1
|
Ni X, Wei Y, Li X, Pan J, Fang B, Zhang T, Lu Y, Ye D, Zhu Y. From biology to the clinic - exploring liver metastasis in prostate cancer. Nat Rev Urol 2024; 21:593-614. [PMID: 38671281 DOI: 10.1038/s41585-024-00875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Liver metastases from prostate cancer are associated with an aggressive disease course and poor prognosis. Results from autopsy studies indicate a liver metastasis prevalence of up to 25% in patients with advanced prostate cancer. Population data estimate that ~3-10% of patients with metastatic castration-resistant prostate cancer harbour liver metastases at the baseline, rising to 20-30% in post-treatment cohorts, suggesting that selective pressure imposed by novel therapies might promote metastatic spread to the liver. Liver metastases are associated with more aggressive tumour biology than lung metastases. Molecular profiling of liver lesions showed an enrichment of low androgen receptor, neuroendocrine phenotypes and high genomic instability. Despite advancements in molecular imaging modalities such as prostate-specific membrane antigen PET-CT, and liquid biopsy markers such as circulating tumour DNA, early detection of liver metastases from prostate cancer remains challenging, as both approaches are hampered by false positive and false negative results, impeding the accurate identification of early liver lesions. Current therapeutic strategies showed limited efficacy in this patient population. Emerging targeted radionuclide therapies, metastasis-directed therapy, and novel systemic agents have shown preliminary activity against liver metastases, but require further validation. Treatment with various novel prostate cancer therapies might lead to an increase in the prevalence of liver metastasis, underscoring the urgent need for coordinated efforts across preclinical and clinical researchers to improve characterization, monitoring, and management of liver metastases from prostate cancer. Elucidating molecular drivers of liver tropism and interactions with the liver microenvironment might ultimately help to identify actionable targets to enhance survival in this high-risk patient group.
Collapse
Affiliation(s)
- Xudong Ni
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Tingwei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
| |
Collapse
|
2
|
Ji L, Li T, Chen H, Yang Y, Lu E, Liu J, Qiao W, Chen H. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci 2023; 13:230. [PMID: 38124132 PMCID: PMC10734085 DOI: 10.1186/s13578-023-01188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Type I interferon (IFN-I) plays crucial roles in the regulation of inflammation and it is associated with various inflammatory diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and periodontitis, impacting people's health and quality of life. It is well-established that IFN-Is affect immune responses and inflammatory factors by regulating some signaling. However, currently, there is no comprehensive overview of the crucial regulatory role of IFN-I in distinctive pathways as well as associated inflammatory diseases. This review aims to provide a narrative of the involvement of IFN-I in different signaling pathways, mainly mediating the related key factors with specific targets in the pathways and signaling cascades to influence the progression of inflammatory diseases. As such, we suggested that IFN-Is induce inflammatory regulation through the stimulation of certain factors in signaling pathways, which displays possible efficient treatment methods and provides a reference for the precise control of inflammatory diseases.
Collapse
Affiliation(s)
- Ling Ji
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Tianle Li
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Huimin Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
- Division of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Jieying Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| | - Hui Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
3
|
Liang Y, Pan JM, Zhu KC, Xian L, Guo HY, Liu BS, Zhang N, Yang JW, Zhang DC. Genome-Wide Identification of Trachinotus ovatus Antimicrobial Peptides and Their Immune Response against Two Pathogen Challenges. Mar Drugs 2023; 21:505. [PMID: 37888440 PMCID: PMC10608450 DOI: 10.3390/md21100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
Golden pompano, Trachinotus ovatus, as a highly nutritious commercially valuable marine fish, has become one of the preferred species for many fish farmers due to its rapid growth, wide adaptability, and ease of feeding and management. However, with the expansion of aquaculture scale, bacterial and parasitic diseases have also become major threats to the golden pompano industry. This study, based on comparative genomics, shows the possibility of preferential evolution of freshwater fish over marine fish by analyzing the phylogenetic relationships and divergence times of 14 marine fish and freshwater fish. Furthermore, we identified antimicrobial peptide genes from 14 species at the genomic level and found that the number of putative antimicrobial peptides may be related to species evolution. Subsequently, we classified the 341 identified AMPs from golden pompano into 38 categories based on the classification provided by the APD3. Among them, TCP represented the highest proportion, accounting for 23.2% of the total, followed by scolopendin, lectin, chemokine, BPTI, and histone-derived peptides. At the same time, the distribution of AMPs in chromosomes varied with type, and covariance analysis showed the frequency of its repeat events. Enrichment analysis and PPI indicated that AMP was mainly concentrated in pathways associated with disease immunity. In addition, our transcriptomic data measured the expression of putative AMPs of golden pompano in 12 normal tissues, as well as in the liver, spleen, and kidney infected with Streptococcus agalactiae and skin infected with Cryptocaryon irritans. As the infection with S. agalactiae and C. irritans progressed, we observed tissue specificity in the number and types of responsive AMPs. Positive selection of AMP genes may participate in the immune response through the MAPK signaling pathway. The genome-wide identification of antimicrobial peptides in the golden pompano provided a complete database of potential AMPs that can contribute to further understanding the immune mechanisms in pathogens. AMPs were expected to replace traditional antibiotics and be developed into targeted drugs against specific bacterial and parasitic pathogens for more precise and effective treatment to improve aquaculture production.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Jin-Min Pan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jing-Wen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| |
