1
|
Zein L, Grossmann J, Swoboda H, Borgel C, Wilke B, Awe S, Nist A, Stiewe T, Stehling O, Freibert SA, Adhikary T, Chung HR. Haptoglobin buffers lipopolysaccharides to delay activation of NFκB. Front Immunol 2024; 15:1401527. [PMID: 39416789 PMCID: PMC11479958 DOI: 10.3389/fimmu.2024.1401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
It has remained yet unclear which soluble factors regulate the anti-inflammatory macrophage phenotype observed in both homeostasis and tumourigenesis. We show here that haptoglobin, a major serum protein with elusive immunoregulatory properties, binds and buffers bacterial lipopolysaccharides to attenuate activation of NFκB in macrophages. Haptoglobin binds different lipopolysaccharides with low micromolar affinities. Given its abundance, haptoglobin constitutes a buffer for serum-borne lipopolysaccharides, shielding them to safeguard against aberrant inflammatory reactions by reducing the amount of free lipopolysaccharides available for binding to TLR4. Concordantly, NFκB activation by haptoglobin-associated lipopolysaccharides was markedly delayed relative to stimulation with pure lipopolysaccharide. Our findings warrant evaluation of therapeutic benefits of haptoglobin for inflammatory conditions and re-evaluation of purification strategies. Finally, they allow to elucidate mechanisms of enhanced immunosuppression by oncofetal haptoglobin.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Josina Grossmann
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Helena Swoboda
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Christina Borgel
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Bernhard Wilke
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Stephan Awe
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Oliver Stehling
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Smeal SW, Mokashi CS, Kim AH, Chiknas PM, Lee REC. Time-varying stimuli that prolong IKK activation promote nuclear remodeling and mechanistic switching of NF-κB dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615244. [PMID: 39386677 PMCID: PMC11463372 DOI: 10.1101/2024.09.26.615244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Temporal properties of molecules within signaling networks, such as sub-cellular changes in protein abundance, encode information that mediate cellular responses to stimuli. How dynamic signals relay and process information is a critical gap in understanding cellular behaviors. In this work, we investigate transmission of information about changing extracellular cytokine concentrations from receptor-level supramolecular assemblies of IκB kinases (IKK) downstream to the nuclear factor κB (NF-κB) transcription factor (TF). In a custom robot-controlled microfluidic cell culture, we simultaneously measure input-output (I/O) encoding of IKK-NF-κB in dual fluorescent-reporter cells. When compared with single cytokine pulses, dose-conserving pulse trains prolong IKK assemblies and lead to disproportionately enhanced retention of nuclear NF-κB. Using particle swarm optimization, we demonstrate that a mechanistic model does not recapitulate this emergent property. By contrast, invoking mechanisms for NF-κB-dependent chromatin remodeling to the model recapitulates experiments, showing how temporal dosing that prolongs IKK assemblies facilitates switching to permissive chromatin that sequesters nuclear NF-κB. Remarkably, using simulations to resolve single-cell receptor data accurately predicts same-cell NF-κB time courses for more than 80% of our single cell trajectories. Our data and simulations therefore suggest that cell-to-cell heterogeneity in cytokine responses are predominantly due to mechanisms at the level receptor-associated protein complexes.
Collapse
Affiliation(s)
- Steven W. Smeal
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chaitanya S. Mokashi
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- current address Altos Labs, Redwood City, CA, 94065, USA
| | - A. Hyun Kim
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - P. Murdo Chiknas
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robin E. C. Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Systems Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Zhou R, Huang K, Chen S, Wang M, Liu F, Liu F, Lin C, Zhu C. Zhilining Formula alleviates DSS-induced colitis through suppressing inflammation and gut barrier dysfunction via the AHR/NF-κBp65 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155571. [PMID: 38677270 DOI: 10.1016/j.phymed.2024.155571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Repairing the intestinal mucosal barrier and reducing persistent inflammation is the key strategies for the treatment of ulcerative colitis (UC). Zhilining Formula (ZLN), composed of Andrographis herba (AH), Sophorae flavescentis radix (SFA), and Aucklandia radix (AR), is a well-tried formula for the clinical treatment of enteritis and dysentery in China, and its mechanism has not been clarified. PURPOSE This study aims to investigate the effect of ZLN on UC and elucidate its underlying mechanism via metabolomics analysis and experimental verification. METHODS The effect of ZLN on UC was evaluated in a 3.5 % dextran sulfate sodium (DSS)-induced mice model via the body weight, disease activity index (DAI), colon length, colonic histopathology, expression of inflammation factors, and intestinal barrier in mice. An UPLC-Q-TOF-MS/MS approach-based metabolomics analysis was performed to preliminary explore the mechanism of ZLN in colitis. Based on the results of metabolomics analysis, the expression of related protein or mRNA in AHR/NF-κBp65 axis