1
|
Fernandez Trigo N, Kalbermatter C, Yilmaz B, Ganal-Vonarburg SC. The protective effect of the intestinal microbiota in type-1 diabetes in NOD mice is limited to a time window in early life. Front Endocrinol (Lausanne) 2024; 15:1425235. [PMID: 39391872 PMCID: PMC11464356 DOI: 10.3389/fendo.2024.1425235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The incidence of type-1 diabetes is on the rise, particularly in developed nations, and predominantly affects the youth. While genetic predisposition plays a substantial role, environmental factors, including alterations in the gut microbiota, are increasingly recognized as significant contributors to the disease. Methods In this study, we utilized germ-free non-obese diabetic mice to explore the effects of microbiota colonization during early life on type-1 diabetes susceptibility. Results Our findings reveal that microbiota introduction at birth, rather than at weaning, significantly reduces the risk of type-1 diabetes, indicating a crucial window for microbiota-mediated modulation of immune responses. This protective effect was independent of alterations in intestinal barrier function but correlated with testosterone levels in male mice. Additionally, early life colonization modulated T cell subset frequencies, particularly T helper cells and regulatory T cells, in the intestine, potentially shaping type-1 diabetes predisposition. Discussion Our findings underscore the pivotal role of early-life microbial interactions in immune regulation and the development of autoimmune diseases.
Collapse
Affiliation(s)
- Nerea Fernandez Trigo
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Cristina Kalbermatter
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Stephanie C. Ganal-Vonarburg
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Luo H, Yang L, Ma D, Bao X, Zhang G, Li B, Cao S, Liu S, Bao L, Jing E, Zheng Y. Investigation of T cell-related hub genes in diabetic nephropathy by bioinformatics analysis and experiment validation. Mol Immunol 2024; 166:65-78. [PMID: 38244370 DOI: 10.1016/j.molimm.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Diabetic nephropathy(DN) remains a significant risk factor for cardiovascular and all-cause mortality, and end-stage renal disease (ESRD) associated with it is growing in prevalence.However, there is absolutely no curative strategy for DN. We subjected db/db and control mouse kidneys to transcriptional sequencing analysis to obtain transcriptome expression profile data in the diabetic nephropathy.We next performed differential analysis of db/db and control mice kidney sequencing data to obtain differentially expressed genes. The differential expressed genes were intersected with the oxidative stress and inflammatory response related genes derived from the MGI/MsiDB gene set to yield oxidative stress inflammatory response related differential 122 genes (OIRDEGs). To further clarify the biological functions of DEGs, we conducted GOKEGG analysis and obtained the top 20 genes by five computational algorithms of the cytohubba plugin via cytoscape, respectively. The genes obtained by the five algorithms were intersected and the intersection genes were considered as key genes,including Cd40lg, Il2rb, Lck, Il2rg, Zap70, Serpinb1a. Also,we used GSEA and immune infiltration analysis to clarify the biological signaling pathways and immune cell infiltration that are substantial in the diabetic nephropathy.Correlation studies of key genes with immune cell infiltration revealed that they were correlated with the majority types of T cells while only with two types of B cells.Then, we predicted miRNA and TF for the key genes and constructed the interaction network. Finally, the expression differences of key genes were examined by validation dataset and RT-PCR experiment.In conclusion,we have identified key genes associated with T cell immune response in a diabetic nephropathy model, which bear significance in the etiopathogenesis of immunological injury in diabetic nephropathy and provide an innovative proposal for the recognition and management of DN.