Collapse
|
4
|
Sun S, Hu K, Wang L, Liu M, Zhang Y, Dong N, Wu Q. Spatial position is a key determinant of N-glycan functionality of the scavenger receptor cysteine-rich domain of human hepsin. FEBS J 2023; 290:3966-3982. [PMID: 36802168 DOI: 10.1111/febs.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
The scavenger receptor cysteine-rich (SRCR) domain is a key constituent in diverse proteins. N-glycosylation is important in protein expression and function. In the SRCR domain of different proteins, N-glycosylation sites and functionality vary substantially. In this study, we examined the importance of N-glycosylation site positions in the SRCR domain of hepsin, a type II transmembrane serine protease involved in many pathophysiological processes. We analysed hepsin mutants with alternative N-glycosylation sites in the SRCR and protease domains using three-dimensional modelling, site-directed mutagenesis, HepG2 cell expression, immunostaining, and western blotting. We found that the N-glycan function in the SRCR domain in promoting hepsin expression and activation on the cell surface cannot be replaced by alternatively created N-glycans in the protease domain. Within the SRCR domain, the presence of an N-glycan in a confined surface area was essential for calnexin-assisted protein folding, endoplasmic reticulum (ER) exiting, and zymogen activation of hepsin on the cell surface. Hepsin mutants with alternative N-glycosylation sites on the opposite side of the SRCR domain were trapped by ER chaperones, resulting in the activation of the unfolded protein response in HepG2 cells. These results indicate that the spatial N-glycan positioning in the SRCR domain is a key determinant in the interaction with calnexin and subsequent cell surface expression of hepsin. These findings may help to understand the conservation and functionality of N-glycosylation sites in the SRCR domains of different proteins.
Collapse
Affiliation(s)
- Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kaixuan Hu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yikai Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Zou J, Li J, Zhong X, Tang D, Fan X, Chen R. Liver in infections: a single-cell and spatial transcriptomics perspective. J Biomed Sci 2023; 30:53. [PMID: 37430371 PMCID: PMC10332047 DOI: 10.1186/s12929-023-00945-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
The liver is an immune organ that plays a vital role in the detection, capture, and clearance of pathogens and foreign antigens that invade the human body. During acute and chronic infections, the liver transforms from a tolerant to an active immune state. The defence mechanism of the liver mainly depends on a complicated network of intrahepatic and translocated immune cells and non-immune cells. Therefore, a comprehensive liver cell atlas in both healthy and diseased states is needed for new therapeutic target development and disease intervention improvement. With the development of high-throughput single-cell technology, we can now decipher heterogeneity, differentiation, and intercellular communication at the single-cell level in sophisticated organs and complicated diseases. In this concise review, we aimed to summarise the advancement of emerging high-throughput single-cell technologies and re-define our understanding of liver function towards infections, including hepatitis B virus, hepatitis C virus, Plasmodium, schistosomiasis, endotoxemia, and corona virus disease 2019 (COVID-19). We also unravel previously unknown pathogenic pathways and disease mechanisms for the development of new therapeutic targets. As high-throughput single-cell technologies mature, their integration into spatial transcriptomics, multiomics, and clinical data analysis will aid in patient stratification and in developing effective treatment plans for patients with or without liver injury due to infectious diseases.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao Zhong
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xuegong Fan
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Wu Q, Li S, Zhang X, Dong N. Type II Transmembrane Serine Proteases as Modulators in Adipose Tissue Phenotype and Function. Biomedicines 2023; 11:1794. [PMID: 37509434 PMCID: PMC10376093 DOI: 10.3390/biomedicines11071794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Adipose tissue is a crucial organ in energy metabolism and thermoregulation. Adipose tissue phenotype is controlled by various signaling mechanisms under pathophysiological conditions. Type II transmembrane serine proteases (TTSPs) are a group of trypsin-like enzymes anchoring on the cell surface. These proteases act in diverse tissues to regulate physiological processes, such as food digestion, salt-water balance, iron metabolism, epithelial integrity, and auditory nerve development. More recently, several members of the TTSP family, namely, hepsin, matriptase-2, and corin, have been shown to play a role in regulating lipid metabolism, adipose tissue phenotype, and thermogenesis, via direct growth factor activation or indirect hormonal mechanisms. In mice, hepsin deficiency increases adipose browning and protects from high-fat diet-induced hyperglycemia, hyperlipidemia, and obesity. Similarly, matriptase-2 deficiency increases fat lipolysis and reduces obesity and hepatic steatosis in high-fat diet-fed mice. In contrast, corin deficiency increases white adipose weights and cell sizes, suppresses adipocyte browning and thermogenic responses, and causes cold intolerance in mice. These findings highlight an important role of TTSPs in modifying cellular phenotype and function in adipose tissue. In this review, we provide a brief description about TTSPs and discuss recent findings regarding the role of hepsin, matriptase-2, and corin in regulating adipose tissue phenotype, energy metabolism, and thermogenic responses.