was determined by qPCR and western blotting. Moreover, the potential interactions of active ingredients of ZLN with NF-κBp65 and AHR were investigated in vitro through using agonists and inhibitors of NF-κBp65 and AHR, respectively. RESULTS ZLN alleviated body weight loss and colonic shortening in colitis mice, and down-regulated the DAI and histopathological score as well. ZLN also decreased the levels of inflammatory factors (MPO, IL-1β, TNF-α and IL-18), protected goblet cell function and intestinal barrier in DSS-induced mice. Metabolomics results revealed that 36 metabolites that were significantly altered in mice after induction with DSS, which involved in 16 metabolic pathways, including biosynthesis of unsaturated fatty acid, phenylalanine metabolism, arachidonic acid (AA) metabolism, tryptophan (Trp) metabolism, retinol metabolism, and sphingolipid metabolism, etc. ZLN restored 26 different metabolites (DEMs) of them to normal-like levels, indicating ZLN regulated the AA metabolism and Trp-metabolism in UC mice, which hinted its potential pharmacological mechanism related to AHR/NF-κBp65 axis. We further confirmed that ZLN could restrain the activation of NF-κBp65 signaling pathway and then inhibit the expression of its mediated inflammatory cytokines, such as IL-1β, TNF-α, COX-2 and IL17A. Moreover, ZLN increased nuclear translocation of AHR and IL22 expression, which is an important regulatory signal for intestinal mucosal barrier repaired. Finally, we elucidated in vitro that the active ingredients of ZLN exerted anti-colitis effects by activating AHR and simultaneously inhibiting NF-κBp65. CONCLUSION ZLN relieved colitis by AHR/NF-κBp65 axis. This study highlighted the important role of AHR and NF-κBp65 in UC, and provided a theoretical basis for the application of ZLN.
Collapse
Affiliation(s)
- Rui Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Kaiwen Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Simin Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Fang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Fangle Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
4
|
Connor MG, Hamon MA. Advances in regulation of homeostasis through chromatin modifications by airway commensals. Curr Opin Microbiol 2024; 80:102505. [PMID: 38936013 DOI: 10.1016/j.mib.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Commensal bacteria are residents of the human airway where they interact with both colonizing pathogens and host respiratory epithelial cells of this mucosal surface. It is here that commensals exert their influence through host signaling cascades, host transcriptional responses and host immunity, all of which are rooted in chromatin remodeling and histone modifications. Recent studies show that airway commensals impact host chromatin, but compared the what is known for gut commensals, the field remains in its infancy. The mechanisms by which airway commensals regulate respiratory health and homeostasis through chromatin modifications is of increasing interest, specifically since their displacement precedes the increased potential for respiratory disease. Herein we will discuss recent advances and intriguing avenues of future work aimed at deciphering how airway commensals protect and influence respiratory health.
Collapse
Affiliation(s)
- Michael G Connor
- Institut Pasteur, Université de Paris Cité, Unité Chromatine et Infection, F-75015 Paris, France.
| | - Melanie A Hamon
- Institut Pasteur, Université de Paris Cité, Unité Chromatine et Infection, F-75015 Paris, France.
| |
Collapse
|
5
|
Kochel B. Negative feedback systems for modelling NF-κB transcription factor oscillatory activity. Transcription 2024:1-32. [PMID: 38739365 DOI: 10.1080/21541264.2024.2331887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 05/14/2024] Open
Abstract
Low-dimensional negative feedback systems (NFSs) were developed within a signal flow model to describe the oscillatory activities of NF-κB caused by interactions with its inhibitor IκBα. The NFSs were established as 3rd- and 4th-order linear systems containing unperturbed and perturbed negative feedback (NF) loops with constant or time-varying NF strengths and a feed-forward loop. NF-related analytical solutions to the NFSs representing the time courses of NF-κB and IκBα were determined and their exact mathematical relationship was found. The NFS's parameters were determined to fit the experimental time courses of NF-κB in TNF-α-stimulated embryonic fibroblasts, rela-/- embryonic fibroblasts reconstituted with RelA, C9L cells, GFP-p65 knock-in embryonic fibroblasts and embryogenic fibroblasts lacking Iκβ and IκBε, LPS-stimulated IC-21 macrophages treated or not with DCPA, and anti-IgM-stimulated DT40 B-lymphocytes. The unperturbed and perturbed NFSs describing the above biosystems generated isochronous and non-isochronous solutions, depending on a constant or time-varying NF strength, respectively. The oscillation period of the NF-coupled solutions, the phase difference between them and the time delays in the appearance of cytoplasmic IκBα after stimulation of NF-κB were determined. A significant divergence between the IκBα solutions to the NFSs and the IκBα experimental courses led to a rejection of the NF coupling between NF-κB and IκBα in the above biosystems. It was shown that neither the linearity nor the low dimensionality of the NFSs altered the NF relationship and the divergence between the IκBα solutions to the NFS and IκBα experimental time courses. Although the NF relationship between IκBα and NF-κB was not confirmed in all the experimental data analyzed, delayed negative feedback was found in some cases.
