotes a shift of this complex to the nucleus. An emerging view of PPIs in higher eukaryotes is that they occur through a striking diversity of linear peptide motifs. The discovery of a compound that alters reptin's protein interaction landscape potentially leads to novel avenues for therapeutic development.
Collapse
Affiliation(s)
- Alan R Healy
- School of Chemistry & Biomedical Sciences Research Complex , University of St Andrews & EaStCHEM , North Haugh, St Andrews , KY16 9ST , UK .
| | - Douglas R Houston
- Centre for Chemical Biology , University of Edinburgh , EH9 3JG , UK .
| | - Lucy Remnant
- Edinburgh Cancer Research Centre , Cell Signalling Unit , University of Edinburgh , EH4 2XR , UK .
| | - Anne-Sophie Huart
- Edinburgh Cancer Research Centre , Cell Signalling Unit , University of Edinburgh , EH4 2XR , UK .
| | - Veronika Brychtova
- RECAMO , Masaryk Memorial Cancer Institute , 656 53 Brno , Czech Republic
| | - Magda M Maslon
- Edinburgh Cancer Research Centre , Cell Signalling Unit , University of Edinburgh , EH4 2XR , UK .
| | - Olivia Meers
- Edinburgh Cancer Research Centre , Cell Signalling Unit , University of Edinburgh , EH4 2XR , UK .
| | - Petr Muller
- RECAMO , Masaryk Memorial Cancer Institute , 656 53 Brno , Czech Republic
| | - Adam Krejci
- RECAMO , Masaryk Memorial Cancer Institute , 656 53 Brno , Czech Republic
| | | | - Borek Vojtesek
- RECAMO , Masaryk Memorial Cancer Institute , 656 53 Brno , Czech Republic
| | - Lenka Hernychova
- RECAMO , Masaryk Memorial Cancer Institute , 656 53 Brno , Czech Republic
| | | | - Nicholas J Westwood
- School of Chemistry & Biomedical Sciences Research Complex , University of St Andrews & EaStCHEM , North Haugh, St Andrews , KY16 9ST , UK .
| | - Ted R Hupp
- Edinburgh Cancer Research Centre , Cell Signalling Unit , University of Edinburgh , EH4 2XR , UK .
| |
Collapse
|
38
|
Mayes K, Qiu Z, Alhazmi A, Landry JW. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 2015; 121:183-233. [PMID: 24889532 DOI: 10.1016/b978-0-12-800249-0.00005-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zhijun Qiu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
39
|
Raymond AA, Benhamouche S, Neaud V, Di Martino J, Javary J, Rosenbaum J. Reptin regulates DNA double strand breaks repair in human hepatocellular carcinoma. PLoS One 2015; 10:e0123333. [PMID: 25875766 PMCID: PMC4398330 DOI: 10.1371/journal.pone.0123333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
Reptin/RUVBL2 is overexpressed in most hepatocellular carcinomas and is required for the growth and viability of HCC cells. Reptin is involved in several chromatin remodeling complexes, some of which are involved in the detection and repair of DNA damage, but data on Reptin involvement in the repair of DNA damage are scarce and contradictory. Our objective was to study the effects of Reptin silencing on the repair of DNA double-strand breaks (DSB) in HCC cells. Treatment of HuH7 cells with etoposide (25 μM, 30 min) or γ irradiation (4 Gy) increased the phosphorylation of H2AX by 1.94 ± 0.13 and 2.0 ± 0.02 fold, respectively. These values were significantly reduced by 35 and 65 % after Reptin silencing with inducible shRNA. Irradiation increased the number of BRCA1 (3-fold) and 53BP1 foci (7.5 fold). Depletion of Reptin reduced these values by 62 and 48%, respectively. These defects in activation and/or recruitment of repair proteins were not due to a decreased number of DSBs as measured by the COMET assay. All these results were confirmed in the Hep3B cell line. Protein expression of ATM and DNA-PKcs, the major H2AX kinases, was significantly reduced by 52 and 61 % after Reptin depletion whereas their mRNA level remained unchanged. Phosphorylation of Chk2, another ATM target, was not significantly altered. Using co-immunoprecipitation, we showed an interaction between Reptin and DNA-PKcs. The half-life of newly-synthesized DNA-PKcs was reduced when Reptin was silenced. Finally, depletion of Reptin was synergistic with etoposide or γ irradiation to reduce cell growth and colony formation. In conclusion, Reptin is an important cofactor for the repair of DSBs. Our data, combined with those of the literature suggests that it operates at least in part by regulating the expression of DNA-PKcs by a stabilization mechanism. Overexpression of Reptin in HCC could be a factor of resistance to treatment, consistent with the observed overexpression of Reptin in subgroups of chemo-resistant breast and ovarian cancers.