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Shuo Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xianrui Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Tan J, Ge Y, Zhang M, Ding M. Proteomics analysis uncovers plasminogen activator PLAU as a target of the STING pathway for suppression of cancer cell migration and invasion. J Biol Chem 2022; 299:102779. [PMID: 36496076 PMCID: PMC9823231 DOI: 10.1016/j.jbc.2022.102779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The stimulator of interferon genes (STING) pathway is vital for immune defense against pathogen invasion and cancer. Although ample evidence substantiates that the STING signaling pathway plays an essential role in various cancers via cytokines, no comprehensive investigation of secretory proteins regulated by the STING pathway has been conducted hitherto. Herein, we identify 24 secretory proteins significantly regulated by the STING signaling pathway through quantitative proteomics. Mechanistic analyses reveal that STING activation inhibits the translation of urokinase-type plasminogen activator (PLAU) via the STING-PERK-eIF2α signaling axis. PLAU is highly expressed in a variety of cancers and promotes the migration and invasion of cancer cells. Notably, the activation of STING inhibits cancer cell migration and invasion by suppressing PLAU. Collectively, these results provide novel insights into the anticancer mechanism of the STING pathway, offering a theoretical basis for precision therapy for this patient population.
Collapse
|
8
|
Fang Y, Yang H, Hu G, Lu J, Zhou J, Gao N, Gu Y, Zhang C, Qiu J, Guo Y, Zhang Y, Wen Q, Qiao H. The POR rs10954732 polymorphism decreases susceptibility to hepatocellular carcinoma and hepsin as a prognostic biomarker correlated with immune infiltration based on proteomics. J Transl Med 2022; 20:88. [PMID: 35164791 PMCID: PMC8842912 DOI: 10.1186/s12967-022-03282-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
The effect of the cytochrome P450 oxidoreductase (POR) rs10954732 (G > A) polymorphism on hepatocellular carcinoma (HCC) susceptibility is unknown. Here we found that A allele carriers showed a 69% decrease in susceptibility to HCC with overall survival (OS) prolonged to 199%, accompanied by lower activity for cytochrome P450 2E1. A total of 222 differentially expressed proteins were mainly enriched in neutrophil and T cell activation and involved in the immune and inflammatory responses, constituting the altered immune tumor microenvironment related with A allele by proteomics analysis. Hepsin (HPN) showed significant down-regulation in HCC and up-regulation in A allele carriers. A lower HPN level was associated with increased susceptibility to HCC and a worse prognosis. Moreover, HPN is a potential independent prognostic biomarker for HCC and is strongly associated with clinicopathological features, tumor-infiltrating status of immune cells both in our discovery cohort and database surveys. Our findings provide a new potential mechanism by which HPN may play an important role in the susceptibility of rs10954732 A allele carriers to HCC and their prognosis through tumor immune infiltration, thus offering potential insights for future studies on tumor immunotherapy.
Collapse
|
9
|
Lu L, Cole A, Huang D, Wang Q, Guo Z, Yang W, Lu J. Clinical Significance of Hepsin and Underlying Signaling Pathways in Prostate Cancer. Biomolecules 2022; 12:biom12020203. [PMID: 35204704 PMCID: PMC8961580 DOI: 10.3390/biom12020203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
The hepsin gene encodes a type II transmembrane serine protease. Previous studies have shown the overexpression of hepsin in prostate cancer, and the dysregulation of hepsin promotes cancer cell proliferation, migration, and metastasis in vitro and in vivo. The review incorporated with our work showed that hepsin expression levels were specifically increased in prostate cancer, and higher expression in metastatic tumors than in primary tumors was also observed. Moreover, increased expression was associated with poor outcomes for patients with prostate cancer. Using in silico protein–protein interaction prediction, mechanistic analysis showed that hepsin interacted with eight other oncogenic proteins, whose expression was significantly correlated with hepsin expression in prostate cancer. The oncogenic functions of hepsin are mainly linked to proteolytic activities that disrupt epithelial integrity and regulatorily interact with other genes to influence cell-proliferation, EMT/metastasis, inflammatory, and tyrosine-kinase-signaling pathways. Moreover, genomic amplifications of hepsin, not deletions or other alterations, were significantly associated with prostate cancer metastasis. Targeting hepsin using a specific inhibitor or antibodies significantly attenuates its oncogenic behaviors. Therefore, hepsin could be a novel biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Lucy Lu
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Adam Cole
- TruCore Pathology, Little Rock, AR 72204, USA;
| | - Dan Huang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Qiang Wang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Zhongming Guo
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Wancai Yang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (W.Y.); (J.L.)
| | - Jim Lu
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
- Correspondence: (W.Y.); (J.L.)
| |
Collapse
|