Collapse
Affiliation(s)
- Bonawentura Kochel
- Immunotherapy Central Europe, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
6
|
Recktenwald M, Hutt E, Davis L, MacAulay J, Daringer NM, Galie PA, Staehle MM, Vega SL. Engineering transcriptional regulation for cell-based therapies. SLAS Technol 2024; 29:100121. [PMID: 38340892 DOI: 10.1016/j.slast.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
A major aim in the field of synthetic biology is developing tools capable of responding to user-defined inputs by activating therapeutically relevant cellular functions. Gene transcription and regulation in response to external stimuli are some of the most powerful and versatile of these cellular functions being explored. Motivated by the success of chimeric antigen receptor (CAR) T-cell therapies, transmembrane receptor-based platforms have been embraced for their ability to sense extracellular ligands and to subsequently activate intracellular signal transduction. The integration of transmembrane receptors with transcriptional activation platforms has not yet achieved its full potential. Transient expression of plasmid DNA is often used to explore gene regulation platforms in vitro. However, applications capable of targeting therapeutically relevant endogenous or stably integrated genes are more clinically relevant. Gene regulation may allow for engineered cells to traffic into tissues of interest and secrete functional proteins into the extracellular space or to differentiate into functional cells. Transmembrane receptors that regulate transcription have the potential to revolutionize cell therapies in a myriad of applications, including cancer treatment and regenerative medicine. In this review, we will examine current engineering approaches to control transcription in mammalian cells with an emphasis on systems that can be selectively activated in response to extracellular signals. We will also speculate on the potential therapeutic applications of these technologies and examine promising approaches to expand their capabilities and tighten the control of gene regulation in cellular therapies.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Leah Davis
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Mary M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
7
|
Witmond M, Keizer E, Kiffen B, Huck WTS, van Buggenum JAGL. Dynamic hydrogen peroxide levels reveal a rate-dependent sensitivity in B-cell lymphoma signaling. Sci Rep 2024; 14:4265. [PMID: 38383739 PMCID: PMC10882005 DOI: 10.1038/s41598-024-54871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
Although in vivo extracellular microenvironments are dynamic, most in vitro studies are conducted under static conditions. Here, we exposed diffuse large B-cell lymphoma (DLBCL) cells to gradient increases in the concentration of hydrogen peroxide (H2O2), thereby capturing some of the dynamics of the tumour microenvironment. Subsequently, we measured the phosphorylation response of B-cell receptor (BCR) signalling proteins CD79a, SYK and PLCγ2 at a high temporal resolution via single-cell phospho-specific flow cytometry. We demonstrated that the cells respond bimodally to static extracellular H2O2, where the percentage of cells that respond is mainly determined by the concentration. Computational analysis revealed that the bimodality results from a combination of a steep dose-response relationship and cell-to-cell variability in the response threshold. Dynamic gradient inputs of varying durations indicated that the H2O2 concentration is not the only determinant of the signalling response, as cells exposed to more shallow gradients respond at lower H2O2 levels. A minimal model of the proximal BCR network qualitatively reproduced the experimental findings and uncovered a rate-dependent sensitivity to H2O2, where a lower rate of increase correlates to a higher sensitivity. These findings will bring us closer to understanding how cells process information from their complex and dynamic in vivo environments.
Collapse
Affiliation(s)
- Melde Witmond
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Emma Keizer
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Bas Kiffen
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Jessie A G L van Buggenum
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands.
- Single Cell Discoveries (SCD), Utrecht, The Netherlands.
| |
Collapse
|
8
|
Bacher S, Schmitz ML. Open questions in the NF-κB field. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119469. [PMID: 37951506 DOI: 10.1016/j.bbamcr.2023.119469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 11/14/2023]
Abstract
A variety of stress signals leads to activation of the inducible transcription factor NF-κB, one of the master regulators of the innate immune response. Despite a wealth of information available on the NF-κB core components and its control by different activation pathways and negative feedback loops, several levels of complexity hamper our understanding of the system. This has also contributed to the limited success of NF-κB inhibitors in the clinic and explains some of their unexpected effects. Here we consider the molecular and cellular events generating this complexity at all levels and point to a number of unresolved questions in the field. We also discuss potential future experimental and computational strategies to provide a deeper understanding of NF-κB and its coregulatory signaling networks.