Collapse
Affiliation(s)
- Hongyan Luo
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Lirong Yang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China
| | - Danna Ma
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xi Bao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Guoqing Zhang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Bo Li
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shilu Cao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Shunyao Liu
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Li Bao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Jing E
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yali Zheng
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
3
|
Cook PJ, Yang SJ, Uenishi GI, Grimm A, West SE, Wang LJ, Jacobs C, Repele A, Drow T, Boukhris A, Dahl NP, Sommer K, Scharenberg AM, Rawlings DJ. A chemically inducible IL-2 receptor signaling complex allows for effective in vitro and in vivo selection of engineered CD4+ T cells. Mol Ther 2023; 31:2472-2488. [PMID: 37147803 PMCID: PMC10421999 DOI: 10.1016/j.ymthe.2023.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Engineered T cells represent an emerging therapeutic modality. However, complex engineering strategies can present a challenge for enriching and expanding therapeutic cells at clinical scale. In addition, lack of in vivo cytokine support can lead to poor engraftment of transferred T cells, including regulatory T cells (Treg). Here, we establish a cell-intrinsic selection system that leverages the dependency of primary T cells on IL-2 signaling. FRB-IL2RB and FKBP-IL2RG fusion proteins were identified permitting selective expansion of primary CD4+ T cells in rapamycin supplemented medium. This chemically inducible signaling complex (CISC) was subsequently incorporated into HDR donor templates designed to drive expression of the Treg master regulator FOXP3. Following editing of CD4+ T cells, CISC+ engineered Treg (CISC EngTreg) were selectively expanded using rapamycin and maintained Treg activity. Following transfer into immunodeficient mice treated with rapamycin, CISC EngTreg exhibited sustained engraftment in the absence of IL-2. Furthermore, in vivo CISC engagement increased the therapeutic activity of CISC EngTreg. Finally, an editing strategy targeting the TRAC locus permitted generation and selective enrichment of CISC+ functional CD19-CAR-T cells. Together, CISC provides a robust platform to achieve both in vitro enrichment and in vivo engraftment and activation, features likely beneficial across multiple gene-edited T cell applications.
Collapse
Affiliation(s)
- Peter J Cook
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Su Jung Yang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Gene I Uenishi
- GentiBio, Inc., 150 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Annaiz Grimm
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Samuel E West
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Li-Jie Wang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Chester Jacobs
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Andrea Repele
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Travis Drow
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Ahmad Boukhris
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Noelle P Dahl
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Andrew M Scharenberg
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA; Department of Pediatrics, University of Washington, Seattle WA 98101, USA; Department of Immunology, University of Washington, Seattle WA 98101, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA; Department of Pediatrics, University of Washington, Seattle WA 98101, USA; Department of Immunology, University of Washington, Seattle WA 98101, USA.
| |
Collapse
|
4
|
Rayzan E, Sadeghalvad M, Shahkarami S, Zoghi S, Aryan Z, Mahdaviani SA, Boztug K, Rezaei N. A novel X-linked mutation in IL2RG associated with early-onset inflammatory bowel disease: a case report of twin brothers. J Med Case Rep 2023; 17:307. [PMID: 37461086 DOI: 10.1186/s13256-023-04049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND X-linked severe combined immunodeficiency is caused by IL2RG gene mutation. Several variations have been identified in the IL2RG gene, which potentially can prevent the production of nonfunctional proteins. Herein, a novel X-linked variant in the IL2RG gene is reported in twin brothers, associated with inflammatory bowel symptoms. CASE PRESENTATION The patients were 26-month-old monozygotic twin middle-eastern males with failure to thrive and several inpatient admissions due to severe chronic nonbloody diarrhea that started at the age of 12 months. Pancolitis was revealed after performing upper and lower gastrointestinal endoscopies on the twin with more severe gastrointestinal symptoms. Flow cytometric evaluation of the peripheral blood cells showed low levels of CD4+ cells in both patients. Next generation sequencing-based gene panel test results of the two patients proved a novel heterozygous missense X-linked IL2RG mutation (70330011 A > G, p.Trp197Arg) in one of the patients, which was predicted to be deleterious (CADD score of 28), which soon after was confirmed by Sanger segregation in his twin brother. Both parents were wild types and had never experienced similar symptoms. The patients received an human leukocyte antigen (HLA)-matched cord blood transplant. The twin with more severe gastrointestinal symptoms died 1 month after transplantation. In his brother, watery diarrhea eventually subsided after transplantation. CONCLUSION Intestinal involvement in X-linked severe combined immunodeficiency is a rare presentation that might be neglected. The increasing availability of genetic screening tests worldwide could be helpful for early detection of such lethal primary immunodeficiency diseases and in implementing effective interventions to handle the severe outcomes.