Collapse
Affiliation(s)
- Anne-Aurélie Raymond
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Samira Benhamouche
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Véronique Neaud
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Julie Di Martino
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Joaquim Javary
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Jean Rosenbaum
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
- * E-mail:
| |
Collapse
|
40
|
von Morgen P, Hořejší Z, Macurek L. Substrate recognition and function of the R2TP complex in response to cellular stress. Front Genet 2015; 6:69. [PMID: 25767478 PMCID: PMC4341119 DOI: 10.3389/fgene.2015.00069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/10/2015] [Indexed: 11/18/2022] Open
Abstract
The R2TP complex is a HSP90 co-chaperone, which consists of four subunits: PIH1D1, RPAP3, RUVBL1, and RUVBL2. It is involved in the assembly of large protein or protein–RNA complexes such as RNA polymerase, small nucleolar ribonucleoproteins (snoRNPs), phosphatidylinositol 3 kinase-related kinases (PIKKs), and their complexes. While RPAP3 has a HSP90 binding domain and the RUVBLs comprise ATPase activities important for R2TP functions, PIH1D1 contains a PIH-N domain that specifically recognizes phosphorylated substrates of the R2TP complex. In this review we provide an overview of the current knowledge of the R2TP complex with the focus on the recently identified structural and mechanistic features of the R2TP complex functions. We also discuss the way R2TP regulates cellular response to stress caused by low levels of nutrients or by DNA damage and its possible exploitation as a target for anti-cancer therapy.
Collapse
Affiliation(s)
- Patrick von Morgen
- Department of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague Czech Republic
| | - Zuzana Hořejší
- Department of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague Czech Republic ; DNA Damage Response Laboratory, London Research Institute, London UK
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague Czech Republic
| |
Collapse
|
41
|
Lakomek K, Stoehr G, Tosi A, Schmailzl M, Hopfner KP. Structural basis for dodecameric assembly states and conformational plasticity of the full-length AAA+ ATPases Rvb1 · Rvb2. Structure 2015; 23:483-495. [PMID: 25661652 DOI: 10.1016/j.str.2014.12.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/14/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
As building blocks of diverse macromolecular complexes, the AAA+ ATPases Rvb1 and Rvb2 are crucial for many cellular activities including cancer-related processes. Their oligomeric structure and function remain unclear. We report the crystal structures of full-length heteromeric Rvb1·Rvb2 complexes in distinct nucleotide binding states. Chaetomium thermophilum Rvb1·Rvb2 assemble into hexameric rings of alternating molecules and into stable dodecamers. Intriguingly, the characteristic oligonucleotide-binding (OB) fold domains (DIIs) of Rvb1 and Rvb2 occupy unequal places relative to the compact AAA+ core ring. While Rvb1's DII forms contacts between hexamers, Rvb2's DII is rotated 100° outward, occupying lateral positions. ATP was retained bound to Rvb1 but not Rvb2 throughout purification, suggesting nonconcerted ATPase activities and nucleotide binding. Significant conformational differences between nucleotide-free and ATP-/ADP-bound states in the crystal structures and in solution suggest that the functional role of Rvb1·Rvb2 is mediated by highly interconnected structural switches. Our structures provide an atomic framework for dodecameric states and Rvb1·Rvb2's conformational plasticity.