Collapse
Affiliation(s)
- Susanne Bacher
- Institute of Biochemistry, Justus Liebig University Giessen (Germany), Member of the German Center for Lung Research (DZL), Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen (Germany), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
9
|
Kizilirmak C, Monteleone E, García-Manteiga JM, Brambilla F, Agresti A, Bianchi ME, Zambrano S. Small transcriptional differences among cell clones lead to distinct NF-κB dynamics. iScience 2023; 26:108573. [PMID: 38144455 PMCID: PMC10746373 DOI: 10.1016/j.isci.2023.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Transcription factor dynamics is fundamental to determine the activation of accurate transcriptional programs and yet is heterogeneous at a single-cell level, even within homogeneous populations. We asked how such heterogeneity emerges for the nuclear factor κB (NF-κB). We found that clonal populations of immortalized fibroblasts derived from a single mouse embryo display robustly distinct NF-κB dynamics upon tumor necrosis factor ɑ (TNF-ɑ) stimulation including persistent, oscillatory, and weak activation, giving rise to differences in the transcription of its targets. By combining transcriptomics and simulations we show how less than two-fold differences in the expression levels of genes coding for key proteins of the signaling cascade and feedback system are predictive of the differences of the NF-κB dynamic response of the clones to TNF-ɑ and IL-1β. We propose that small transcriptional differences in the regulatory circuit of a transcription factor can lead to distinct signaling dynamics in cells within homogeneous cell populations and among different cell types.
Collapse
Affiliation(s)
- Cise Kizilirmak
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Emanuele Monteleone
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Francesca Brambilla
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Agresti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco E. Bianchi
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
10
|
Son M, Wang AG, Keisham B, Tay S. Processing stimulus dynamics by the NF-κB network in single cells. Exp Mol Med 2023; 55:2531-2540. [PMID: 38040923 PMCID: PMC10766959 DOI: 10.1038/s12276-023-01133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023] Open
Abstract
Cells at the site of an infection experience numerous biochemical signals that vary in amplitude, space, and time. Despite the diversity of dynamic signals produced by pathogens and sentinel cells, information-processing pathways converge on a limited number of central signaling nodes to ultimately control cellular responses. In particular, the NF-κB pathway responds to dozens of signals from pathogens and self, and plays a vital role in processing proinflammatory inputs. Studies addressing the influence of stimulus dynamics on NF-κB signaling are rare due to technical limitations with live-cell measurements. However, recent advances in microfluidics, automation, and image analysis have enabled investigations that yield high temporal resolution at the single-cell level. Here, we summarize the recent research which measures and models the NF-κB response to pulsatile and fluctuating stimulus concentrations, as well as different combinations and sequences of signaling molecules. Collectively, these studies show that the NF-κB network integrates external inflammatory signals and translates these into downstream transcriptional responses.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
11
|
Cao F, Deliz‐Aguirre R, Gerpott FHU, Ziska E, Taylor MJ. Myddosome clustering in IL-1 receptor signaling regulates the formation of an NF-kB activating signalosome. EMBO Rep 2023; 24:e57233. [PMID: 37602973 PMCID: PMC10561168 DOI: 10.15252/embr.202357233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
IL-1 receptor (IL-1R) signaling can activate thresholded invariant outputs and proportional outputs that scale with the amount of stimulation. Both responses require the Myddosome, a multiprotein complex. The Myddosome is required for polyubiquitin chain formation and NF-kB signaling. However, how these signals are spatially and temporally regulated to drive switch-like and proportional outcomes is not understood. During IL-1R signaling, Myddosomes dynamically reorganize into multi-Myddosome clusters at the cell membrane. Blockade of clustering using nanoscale extracellular barriers reduces NF-kB activation. Myddosomes function as scaffolds that assemble an NF-kB signalosome consisting of E3-ubiquitin ligases TRAF6 and LUBAC, K63/M1-linked polyubiquitin chains, phospho-IKK, and phospho-p65. This signalosome preferentially assembles at regions of high Myddosome density, which enhances the recruitment of TRAF6 and LUBAC. Extracellular barriers that restrict Myddosome clustering perturbed the recruitment of both ligases. We find that LUBAC was especially sensitive to clustering with 10-fold lower recruitment to single Myddosomes than clustered Myddosomes. These data reveal that the clustering behavior of Myddosomes provides a basis for digital and analog IL-1R signaling.
Collapse
Affiliation(s)
- Fakun Cao
- Max Planck Institute for Infection BiologyBerlinGermany
| | | | | | - Elke Ziska
- Max Planck Institute for Infection BiologyBerlinGermany
| | | |
Collapse
|
12
|
Wang J, Zheng Q, Shi M, Wang H, Fan C, Wang G, Zhao Y, Si J. Isolation, Identification, Anti-Inflammatory, and In Silico Analysis of New Lignans from the Resin of Ferula sinkiangensis. Pharmaceuticals (Basel) 2023; 16:1351. [PMID: 37895822 PMCID: PMC10610263 DOI: 10.3390/ph16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ferula sinkiangensis K. M. Shen (Apiaceae) is distributed in arid desert areas of Xinjiang, and its resin is a traditional Chinese medicine to treat gastrointestinal digestive diseases. To explore bioactive components from F. sinkiangensis, three new lignans and thirteen known components were isolated. The structural elucidation of the components was established utilizing spectroscopic analyses together with ECD calculations. Griess reaction results indicated new compounds 1 and 2 significantly decreased NO production in LPS-stimulated RAW 264.7 macrophages, and ELISA results indicated that they effectively attenuated LPS-induced inflammation by inhibiting TNF-α, IL-1β, and IL-6 expressions. The in silico approach confirmed that compound 1 docked into the receptors with strong binding energies of -5.84~-10.79 kcal/mol. In addition, compound 6 inhibited the proliferation of AGS gastric cancer cells with IC50 values of 15.2 μM by suppressing the cell migration and invasion. This study disclosed that F. sinkiangensis might be a promising potential resource for bioactive components.