Collapse
Affiliation(s)
- Elham Rayzan
- International Hematology/Oncology of Pediatrics' Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, , Children's Medical Center Hospital, Tehran University of Medical Science, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Mona Sadeghalvad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, , Children's Medical Center Hospital, Tehran University of Medical Science, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Shahkarami
- Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Munich, Germany
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Zahra Aryan
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaan Boztug
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, , Children's Medical Center Hospital, Tehran University of Medical Science, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Minor structural changes, major functional impacts: posttranslational modifications and drug targets. Arch Pharm Res 2022; 45:693-703. [PMID: 36251238 DOI: 10.1007/s12272-022-01409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
Abstract
Posttranslational modifications (PTMs) are essential mechanisms that provide chemical diversity to proteins. The additional functional and structural elements can be introduced to exceed the primary amino acid composition. PTMs impact key biological and physiological processes including cell signaling, metabolism, protein degradation and influences interactions with other macromolecules. However, characterization of the structural and functional signatures of modified proteins has been historically limited. Since defects in PTMs are linked to numerous disorders and diseases, PTMs and their modifying enzymes are considered as potential drug targets. This has fueled new initiatives to determine how PTMs affect protein structure and function. In this review, I summarize some of the major, well-studied protein PTMs and related drug targets. Since PTMs are widely used for therapeutic targets or disease markers, highlighting structural changes after PTM provides new frontiers in understanding the detailed mechanism and related drug developments.
Collapse
|
6
|
Mhanna V, Fourcade G, Barennes P, Quiniou V, Pham HP, Ritvo PG, Brimaud F, Gouritin B, Churlaud G, Six A, Mariotti-Ferrandiz E, Klatzmann D. Impaired Activated/Memory Regulatory T Cell Clonal Expansion Instigates Diabetes in NOD Mice. Diabetes 2021; 70:976-985. [PMID: 33479057 DOI: 10.2337/db20-0896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022]
Abstract
Regulatory T cell (Treg) insufficiency licenses the destruction of insulin-producing pancreatic β-cells by autoreactive effector T cells (Teffs), causing spontaneous autoimmune diabetes in NOD mice. We investigated the contribution to diabetes of the T-cell receptor (TCR) repertoires of naive regulatory T cells (nTregs), activated/memory Tregs (amTregs), and CD4+ Teffs from prediabetic NOD mice and normal C57BL/6 (B6) mice. NOD mice amTreg and Teff repertoire diversity was unexpectedly higher than that of B6 mice. This was due to the presence of highly expanded clonotypes in B6 amTregs and Teffs that were largely lost in their NOD counterparts. Interleukin-2 (IL-2) administration to NOD mice restored such amTreg clonotype expansions and prevented diabetes development. In contrast, IL-2 administration only led to few or no clonotype expansions in nTregs and Teffs, respectively. Noteworthily, IL-2-expanded amTreg and nTreg clonotypes were markedly enriched in islet-antigen specific TCRs. Altogether, our results highlight the link between a reduced clonotype expansion within the activated Treg repertoire and the development of an autoimmune disease. They also indicate that the repertoire of amTregs is amenable to rejuvenation by IL-2.
Collapse
Affiliation(s)
- Vanessa Mhanna
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Gwladys Fourcade
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Pierre Barennes
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Valentin Quiniou
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
- Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Hang P Pham
- Statistics Department, ILTOO Pharma, Paris, France
| | - Paul-Gydeon Ritvo
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Faustine Brimaud
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Bruno Gouritin
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Guillaume Churlaud
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
- Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Adrien Six
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | | | - David Klatzmann
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
- Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Volfson-Sedletsky V, Jones A, Hernandez-Escalante J, Dooms H. Emerging Therapeutic Strategies to Restore Regulatory T Cell Control of Islet Autoimmunity in Type 1 Diabetes. Front Immunol 2021; 12:635767. [PMID: 33815387 PMCID: PMC8015774 DOI: 10.3389/fimmu.2021.635767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Despite many decades of investigation uncovering the autoimmune mechanisms underlying Type 1 Diabetes (T1D), translating these findings into effective therapeutics has proven extremely challenging. T1D is caused by autoreactive T cells that become inappropriately activated and kill the β cells in the pancreas, resulting in insulin insufficiency and hyperglycemia. A large body of evidence supports the idea that the unchecked activation and expansion of autoreactive T cells in T1D is due to defects in immunosuppressive regulatory T cells (Tregs) that are critical for maintaining peripheral tolerance to islet autoantigens. Hence, repairing these Treg deficiencies is a much sought-after strategy to treat the disease. To accomplish this goal in the most precise, effective and safest way possible, restored Treg functions will need to be targeted towards suppressing the autoantigen-specific immune responses only and/or be localized in the pancreas. Here we review the most recent developments in designing Treg therapies that go beyond broad activation or expansion of non-specific polyclonal Treg populations. We focus on two cutting-edge strategies namely ex vivo generation of optimized Tregs for re-introduction in T1D patients vs direct in situ stimulation and restoration of endogenous Treg function.