Collapse
Affiliation(s)
- Kristina Lakomek
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Gabriele Stoehr
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Alessandro Tosi
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Monika Schmailzl
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany; Center for Integrated Protein Sciences, Ludwig-Maximilians University Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| |
Collapse
|
42
|
Ahmad M, Tarique M, Afrin F, Tuteja N, Tuteja R. Identification of inhibitors of Plasmodium falciparum RuvB1 helicase using biochemical assays. PROTOPLASMA 2015; 252:117-125. [PMID: 24934654 DOI: 10.1007/s00709-014-0664-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Human malaria is a major parasitic infection, and the situation has worsened mainly due to the emergence of resistant malaria parasites to several anti-malarial drugs. Thus, an urgent need to find suitable drug targets has led to the development of newer classes of anti-malarial drugs. Helicases have been targeted to develop therapeutics for viral, bacterial, and other microorganism infections. Recently, Plasmodium falciparum RuvB ATPases/helicases have been characterized and proposed as a suitable antimalarial drug target. In the present study, the screening of various compounds was done and the results suggest that PfRuvB1 ATPase activity is inhibited considerably by the novobiocin and partially by cisplatin and ciprofloxacin. Helicase assay of PfRuvB1 in the presence of various compounds suggest novobiocin, actinomycin, and ethidium bromide as potent inhibitors. Novobiocin inhibits the helicase activity of PfRuvB1 possibly by blocking the ATPase activity of PfRuvB1. This study is unique in respect to the identification of novobiocin as inhibitor of PfRuvB1, partially by competing with ATP binding at its active site and provides evidence for PfRuvB1 as target of novobiocin after DNA gyrase-B and HSP90. These studies will certainly help the pharmacologist to design and develop some novel inhibitor specific to PfRuvB1, which may serve as suitable chemotherapeutics to target malaria.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
43
|
Kato M, Chou TF, Yu CZ, DeModena J, Sternberg PW. LINKIN, a new transmembrane protein necessary for cell adhesion. eLife 2014; 3:e04449. [PMID: 25437307 PMCID: PMC4275582 DOI: 10.7554/elife.04449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/28/2014] [Indexed: 12/15/2022] Open
Abstract
In epithelial collective migration, leader and follower cells migrate while maintaining cell–cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG–GAP domains in the extracellular domain, which potentially folds into a β-propeller structure resembling the α-integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and α-tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain. DOI:http://dx.doi.org/10.7554/eLife.04449.001 In animals, cells can move from one place to another to shape tissues, heal wounds, or defend against invading microbes. A cell may move alone or it may be attached to others and move as part of a group. One member of the group leads this ‘collective migration’, but it is not known how the cells are able to stick to each other and move together. Collective migration takes place in the male gonad—the organ that makes sperm cells—in larvae of the nematode worm C. elegans. As the gonad matures, a group of cells form a simple chain that can move together. Kato et al. found that a protein called LINKIN must be present for this to happen. LINKIN is found in the membrane that surrounds animal cells. One section of the protein—called the β-propeller—sits on the outside surface of the membrane. The structure of the β-propeller is similar to a section of another protein—called α-integrin—that also allows cells to attach, suggesting LINKIN may work in a similar way. LINKIN is found in many animals, so Kato et al. searched for proteins that can interact with it in human cells. This search revealed three proteins that can interact with LINKIN and are required for the cells to move together. Two of the proteins control elements of the internal scaffolding of the cell: this scaffolding, which is known as the cytoskeleton, is involved in moving the cells. The experiments suggest that LINKIN coordinates the process of binding together with the changes in the cytoskeleton that are needed to allow the cells to move as one. The next challenge is to understand how LINKIN changes the internal program of the cells to achieve this. DOI:http://dx.doi.org/10.7554/eLife.04449.002
Collapse
Affiliation(s)
- Mihoko Kato
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Collin Z Yu
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - John DeModena
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
44
|
Magalska A, Schellhaus A, Moreno-Andrés D, Zanini F, Schooley A, Sachdev R, Schwarz H, Madlung J, Antonin W. RuvB-like ATPases Function in Chromatin Decondensation at the End of Mitosis. Dev Cell 2014; 31:305-318. [DOI: 10.1016/j.devcel.2014.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/22/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|
45
|
Queval R, Papin C, Dalvai M, Bystricky K, Humbert O. Reptin and Pontin oligomerization and activity are modulated through histone H3 N-terminal tail interaction. J Biol Chem 2014; 289:33999-4012. [PMID: 25336637 DOI: 10.1074/jbc.m114.576785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pontin/RUVBL1 and Reptin/RUVBL2 are DNA-dependent ATPases involved in numerous cellular processes and are essential components of chromatin remodeling complexes and transcription factor assemblies. However, their existence as monomeric and oligomeric forms with differential activity in vivo reflects their versatility. Using a biochemical approach, we have studied the role of the nucleosome core particle and histone N-terminal tail modifications in the assembly and enzymatic activities of Reptin/Pontin. We demonstrate that purified Reptin and Pontin form stable complexes with nucleosomes. The ATPase activity of Reptin/Pontin is modulated by acetylation and methylation of the histone H3 N terminus. In vivo, association of Reptin with the progesterone receptor gene promoter is concomitant with changes in H3 marks of the surrounding nucleosomes. Furthermore, the presence of H3 tail peptides regulates the monomer-oligomer transition of Reptin/Pontin. Proteins that are pulled down by monomeric Reptin/Pontin differ from those that can bind to hexamers. We propose that changes in the oligomeric status of Reptin/Pontin create a platform that brings specific cofactors close to gene promoters and loads regulatory factors to establish an active state of chromatin.