Collapse
Affiliation(s)
- Junchi Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Qi Zheng
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Minghui Shi
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Huaxiang Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Congzhao Fan
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Guoping Wang
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Yaqin Zhao
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Jianyong Si
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| |
Collapse
|
13
|
Yang H, Tel J. Engineering global and local signal generators for probing temporal and spatial cellular signaling dynamics. Front Bioeng Biotechnol 2023; 11:1239026. [PMID: 37790255 PMCID: PMC10543096 DOI: 10.3389/fbioe.2023.1239026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Cells constantly encounter a wide range of environmental signals and rely on their signaling pathways to initiate reliable responses. Understanding the underlying signaling mechanisms and cellular behaviors requires signal generators capable of providing diverse input signals to deliver to cell systems. Current research efforts are primarily focused on exploring cellular responses to global or local signals, which enable us to understand cellular signaling and behavior in distinct dimensions. This review presents recent advancements in global and local signal generators, highlighting their applications in studying temporal and spatial signaling activity. Global signals can be generated using microfluidic or photochemical approaches. Local signal sources can be created using living or artificial cells in combination with different control methods. We also address the strengths and limitations of each signal generator type, discussing challenges and potential extensions for future research. These approaches are expected to continue to facilitate on-going research to discover novel and intriguing cellular signaling mechanisms.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
14
|
Wang Y, Huang N, Yang Z. Revealing the Role of Zinc Ions in Atherosclerosis Therapy via an Engineered Three-Dimensional Pathological Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300475. [PMID: 37092571 PMCID: PMC10288231 DOI: 10.1002/advs.202300475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Indexed: 05/03/2023]
Abstract
An incomplete understanding of the cellular functions and underlying mechanisms of zinc ions released from zinc-based stents in atherosclerosis (AS) therapy is one of the major obstacles to their clinical translation. The existing evaluation methodology using cell monolayers has limitations on accurate results due to the lack of vascular architectures and pathological features. Herein, the authors propose a 3D biomimetic AS model based on a multi-layer vascular structure comprising endothelial cells and smooth muscle cells with hyperlipidemic surroundings and inflammatory stimulations as AS-prone biochemical conditions to explore the biological functions of zinc ions in AS therapy. Concentration-dependent biphasic effects of zinc ions on cell growth are observed both in cell monolayers and 3D AS models. Nevertheless, the cells within 3D AS model exhibit more accurate biological assessments of the zinc ions, as evidenced by augmented pathological features and significantly higher half-maximal inhibitory concentration values against zinc ions. Based on such a developed 3D biomimetic AS model, the inhibitory effects on the deoxyribonucleic acid (DNA) synthesis, significantly influenced biological processes like cell motility, proliferation, and adhesion, and several potential bio-targets of zinc ions of cells are revealed.
Collapse
Affiliation(s)
- Ying Wang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated Hospital of Southern Medical UniversityDongguan523059P. R. China
- Guangdong Provincial Key Laboratory of Cardiac Function and MicrocirculationGuangzhou510080P. R. China
| | - Nan Huang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated Hospital of Southern Medical UniversityDongguan523059P. R. China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated Hospital of Southern Medical UniversityDongguan523059P. R. China
- Guangdong Provincial Key Laboratory of Cardiac Function and MicrocirculationGuangzhou510080P. R. China
- Department of CardiologyThird People's Hospital of Chengdu Affiliated to Southwest Jiaotong UniversityChengdu610031P. R. China
| |
Collapse
|
15
|
Son M, Wang AG, Kenna E, Tay S. High-throughput co-culture system for analysis of spatiotemporal cell-cell signaling. Biosens Bioelectron 2023; 225:115089. [PMID: 36736159 PMCID: PMC9991101 DOI: 10.1016/j.bios.2023.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Study of spatial and temporal aspects of signaling between individual cells is essential in understanding development, the immune response, and host-pathogen interactions. We present an automated high-throughput microfluidic platform that chemically stimulates immune cells to initiate cytokine secretion, and controls the formation of signal gradients that activate neighboring cell populations. Furthermore, our system enables controlling the cell type and density based on distance, and retrieval of cells from different regions for gene expression analysis. Our device performs these tasks in 192 independent chambers to simultaneously test different co-culture conditions. We demonstrate these capabilities by creating various cellular communication scenarios between macrophages and fibroblasts in vitro. We find that spatial distribution of macrophages and heterogeneity in cytokine secretion determine spatiotemporal gene expression responses. Furthermore, we describe how gene expression dynamics depend on a cell's distance from the signaling source. Our device addresses key challenges in the study of cell-to-cell signaling, and provides high-throughput and automated analysis over a wide range of co-culture conditions.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
16
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
17
|