Collapse
Affiliation(s)
- Victoria Volfson-Sedletsky
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Albert Jones
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Jaileene Hernandez-Escalante
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Hans Dooms
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol 2019; 18:648-659. [PMID: 30089912 DOI: 10.1038/s41577-018-0046-y] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IL-2 was first identified as a growth factor capable of driving the expansion of activated human T cell populations. In the more than 40 years since its discovery, a tremendous amount has been learned regarding the mechanisms that regulate the expression of both IL-2 and its cell surface receptor, its mechanisms of signalling and its range of biological actions. More recently, the mechanisms by which IL-2 regulates CD4+ T cell differentiation and function have been elucidated. IL-2 also regulates the effector and memory responses of CD8+ T cells, and the loss of IL-2 or responsiveness to IL-2 at least in part explains the exhausted phenotype that occurs during chronic viral infections and in tumour responses. These basic mechanistic studies have led to the therapeutic ability to manipulate the action of IL-2 on regulatory T (Treg) cells for the treatment of autoimmune disease and on CD8+ T cells for immunotherapy of cancer. IL-2 can have either positive or deleterious effects, and we discuss here recent ideas and approaches for manipulating the actions and overall net effects of IL-2 in disease settings, including cancer.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Li
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Toomer KH, Lui JB, Altman NH, Ban Y, Chen X, Malek TR. Essential and non-overlapping IL-2Rα-dependent processes for thymic development and peripheral homeostasis of regulatory T cells. Nat Commun 2019; 10:1037. [PMID: 30833563 PMCID: PMC6399264 DOI: 10.1038/s41467-019-08960-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/11/2019] [Indexed: 01/06/2023] Open
Abstract
IL-2R signaling is essential for regulatory T cell (Treg) function. However, the precise contribution of IL-2 during Treg thymic development, peripheral homeostasis and lineage stability remains unclear. Here we show that IL-2R signaling is required by thymic Tregs at an early step for expansion and survival, and a later step for functional maturation. Using inducible, conditional deletion of CD25 in peripheral Tregs, we also find that IL-2R signaling is indispensable for Treg homeostasis, whereas Treg lineage stability is largely IL-2-independent. CD25 knockout peripheral Tregs have increased apoptosis, oxidative stress, signs of mitochondrial dysfunction, and reduced transcription of key enzymes of lipid and cholesterol biosynthetic pathways. A divergent IL-2R transcriptional signature is noted for thymic Tregs versus peripheral Tregs. These data indicate that IL-2R signaling in the thymus and the periphery leads to distinctive effects on Treg function, while peripheral Treg survival depends on a non-conventional mechanism of metabolic regulation. Interleukin-2 (IL-2) signaling is required for regulatory T (Treg) cell differentiation in the thymus, but its function in peripheral Tregs is still unclear. Here the authors show, using inducible deletion of IL-2 receptor subunit CD25, that IL-2 signaling is essential for maintaining peripheral Treg homeostasis, but dispensable for lineage stability.
Collapse
Affiliation(s)
- Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jen Bon Lui
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Norman H Altman
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
11
|
Carroll KR, Elfers EE, Stevens JJ, McNally JP, Hildeman DA, Jordan MB, Katz JD. Extending Remission and Reversing New-Onset Type 1 Diabetes by Targeted Ablation of Autoreactive T Cells. Diabetes 2018; 67:2319-2328. [PMID: 30104248 PMCID: PMC6198341 DOI: 10.2337/db18-0204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/29/2018] [Indexed: 11/13/2022]
Abstract
Preserving endogenous insulin production is clinically advantageous and remains a vital unmet challenge in the treatment and reversal of type 1 diabetes. Although broad immunosuppression has had limited success in prolonging the so-called remission period, it comes at the cost of compromising beneficial immunity. Here, we used a novel strategy to specifically deplete the activated diabetogenic T cells that drive pathogenesis while preserving not only endogenous insulin production but also protective immunity. Effector T (Teff) cells, such as diabetogenic T cells, are naturally poised on the edge of apoptosis because of activation-induced DNA damage that stresses the p53 regulation of the cell cycle. We have found that using small molecular inhibitors that further potentiate p53 while inhibiting the G2/M cell cycle checkpoint control drives apoptosis of activated T cells in vivo. When delivered at the onset of disease, these inhibitors significantly reduce diabetogenic Teff cells, prolong remission, preserve functional islets, and protect islet allografts while leaving naive, memory, and regulatory T-cell populations functionally untouched. Thus, the targeted manipulation of p53 and cell cycle checkpoints represents a new therapeutic modality for the preservation of islet β-cells in new-onset type 1 diabetes or after islet transplant.