Collapse
Affiliation(s)
- Richard Queval
- From the Laboratoire de Biologie Moléculaire Eucaryote, CNRS/UMR 5099, F-31062 Toulouse Cedex, the Université de Toulouse, UPS, 31062 Toulouse Cedex, and
| | - Christophe Papin
- the Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM, Université de Strasbourg, 67404 Illkirch Cedex, France
| | - Mathieu Dalvai
- From the Laboratoire de Biologie Moléculaire Eucaryote, CNRS/UMR 5099, F-31062 Toulouse Cedex, the Université de Toulouse, UPS, 31062 Toulouse Cedex, and
| | - Kerstin Bystricky
- From the Laboratoire de Biologie Moléculaire Eucaryote, CNRS/UMR 5099, F-31062 Toulouse Cedex, the Université de Toulouse, UPS, 31062 Toulouse Cedex, and
| | - Odile Humbert
- From the Laboratoire de Biologie Moléculaire Eucaryote, CNRS/UMR 5099, F-31062 Toulouse Cedex, the Université de Toulouse, UPS, 31062 Toulouse Cedex, and
| |
Collapse
|
46
|
López-Perrote A, Alatwi HE, Torreira E, Ismail A, Ayora S, Downs JA, Llorca O. Structure of Yin Yang 1 oligomers that cooperate with RuvBL1-RuvBL2 ATPases. J Biol Chem 2014; 289:22614-22629. [PMID: 24990942 PMCID: PMC4132769 DOI: 10.1074/jbc.m114.567040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/22/2014] [Indexed: 02/03/2023] Open
Abstract
Yin Yang 1 (YY1) is a transcription factor regulating proliferation and differentiation and is involved in cancer development. Oligomers of recombinant YY1 have been observed before, but their structure and DNA binding properties are not well understood. Here we find that YY1 assembles several homo-oligomeric species built from the association of a bell-shaped dimer, a process we characterized by electron microscopy. Moreover, we find that YY1 self-association also occurs in vivo using bimolecular fluorescence complementation. Unexpectedly, these oligomers recognize several DNA substrates without the consensus sequence for YY1 in vitro, and DNA binding is enhanced in the presence of RuvBL1-RuvBL2, two essential AAA+ ATPases. YY1 oligomers bind RuvBL1-RuvBL2 hetero-oligomeric complexes, but YY1 interacts preferentially with RuvBL1. Collectively, these findings suggest that YY1-RuvBL1-RuvBL2 complexes could contribute to functions beyond transcription, and we show that YY1 and the ATPase activity of RuvBL2 are required for RAD51 foci formation during homologous recombination.
Collapse
Affiliation(s)
- Andrés López-Perrote
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maetzu 9, 28040 Madrid, Spain
| | - Hanan E Alatwi
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, United Kingdom, and
| | - Eva Torreira
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maetzu 9, 28040 Madrid, Spain
| | - Amani Ismail
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, United Kingdom, and
| | - Silvia Ayora
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | - Jessica A Downs
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, United Kingdom, and.