M1/M2 re-polarization of kaempferol biomimetic NPs in anti-inflammatory therapy of atherosclerosis. J Control Release 2023; 353:1068-1083. [PMID: 36549391 DOI: 10.1016/j.jconrel.2022.12.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Atherosclerosis (AS), a leading cause of death worldwide, involves chronic macrophage inflammation from its initiation to the emergence of complications. Targeting plaque inflammation by re-polarizing pro-inflammatory M1 to anti-inflammatory M2 could therefore provide a promising strategy to treat AS, but currently available anti-inflammatory drugs limit clinical outcomes. In this study, we found that kaempferol (KPF) is capable of potential anti-inflammation as a novel drug candidate, which has been scarcely reported. Building upon these findings, we fabricated a macrophage-biomimetic KPF delivery platform, abbreviated as KPF@MM-NPs to potentiate therapeutic payloads, wherein the designed ROS-responsive Dextran-g-PBMEO NPs with π-π stacking were coated with macrophage membrane (MM) for effective target and accumulation in atherosclerotic lesions. Therapy of KPF@MM-NPs afforded significant decrease in proliferating macrophage inflammation while went with the reduction of key pro-inflammatory cytokines and re-polarization M1 to M2 phenotype, inducing excellent anti-AS responses in ApoE-/- mice after i.p. delivery. The mechanism of KPF@MM-NPs was further investigated and found it related to block the ROS/NF-κB signaling pathways. Together with as well demonstrated biosafety profiles, this proof-of-concept opens an instructive door for the study of KPF-mediated nanodrugs in treatment of AS based on biomimetic NPs.
Collapse
|
18
|
Jang WY, Kim MY, Cho JY. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int J Mol Sci 2022; 23:ijms232415482. [PMID: 36555124 PMCID: PMC9778916 DOI: 10.3390/ijms232415482] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Since chronic inflammation can be seen in severe, long-lasting diseases such as cancer, there is a high demand for effective methods to modulate inflammatory responses. Among many therapeutic candidates, lignans, absorbed from various plant sources, represent a type of phytoestrogen classified into secoisolariciresionol (Seco), pinoresinol (Pino), matairesinol (Mat), medioresinol (Med), sesamin (Ses), syringaresinol (Syr), and lariciresinol (Lari). Lignans consumed by humans can be further modified into END or ENL by the activities of gut microbiota. Lignans are known to exert antioxidant and anti-inflammatory activities, together with activity in estrogen receptor-dependent pathways. Lignans may have therapeutic potential for postmenopausal symptoms, including cardiovascular disease, osteoporosis, and psychological disorders. Moreover, the antitumor efficacy of lignans has been demonstrated in various cancer cell lines, including hormone-dependent breast cancer and prostate cancer, as well as colorectal cancer. Interestingly, the molecular mechanisms of lignans in these diseases involve the inhibition of inflammatory signals, including the nuclear factor (NF)-κB pathway. Therefore, we summarize the recent in vitro and in vivo studies evaluating the biological effects of various lignans, focusing on their values as effective anti-inflammatory agents.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
19
|
Mukherjee P, Park SH, Pathak N, Patino CA, Bao G, Espinosa HD. Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows. ACS NANO 2022; 16:15653-15680. [PMID: 36154011 DOI: 10.1021/acsnano.2c05494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The emerging field of cell therapy offers the potential to treat and even cure a diverse array of diseases for which existing interventions are inadequate. Recent advances in micro and nanotechnology have added a multitude of single cell analysis methods to our research repertoire. At the same time, techniques have been developed for the precise engineering and manipulation of cells. Together, these methods have aided the understanding of disease pathophysiology, helped formulate corrective interventions at the cellular level, and expanded the spectrum of available cell therapeutic options. This review discusses how micro and nanotechnology have catalyzed the development of cell sorting, cellular engineering, and single cell analysis technologies, which have become essential workflow components in developing cell-based therapeutics. The review focuses on the technologies adopted in research studies and explores the opportunities and challenges in combining the various elements of cell engineering and single cell analysis into the next generation of integrated and automated platforms that can accelerate preclinical studies and translational research.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - So Hyun Park
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
20
|
Biswas S, Tikader B, Kar S, Viswanathan GA. Modulation of signaling cross-talk between pJNK and pAKT generates optimal apoptotic response. PLoS Comput Biol 2022; 18:e1010626. [PMID: 36240239 PMCID: PMC9604984 DOI: 10.1371/journal.pcbi.1010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/26/2022] [Accepted: 10/03/2022] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a well-known modulator of apoptosis by maintaining a balance between proliferation and cell-death in normal cells. Cancer cells often evade apoptotic response following TNFα stimulation by altering signaling cross-talks. Thus, varying the extent of signaling cross-talk could enable optimal TNFα mediated apoptotic dynamics. Herein, we use an experimental data-driven mathematical modeling to quantitate the extent of synergistic signaling cross-talk between the intracellular entities phosphorylated JNK (pJNK) and phosphorylated AKT (pAKT) that orchestrate the phenotypic apoptosis level by modulating the activated Caspase3 dynamics. Our study reveals that this modulation is orchestrated by the distinct dynamic nature of the synergism at early and late phases. We show that this synergism in signal flow is governed by branches originating from either TNFα receptor and NFκB, which facilitates signaling through survival pathways. We demonstrate that the experimentally quantified apoptosis levels semi-quantitatively correlates with the model simulated Caspase3 transients. Interestingly, perturbing pJNK and pAKT transient dynamics fine-tunes this accumulated Caspase3 guided apoptotic response. Thus, our study offers useful insights for identifying potential targeted therapies for optimal apoptotic response.