Collapse
Affiliation(s)
- Kaitlin R Carroll
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Eileen E Elfers
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joseph J Stevens
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jonathan P McNally
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - David A Hildeman
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Michael B Jordan
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jonathan D Katz
- Division of Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Endocrinology, Diabetes Research Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
12
|
Ward NC, Yu A, Moro A, Ban Y, Chen X, Hsiung S, Keegan J, Arbanas JM, Loubeau M, Thankappan A, Yamniuk AP, Davis JH, Struthers M, Malek TR. IL-2/CD25: A Long-Acting Fusion Protein That Promotes Immune Tolerance by Selectively Targeting the IL-2 Receptor on Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:2579-2592. [PMID: 30282751 DOI: 10.4049/jimmunol.1800907] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023]
Abstract
Low-dose IL-2 represents an immunotherapy to selectively expand regulatory T cells (Tregs) to promote tolerance in patients with autoimmunity. In this article, we show that a fusion protein (FP) of mouse IL-2 and mouse IL-2Rα (CD25), joined by a noncleavable linker, has greater in vivo efficacy than rIL-2 at Treg expansion and control of autoimmunity. Biochemical and functional studies support a model in which IL-2 interacts with CD25 in the context of this FP in trans to form inactive head-to-tail dimers that slowly dissociate into an active monomer. In vitro, IL-2/CD25 has low sp. act. However, in vivo IL-2/CD25 is long lived to persistently and selectively stimulate Tregs. In female NOD mice, IL-2/CD25 administration increased Tregs within the pancreas and reduced the instance of spontaneous diabetes. Thus, IL-2/CD25 represents a distinct class of IL-2 FPs with the potential for clinical development for use in autoimmunity or other disorders of an overactive immune response.
Collapse
Affiliation(s)
- Natasha C Ward
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Aixin Yu
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Alejandro Moro
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136.,Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Sunnie Hsiung
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - James Keegan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Jaren M Arbanas
- Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Martine Loubeau
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Anil Thankappan
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Aaron P Yamniuk
- Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Jonathan H Davis
- Molecular Structure and Design, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Mary Struthers
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
13
|
Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM, Paulos CM. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol 2018; 15:458-469. [PMID: 29563615 PMCID: PMC6068176 DOI: 10.1038/s41423-018-0004-4] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
The balance between Th17 cells and regulatory T cells (Tregs) has emerged as a prominent factor in regulating autoimmunity and cancer. Th17 cells are vital for host defense against pathogens but have also been implicated in causing autoimmune disorders and cancer, though their role in carcinogenesis is less well understood. Tregs are required for self-tolerance and defense against autoimmunity and often correlate with cancer progression. This review addresses the importance of a functional homeostasis between these two subsets in health and the consequences of its disruption when these forces collide in disease. Importantly, we discuss the ability of Th17 cells to mediate cancer regression in immunotherapy, including adoptive transfer and checkpoint blockade therapy, and the therapeutic possibilities of purposefully offsetting the Th17/Treg balance to treat patients with cancer as well as those with autoimmune diseases.
Collapse
Affiliation(s)
- Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA.
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Stefanie R Bailey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Sierra M Amaya
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Dirk M Elston
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Joni M Mazza-McCrann
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
14
|
Foley JF. Highlight: IL-2 receptor signaling. Sci Signal 2017. [DOI: 10.1126/scisignal.aar7668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Two papers reveal the consequences of altered interleukin-2 receptor signaling in T lymphocytes.
Collapse
|