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maetzu 9, 28040 Madrid, Spain,.
| |
Collapse
|
47
|
Afanasyeva A, Hirtreiter A, Schreiber A, Grohmann D, Pobegalov G, McKay AR, Tsaneva I, Petukhov M, Käs E, Grigoriev M, Werner F. Lytic water dynamics reveal evolutionarily conserved mechanisms of ATP hydrolysis by TIP49 AAA+ ATPases. Structure 2014; 22:549-59. [PMID: 24613487 PMCID: PMC3991330 DOI: 10.1016/j.str.2014.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/29/2014] [Accepted: 02/01/2014] [Indexed: 11/24/2022]
Abstract
Eukaryotic TIP49a (Pontin) and TIP49b (Reptin) AAA+ ATPases play essential roles in key cellular processes. How their weak ATPase activity contributes to their important functions remains largely unknown and difficult to analyze because of the divergent properties of TIP49a and TIP49b proteins and of their homo- and hetero-oligomeric assemblies. To circumvent these complexities, we have analyzed the single ancient TIP49 ortholog found in the archaeon Methanopyrus kandleri (mkTIP49). All-atom homology modeling and molecular dynamics simulations validated by biochemical assays reveal highly conserved organizational principles and identify key residues for ATP hydrolysis. An unanticipated crosstalk between Walker B and Sensor I motifs impacts the dynamics of water molecules and highlights a critical role of trans-acting aspartates in the lytic water activation step that is essential for the associative mechanism of ATP hydrolysis. We have studied the single TIP49 ortholog (mkTIP49) from the archaeon M. kandleri We propose a model for assembly of the pre-transition state for ATP hydrolysis Trans-aspartates downregulate ATP hydrolysis by mkTIP49 hexamers Mutational analysis confirms a highly conserved mechanism for lytic water activation
Collapse
Affiliation(s)
- Arina Afanasyeva
- Department of Biophysics, Saint Petersburg State Polytechnical University, Saint Petersburg 195251, Russia; Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina 188300, Russia
| | - Angela Hirtreiter
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Anne Schreiber
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Georgii Pobegalov
- Department of Biophysics, Saint Petersburg State Polytechnical University, Saint Petersburg 195251, Russia
| | - Adam R McKay
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Irina Tsaneva
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Michael Petukhov
- Department of Biophysics, Saint Petersburg State Polytechnical University, Saint Petersburg 195251, Russia; Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina 188300, Russia
| | - Emmanuel Käs
- UMR 5099, CNRS, Toulouse F-31000, France; Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse F-31000, France.
| | - Mikhail Grigoriev
- UMR 5099, CNRS, Toulouse F-31000, France; Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse F-31000, France.
| | - Finn Werner
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
48
|
Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 2014; 155:1034-48. [PMID: 24267889 DOI: 10.1016/j.cell.2013.10.021] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/25/2013] [Accepted: 09/30/2013] [Indexed: 11/21/2022]
Abstract
LINE-1s are active human DNA parasites that are agents of genome dynamics in evolution and disease. These streamlined elements require host factors to complete their life cycles, whereas hosts have developed mechanisms to combat retrotransposition's mutagenic effects. As such, endogenous L1 expression levels are extremely low, creating a roadblock for detailed interactomic analyses. Here, we describe a system to express and purify highly active L1 RNP complexes from human suspension cell culture and characterize the copurified proteome, identifying 37 high-confidence candidate interactors. These data sets include known interactors PABPC1 and MOV10 and, with in-cell imaging studies, suggest existence of at least three types of compositionally and functionally distinct L1 RNPs. Among the findings, UPF1, a key nonsense-mediated decay factor, and PCNA, the polymerase-delta-associated sliding DNA clamp, were identified and validated. PCNA interacts with ORF2p via a PIP box motif; mechanistic studies suggest that this occurs during or immediately after target-primed reverse transcription.
Collapse
|
49
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB2 translocates in 5′–3′ direction, relocalizes during schizont stage and its enzymatic activities are up regulated by RuvB3 of the same complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2795-811. [DOI: 10.1016/j.bbapap.2013.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/27/2022]
|