Collapse
Affiliation(s)
- Sharmila Biswas
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Baishakhi Tikader
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Sandip Kar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SK); (GAV)
| | - Ganesh A. Viswanathan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SK); (GAV)
| |
Collapse
|
21
|
Kalliara E, Kardynska M, Bagnall J, Spiller DG, Müller W, Ruckerl D, Śmieja J, Biswas SK, Paszek P. Post-transcriptional regulatory feedback encodes JAK-STAT signal memory of interferon stimulation. Front Immunol 2022; 13:947213. [PMID: 36238296 PMCID: PMC9552616 DOI: 10.3389/fimmu.2022.947213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Immune cells fine tune their responses to infection and inflammatory cues. Here, using live-cell confocal microscopy and mathematical modelling, we investigate interferon-induced JAK-STAT signalling in innate immune macrophages. We demonstrate that transient exposure to IFN-γ stimulation induces a long-term desensitisation of STAT1 signalling and gene expression responses, revealing a dose- and time-dependent regulatory feedback that controls JAK-STAT responses upon re-exposure to stimulus. We show that IFN-α/β1 elicit different level of desensitisation from IFN-γ, where cells refractory to IFN-α/β1 are sensitive to IFN-γ, but not vice versa. We experimentally demonstrate that the underlying feedback mechanism involves regulation of STAT1 phosphorylation but is independent of new mRNA synthesis and cognate receptor expression. A new feedback model of the protein tyrosine phosphatase activity recapitulates experimental data and demonstrates JAK-STAT network’s ability to decode relative changes of dose, timing, and type of temporal interferon stimulation. These findings reveal that STAT desensitisation renders cells with signalling memory of type I and II interferon stimulation, which in the future may improve administration of interferon therapy.
Collapse
Affiliation(s)
- Eirini Kalliara
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Malgorzata Kardynska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Zabrze, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - James Bagnall
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Werner Müller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Dominik Ruckerl
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jarosław Śmieja
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Subhra K. Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- *Correspondence: Pawel Paszek,
| |
Collapse
|
22
|
Son M, Frank T, Holst-Hansen T, Wang AG, Junkin M, Kashaf SS, Trusina A, Tay S. Spatiotemporal NF-κB dynamics encodes the position, amplitude, and duration of local immune inputs. SCIENCE ADVANCES 2022; 8:eabn6240. [PMID: 36044569 PMCID: PMC9432835 DOI: 10.1126/sciadv.abn6240] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/19/2022] [Indexed: 05/31/2023]
Abstract
Infected cells communicate through secreted signaling molecules like cytokines, which carry information about pathogens. How differences in cytokine secretion affect inflammatory signaling over space and how responding cells decode information from propagating cytokines are not understood. By computationally and experimentally studying NF-κB dynamics in cocultures of signal-sending cells (macrophages) and signal-receiving cells (fibroblasts), we find that cytokine signals are transmitted by wave-like propagation of NF-κB activity and create well-defined activation zones in responding cells. NF-κB dynamics in responding cells can simultaneously encode information about cytokine dose, duration, and distance to the cytokine source. Spatially resolved transcriptional analysis reveals that responding cells transmit local cytokine information to distance-specific proinflammatory gene expression patterns, creating "gene expression zones." Despite single-cell variability, the size and duration of the signaling zone are tightly controlled by the macrophage secretion profile. Our results highlight how macrophages tune cytokine secretion to control signal transmission distance and how inflammatory signaling interprets these signals in space and time.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tino Frank
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | | | - Andrew G. Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michael Junkin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Sara S. Kashaf
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Wang AG, Son M, Kenna E, Thom N, Tay S. NF-κB memory coordinates transcriptional responses to dynamic inflammatory stimuli. Cell Rep 2022; 40:111159. [PMID: 35977475 PMCID: PMC10794069 DOI: 10.1016/j.celrep.2022.111159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022] Open
Abstract
Many scenarios in cellular communication require cells to interpret multiple dynamic signals. It is unclear how exposure to inflammatory stimuli alters transcriptional responses to subsequent stimulus. Using high-throughput microfluidic live-cell analysis, we systematically profile the NF-κB response to different signal sequences in single cells. We find that NF-κB dynamics store the short-term history of received signals: depending on the prior pathogenic or cytokine signal, the NF-κB response to subsequent stimuli varies from no response to full activation. Using information theory, we reveal that these stimulus-dependent changes in the NF-κB response encode and reflect information about the identity and dose of the prior stimulus. Small-molecule inhibition, computational modeling, and gene expression profiling show that this encoding is driven by stimulus-dependent engagement of negative feedback modules. These results provide a model for how signal transduction networks process sequences of inflammatory stimuli to coordinate cellular responses in complex dynamic environments.
Collapse
Affiliation(s)
- Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Thom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Encoding and decoding NF-κB nuclear dynamics. Curr Opin Cell Biol 2022; 77:102103. [DOI: 10.1016/j.ceb.2022.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022]
|
25
|
Kizilirmak C, Bianchi ME, Zambrano S. Insights on the NF-κB System Using Live Cell Imaging: Recent Developments and Future Perspectives. Front Immunol 2022; 13:886127. [PMID: 35844496 PMCID: PMC9277462 DOI: 10.3389/fimmu.2022.886127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The transcription factor family of nuclear factor kappa B (NF-κB) proteins is widely recognized as a key player in inflammation and the immune responses, where it plays a fundamental role in translating external inflammatory cues into precise transcriptional programs, including the timely expression of a wide variety of cytokines/chemokines. Live cell imaging in single cells showed approximately 15 years ago that the canonical activation of NF-κB upon stimulus is very dynamic, including oscillations of its nuclear localization with a period close to 1.5 hours. This observation has triggered a fruitful interdisciplinary research line that has provided novel insights on the NF-κB system: how its heterogeneous response differs between cell types but also within homogeneous populations; how NF-κB dynamics translate external cues into intracellular signals and how NF-κB dynamics affects gene expression. Here we review the main features of this live cell imaging approach to the study of NF-κB, highlighting the key findings, the existing gaps of knowledge and hinting towards some of the potential future steps of this thriving research field.
Collapse
Affiliation(s)
- Cise Kizilirmak
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco E. Bianchi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
26
|
Yang H, Sinha N, Rand U, Hauser H, Köster M, de Greef TFA, Tel J. A universal microfluidic approach for integrated analysis of temporal homocellular and heterocellular signaling and migration dynamics. Biosens Bioelectron 2022; 211:114353. [PMID: 35594624 DOI: 10.1016/j.bios.2022.114353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Microfluidics offers precise and dynamic control of microenvironments for the study of temporal cellular responses. However, recent research focusing solely on either homocellular (single-cell, population) or heterocellular response may yield insufficient output, which possibly leads to partial comprehension about the underlying mechanisms of signaling events and corresponding cellular behaviors. Here, a universal microfluidic approach is developed for integrated analysis of temporal signaling and cell migration dynamics in multiple cellular contexts (single-cell, population and coculture). This approach allows to confine the desired number or mixture of specific cell sample types in a single device. Precise single cell seeding was achieved manually with bidirectional controllability. Coupled with time-lapse imaging, temporal cellular responses can be observed with single-cell resolution. Using NIH3T3 cells stably expressing signal transducer and activator of transcription 1/2 (STAT1/2) activity biosensors, temporal STAT1/2 activation and cell migration dynamics were explored in isolated single cells, populations and cocultures stimulated with temporal inputs, such as single-pulse and continuous signals of interferon γ (IFNγ) or lipopolysaccharide (LPS). We demonstrate distinct dynamic responses of fibroblasts in different cellular contexts. Our presented approach facilitates a multi-dimensional understanding of STAT signaling and corresponding migration behaviors.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands
| | - Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands
| | - Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tom F A de Greef
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB, Eindhoven, the Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands.
| |
Collapse
|
27
|
Haga M, Okada M. Systems approaches to investigate the role of NF-κB signaling in aging. Biochem J 2022; 479:161-183. [PMID: 35098992 PMCID: PMC8883486 DOI: 10.1042/bcj20210547] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The nuclear factor-κB (NF-κB) signaling pathway is one of the most well-studied pathways related to inflammation, and its involvement in aging has attracted considerable attention. As aging is a complex phenomenon and is the result of a multi-step process, the involvement of the NF-κB pathway in aging remains unclear. To elucidate the role of NF-κB in the regulation of aging, different systems biology approaches have been employed. A multi-omics data-driven approach can be used to interpret and clarify unknown mechanisms but cannot generate mechanistic regulatory structures alone. In contrast, combining this approach with a mathematical modeling approach can identify the mechanistics of the phenomena of interest. The development of single-cell technologies has also helped clarify the heterogeneity of the NF-κB response and underlying mechanisms. Here, we review advances in the understanding of the regulation of aging by NF-κB by focusing on omics approaches, single-cell analysis, and mathematical modeling of the NF-κB network.
Collapse
Affiliation(s)
- Masatoshi Haga
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical Co., Ltd., Ikuno-ku, Osaka 544-8666, Japan
| | - Mariko Okada
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|